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Abstract— Intercommunication of the microbiome-gut-brain
axis occurs through various signaling pathways including
the vagus nerve, immune system, endocrine/paracrine, and
bacteria-derived metabolites. But how these pathways integrate
to influence cognition remains undefined. In this paper, we
create a systems level mathematical framework comprised of
interconnected organ-level dynamical subsystems to increase
conceptual understanding of how these subsystems contribute
to cognitive performance. With this framework we propose that
control of hippocampal long-term potentiation (hypothesized to
correlate with cognitive performance) is influenced by inter-
organ signaling with diet as the external control input. Specif-
ically, diet can influence synaptic strength (LTP) homeostatic
conditions necessary for learning. The proposed model provides
new qualitative information about the functional relationship
between diet and output cognitive performance. The results can
give insight for optimization of cognitive performance via diet
in experimental animal models.

I. INTRODUCTION

The gut is colonized with a complex community of
bacteria (microbiota), which helps to shape the immune
system, metabolic function and cognition in health and dis-
ease. Studies show that dysbiosis within the gut microbiome
modulates peripheral and central nervous system function,
leading to alterations in brain signalling and behavior [1],
[2]. Therefore, research targeting the modulation of the gut
microbiota as a novel therapy for maintaining brain health is
gaining interest. Diet is one of the most critical modifiable
factors regulating the gut microbiota and is shown to have a
direct effect on the composition of the gut bacteria [3], [4].
Thus, increased understanding of the relationships between
diet, changes in gut microbiota, activation of inter-organ
pathways, and alterations in brain signalling (hypothesized
to correlate with changes in cognition) is necessary for
therapeutic intervention.

The bidirectional communication between the gut and
the brain occurs through various pathways including the
vagus nerve, the immune system, neuroendocrine pathways,
and bacteria-derived metabolites. Systems level mathematical
models can be used to elucidate significant organs necessary
for the achievement of diet and microbial conditions for
optimal cognition and help generate hypotheses and direct
conceptual understanding. Models can also give insight
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into observed experimental trends and predict the outcomes
of future experiments. Differential equation models and
constraint-based stoichiometric models have been used to
describe growth rates, relative abundances, and metabolic
interactions of microbial communities at the macroscopic
and microscopic level [5], [6]. Similar methods have been
adapted to describe modulation of immune response via
the gut microbiota [7]. Mathematical models of neurotrans-
mitter modulated brain signalling within the hippocampus
have been developed [8], [9]. However, to the best of our
knowledge, few models exist describing the systems level
effects of how intestinal microbes and immune interactions
can regulate brain function while also considering vagal and
vascular pathways.

To bridge this gap, we have combined microbial growth
and competition, metabolic signaling, immune response and
neural mathematical models in a unified physiological model
to explore possible inter-organ pathways regulating brain
signaling and cognitive performance. The proposed model
provides new qualitative information about the functional
relationship between diet and output cognitive performance.
Furthermore, this work motivates the development of more
comprehensive models of the dietary effects on cognition
and encourage further investigations towards therapeutic in-
tervention strategies.

II. SIGNALING INTERACTIONS BETWEEN ORGANS
INFLUENCING THE MICROBIOME-GUT-BRAIN AXIS

We developed a prototype system of the signaling inter-
actions between organ subsystems within the microbiome-
gut-brain axis. This prototype system is an overview of
generalized mechanisms observed in ongoing experiments
conducted in mouse models by collaborators and can also
be verified through past literature (see Figure 1).

Under a healthy low fat diet, the gut microbiota produces
metabolites such as short chain fatty acids (SCFAs), bile
acids, and neurochemicals (e.g., serotonin and GABA). Sub-
sets of metabolites (such as SCFAs) can enter the blood-
stream and cross the blood brain barrier. Other subsets of
metabolites (such as neurochemicals) can stimulate afferent
vagal nerve fibers in the gut and promote healty vagal nerve
tone [10], [11]. These nutrient metabolites and vagal activity
support neural activity of the hippocampus, specifically long-
term potentiation (LTP) which underlies memory formation
[12], [13].

Hypoxia and ketogenic diet promote anaerobic conditions
and bile acids that enrich and expand bacterial species within
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A. Factors for high fat, low carb diet-induced impaired cognitive performance. A high fat, low carb diet can initiate abberant gut microbial, vagal and
immune responses that lead to impairment in hippocamal LTP which is associated with memory dysfunction. B. Hypothesized modes of regulation. High
fat, low carb diet-induced microbial dysbiosis within the gut can activate immune response which can promote gut microbe homeostasis but also produce
pro-inflammatory cytokines. Neurotransmitters released by the vagus nerve attenuate immune response thereby reducing inflammation.

the gut, such as Bilophila wadsworthia, which produce hy-
drogen sulfide (H,S) and stimulate T-cell differentiation [10],
[14]. Specifically, Thl cells can be activated by Bilophila
wadsworthia and produce pro-inflammatory cytokines lead-
ing to inflammation [15] and consequently impairment of
hippocampal activity [16]. It is also believed that bile acids
and H,S can directly activate afferent vagal nerve fibers in
the gut which can alter hippocampal LTP [13], [17]. Im-
paired hippocampal LTP affects memory [13] and therefore
cognitive performance.

We also explored vagus and immune system regulation
modes that could contribute to alleviation of an impaired
cognitive state. These regulation mechanisms have been
identified in literature although not yet corroborated by our
collaborators (see Figure 1B). Specifically, immune cells
stimulate production of antimicrobial proteins that prevent
infection and promote homeostasis [18]. In order to decrease
immune cell induced inflammation that can impair LTP, the
vagus nerve releases neurotransmitter acetylcholine which
can travel through the bloodstream and localize at sites of
inflammation and suppress pro-inflammatory cytokines [16],
[18].

III. MODELING OF INTERCONNECTED ORGAN-LEVEL
DYNAMICAL SUBSYSTEMS INFLUENCING THE
MICROBIOME-GUT-BRAIN AXIS

Figure 2 depicts the complete scheme of the unified
gut microbial-immune-neural system model representing the
flow of gut microbes, metabolites, immune cells and neural
signals. Below, we describe each organ-level dynamical
subsystem.

A. Model of Gut Microbial Growth and Competition,
Metabolite Production

We constructed a model of bacterial growth and compe-
tition using Lotka-Volterra-type equations adapted from [7].
This model was selected for two main reasons: (i) it can
implement simple qualitative interactions between bacterial
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species (such as competition, cooperation and exploitation)
and (ii) it has been used to successfully study the temporal
dynamics of bacterial communities within the gut [5], [7].
The outputs of this model are the microbial population
densities of the typical and aberrant species within the gut
microbiome:

2
%Bi - (Ki—Zeiij—%-N+¢iD)riBi i=1,2. (1)
j=1

Here, typical microbial species are represented by variable
B; and aberrant species (e.g. Bilophila wadsworthia ) are
represented by variable Bs. The aberrant species expand
when a ketogentic (high fat, low carb) diet is consumed.
D is the input representing the ratio of fat to carb content
within the consumed diet. Immune cells (represented by N)
also have an effect on bacterial populations as previously
discussed (see interaction between immuno-modulation and
gut microbiota blocks in Figure 2). Parameters K; and
r; represent bacterial carrying capacity and growth rate
respectively. Parameter e;; characterizes the effect of species
7 on the dynamics of species ¢, 7y; characterizes the effect
of the immune cells on species ¢, and 1);; characterizes the
effect of diet input on species ¢.

In addition, output metabolites M; and M5 are produced
by microbial species By and Bs respectively. To represent
this interaction we adapted from the generalized form of the
species-metabolite interaction model given in [19]:

4
dt

B;

“Bi + rs (M)

f i1=1,2.  (2)

Here, «; and §; represent production rate of metabolite 4
by bacteria ¢ and degradation of metabolite ¢ respectively.
Furthermore, we assume that production of metabolites sat-
urates at higher and lower bacterial concentrations. F'(M;)
is a function describing metabolite transport kinetics to the

brain which is explained in equation (6).
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Fig. 2. Block diagram of modeling framework showing interconnection
of organ-level dynamical subsystems. Hippocampal LTP (correlated with
cognitive performance), is regulated via interorgan signaling with diet as
the external control input.

B. Model of Immune Cell Activation Response

The dynamics of the immune cell population /V is modeled
with linear influx and exit terms and additive contributions
from each bacterial species as developed in [7]:

d
“N=ay—

dt )

2
5NN + Z ble — ’YNAch~
i=1

Here, an and § are the activation and deactivation rate
of immune cells, respectively, and b; is the effect of species @
on immune cell influx. We incorporate the negative feedback
effect of the vagus secreted neurotransmitter A, (see inter-
actions between vagas nerve and immuno-modulation blocks
in Figure 2) where 7y characterizes the effect of A.,on the
immune cells.

C. Model of Vagus Nerve Activation and Neurotransmitter
Secretion

There is evidence that the vagus nerve can differentiate
between non-pathogenic and potentially pathogenic bacteria
and can instigate an anti-inflammatory reflex via release of
neurotransmitter acetylcholine that, through an interaction
with immune cells, attenuates inflammation [11]. However,
to our knowledge, there is limited previous literature re-
garding experimental data on the electrophysiology of these
interactions.

Therefore, in this first proposal, we adapt a model from
[20] where vagal nerve stimulus is represented as a train
of squared pulses (¥(¢) = 1 during the pulse and v(t) = 0
otherwise), each of them with a duration (A,) that resembles
that of the real physiological action potential. The frequency
(f) of the train of pulses is decreased by decreased My,
representing typical vagal tone and increased by increased
M- representing aberrant vagal tone. Here we assume a
sigmoidal function to represent this relationship:

f o 02M2
o o1 My + oo Mo + 1

As shown in equation (4), higher concentration of gut
metabolites derived from aberrant microbes (M5) increase
the stimulation frequency of the vagus nerve with effective-
ness constant o9. Higher concentration of gut metabolites
derived from typical microbes (M7) attenuate stimulation

“4)
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frequency of with effectiveness constant ;. Although the
functional form of equation (4) is assumed the general trends
can be corroborated data [13], [17].

The immuno-modulatory role of the vagus nerve is also
adapted from [20] where neurotransmitter acetylcholine is
released via stimulation of vagal fibers within the pancreas.
Following their assumption that the kinetics of acetylcholine
secretion do not change from one nerve terminal to another,
we adapt the same sigmodial model structure to represent
acetylcholine release as a function of vagal frequency:

= Qa K:ff
ff‘f'lif.

This simplified neural model solely depends on the firing
frequency of the stimulus, since the higher the frequency
the higher the steady-state value for acetylcholine concen-
tration (A¢p). Here ay is a lumped parameter signifying the
maximum effective concentration of acetylcholine. And & ¢
represents the rate of renewal of synaptic vesicles containing
acetylcholine.

Ach (5)

D. Model of Metabolic Signaling through the Bloodstream

Metabolite transport kinetics through the bloodstream
and across the blood-brain barrier are modeled using
Michaelis—Menten kinetics, which have been used success-
fully to study glucose and lactate transport kinetics into the
human brain [21], [22]. The metabolite flux secreted from
the gut into blood is described by:

M;
F(M;))=V——. 6
(M) =V 3 ©
The dynamics of brain metabolites are given by:
d .
&MBJ =F(M;) - iMp,; i=1,2, (7N

where V' is the maximum transport rate that can be obtained
and [ is a threshold value for gut metabolites to be trans-
ported into the brain.

Assuming that the gut metabolites have passed swiftly
through the blood brain barrier (i.e. M; < () we can
simplify the equations (6) and (7) to the first order kinetic
regime [22]:

v
B

E. Model of Long-term Potentiation within the Hippocampus

F(M,) = =M, @®)

It has been established that diet-induced microbial changes
within the gut can lead to altered brain signaling and behavior
[1], [2]. Futhermore, ongoing experiments with collaborators
show that the composition of the gut microbiome due to diet
and antibiotics can lead to changes in hippocampal long-term
potentiation (LTP). LTP represents synaptic signal strength
between adjacent neurons which can vary based on recent
patterns of neural activity. Here we describe the process in
simplified terms.

LTP is initialized when activation of AMPA receptors
(ligand-gated ion channels) lead to depolarization of the
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postsynaptic cell and release of the magnesium ion block-
ing the NMDA receptor. This allows calcium-glutamate
molecule to enter the cell and activate protein kinases such
as calcium/calmodulin-dependent protein kinase IT (CaMKII)
and protein kinase C (PKC). The activation of these two
proteins allows for the two major mechanisms of LTP to
proceed. The first is phosphorylation of existing AMPA
receptors which increases their sensitivity. The second is
increase of postsynaptic AMPA receptors due to kinase
activity. Furthermore, sustained activation of the kinases
(CaMKII and PKC) lead to postsynaptic changes including
increase of AMPA receptors inserted in the postsynaptic
membrane and increased dendritic area and spines which
increase postsynaptic sensitivity. Presynaptic changes are
based on retrograde signaling and include an increased
binding and release of neurotransmitter vesicles from the
presynaptic membrane and an increase in the total number
of presynaptic neurotransmitter vesicles.

We use a simplified model adapted from [9] to describe
the calcium dependent activation of intracellular kinases and
phosphates (CaMKII and PKC) within the postsynaptic cell.
CaMKII and PKC dynamics regulate insertion of AMPA
receptor in the postsynaptic membrane. Within this model,
we assume that long term potentiation is proportional to the
amount of AMPA receptors in the postsynaptic membrane.
The model is represented by three main equations.

(i) Calcium-glutamate (Ca) mediated CaMKII activation
dynamics:

d pK

K
EpK_k1K+Km1pK_k2pK+Km2 (P + Po) ©)
Ca*
+ ks Ko + k4mK )
where K and pK are the unphosphorylated and

phosphorylated forms of CaMKII respectively, ki, ko,
ks, k4 are rate constants for each reaction, and K,,1, K2,
and K, are equilibrium constants. K indicates the basal
concentration of active kinase. The total amount of kinase
is assumed to be conserved.

(i) Calcium-glutamate (C'a) mediated PKC activation dy-
namics:

d pP P
—P=ki1————P —kio—F7F+—(K+ K
dt HPP + K1 PPy Km12( + Ko) (10)
Ca?®
+ ki3 Po + kumpp,
where P and pP are the unphosphorylated and
phosphorylated forms of PKC respectively. kij, kio,

k13, k1a are rate constants for each reaction. K,,; and
Ko are equilibrium constants. And Py indicates the basal
concentration of phosphatase. The total AMPA receptor is
assumed to be conserved. The total amount of phosphatase
is assumed to be conserved.
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(iii) Activated CAM2KII and PP2A mediated AMPA recep-
tor insertion dynamics:

d

il an
where A and A;,; indicate the AMPA receptor on the
synaptic membrane and the internalized AMPA receptor
respectively. The total AMPA receptor is assumed to be con-
served. Furthermore since the activities of kinase and phos-
phatase influence the insertion and the removal of AMPA
receptor, ko and kyo are assumed to be proportional to the
concentration of active kinase and phosphatase respectively:

A= k21Aint - k22A7

ko1 = c1pK + c3,

(12)
koo = coP + ¢4,

where ¢; and ¢y are proportional constants, and c3 and cy
are rate constants for the processes independent of kinase
and phosphatase activities.

In order to incorporate this model within the larger mod-
eling framework, we consider the dependency of calcium in-
flux on the outputs from the vagal, immune and bloodstream
submodels. There is evidence to show that vagal activity,
immune cells and circulating metabolites can influence the
influx of calcium within the postsynaptic neuron. Specifi-
cally, there is evidence that vagal nerve stimulation can lead
to increased expression of synaptic proteins associated with
LTP and decrease proteins associated with AMPA receptor
endocytosis [23]. In addition, peripheral immune cells can
penetrate the brain through the blood brain barrier and
modulate synapse activity and neurotransmitters can circulate
between neurons and glial cells within the brain [24]. Finally,
metabolites (such as neurochemicals) can penatrate the blood
brain barrier and affect calcium influx by activation of post-
synaptic channels [25]. Therefore, although the functional
form of equation 4 is assumed, the general trends can be
corroborated with data.

Here, as a first proposal, we assume a sigmoidal function
to describe the relationship between vagal activity, immune
response, and circulating metabolites and calcium infux:

Ca = {
(13)

As shown in equation (13), at presynaptic firing time ¢4 the
level of calcium within the postsynaptic cell changes from
the baseline amount of 0.1 M. This change in calcium is
dependent on inputs from bloodstream, vagal and immune
submodels. Specifically, higher concentration of circulating
metabolites derived from aberrant microbes within the gut
(MB,2), increased immune response (/NV), and higher vagal
frequencies (f) attenuate the influx of calcium (C'a) within
the postsynaptic neuron with effectiveness constants A2, Ay
and Ay respectively. Whereas, higher concentration of circu-
lating metabolites derived from typical microbes within the
gut (Mp,1) increase influx of calcium within the postsynaptic
neuron with effectiveness constant \p.

A1 Mp
Aff+AaMp 2+A1 M 1+ANN

0.1

ift, <t <ts+ As

otherwise.
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IV. APPLICATION OF INTERCONNECTED MODELING
FRAMEWORK TO STUDY THE EFFECT OF DIET ON BRAIN
SIGNALING

A. Modulation of Long-Term Potentiation in Response to
Dietary Changes via the Gut-Brain-Axis

Numerical simulations of the developed framework (Fig-
ure 3) show how dietary changes can affect the gut mi-
crobial environment leading to changes in gut metabolites
which influence both brain metabolite concentration and
vagal stimulation frequency initiating changes in LTP. In
addition, gut microbial changes can initiate immune response
which is further modulated by acetylcholine produced by the
stimulated vagus nerve.

Specifically, a high fat/low carb diet (D = 10 introduced
at day 2) causes expansion of aberrant gut microbes and as-
sociated metabolites while causing attenuation of typical gut
microbes and associated metabolites. This leads to increase
in immune response and vagal stimulus. A byproduct of the
increase of vagal stimulation is acetylcholine which attenu-
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Fig. 3. Simulations of proposed modeling framework. A. With initiation

of a high fat low carb diet at day 2 (D = 10), the altered gut microbiome
triggers an increase of immune response and produces gut metabolites
which circulate to the brain. As immune feedback regulates microbes
within the gut, vagus derived acetylcholine regulate immune response. With
the initiation of a balanced diet at day 6 (D = 1), gut bacterial homeostasis
is restored causing a decrease in aberrant gut and brain metabolites and
return of typical vagal tone. B. The inter-organ response upon initiation of
a high fat, low carb diet (described in A.), results in a drop of calcium
within the post synaptic neuron and consequently a return of EPSP to the
baseline level. Initiation of a balanced diet results in a rise in calcium and
consequently synaptic strength (LTP) from the previous baseline level as
the gut bacterial homeostasis is restored.
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ates immune cell activation. Increased aberrant metabolites,
vagal stimulation frequency, and immune response cause
significant decrease in calcium influx (Figure 3B). Excitatory
postsynaptic potential (EPSP) of the postsynaptic neuron
can be used to indicate LTP. We assume that EPSP is
proportional to the amount of AMPA receptor (A) inserted
within the postsynaptic neuron membrane. Between days 1
and 3 initiation of the bad diet causes a decrease in calcium
influx and the EPSP can no longer be sustained above the
baseline which indicates a removal of LTP.

In contrast, a balanced fat/carb diet (D = 1 introduced
at day 6) attenuates aberrant gut microbes and associated
metabolites which allows for the expansion of typical gut
microbes and associated metabolites. As a result, immune
response and vagal stimulus frequency are attenuated and
typical brain metabolites replace aberrant metabolites. This
causes an increase in calcium influx and the EPSP can be
sustained above the baseline reinstating LTP. Since LTP is
associated with memory formation, these simulations hypoth-
esize how a high fat, low carb diet may lead to decreased
cognitive performance as indicated in preliminary data from
collaborators.

B. Prediction of Hysteresis Associated with Dietary Effects
on Long-Term Potentiation.

Further simulations of the developed framework revealed
that under identical dietary input conditions, the EPSP can
be in either an elevated (indicating LTP) or baseline (no LTP)
state (Figure 4). As diet shifts from balanced (D = 1) to high
fat, low carb (D = 10) conditions, EPSP lowers to baseline
from an elevated (LTP) state at “tipping point" (D =~ 7).
However, shifting in reverse from high fat, low carb diet back
to a balanced diet the system gets “stuck" in the baseline
state until a lower “tipping point" (D =~ 5.5) is reached.
This suggests that it may take a more balanced diet to regain
healthy cognition (elevated EPSP, LTP) after a high fat, low
carb diet.

LTP
| 0000 -0-0 -0~

Normalized EPSP

e o o o0
] ‘ <«— Baseline ‘
1 5 10
Dlet( calories fromfat )

calories fromearb

Fig. 4.  As diet shifts from balanced (D = 1) to high fat, low carb
(D = 10) conditions, EPSP lowers to baseline from an elevated (LTP) state
at “tipping point" (D =~ 7) indicated by light blue points/arrows. However,
shifting in reverse from high fat, low carb diet back to a balanced diet
the system gets “stuck” in the baseline state until a lower “tipping point"
(D = 5.5) is reached indicated by dark blue points/arrows.
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The mechanisms underlying this hysteresis are the result
of the multi-stable dynamics within the calcium dependent
activation of intracellular kinases and phosphates (equations
(9) and (10)). Thus, we hypothesize that hysteresis region
may be altered through interference with these interactions,
potentially by altering the composition and amount of neu-
rotransmitters contributing to the activation of ligand-gated
ion channels. Other factors, like alteration of properties of
the presynaptic neuron may also contribute to altering this
region of hysteresis.

V. CONCLUSIONS

Within this work, we develop an early attempt at defining
a physiological combined neural-immune-metabolic model-
ing framework to study dietary effects on cognition. The
model considers effects of the immune system on the gut
microbiome and effects of vagal feedback on immune system
response. The results suggest how inter-organ mechanisms
may interconnect to alter brain signaling. Furthermore, the
model provides insight into the nonlinear functional rela-
tionship between diet and response by predicting hysteresis
associated with dietary effects on synaptic strength (LTP).
Future work includes consideration of additional feedback
mechanisms between the brain and the gut. For example,
a hypothalamic pituitary stress response in the brain can
stimulate vagal efferents which alter intestinal permeability
of the gut. Intestinal permeability may alter gut microbiota
and subsequently metabolite production [26]. This model
lays the foundation for the development of physiological
models that can reproduce the complex mechanisms un-
derlying the microbiome-gut-brain axis and have practical
application for determining therapeutic diets for optimal
cognitive performance.

APPENDIX
TABLE 1
SUMMARY OF PARAMETER VALUES
Subsystem Parameter Value Units
K1, K2 1,1 -
Gut Microbial e11,€12 1076,1.5-1076  cells’!
Growth and 1,72 0,3-104 cells™!
Competition 1, P2 0,0.2 -
71,72 1,2 day!
Metabolite 1,02 102’ 102 "V
Production K1, K2 10°,10 cells
81,02 0.1,0.1 day’!
an 5-10° cely/goy
Immune Cell ON 0.2 day!
Activation b1, b2 0,2-1073 day!
N 3.3-1073 celly/, M day
Vagal 01,02 1,1 uM T
Frequency
Acetylcholine agry 3.10° HM /gy
Release Kg 2.103 day’!
Metabolite V/a 0.2 day’T
Transport 05,1,0B.2 0.2,0.1 day!
k1, ko, ks, ka
k11, k12, k13, k14
Km parameters
Hippocampal K,I,}l, I]gmz taken from [9]
LTP 0,70
c1,C2,C3,Cq4
A1, Ao 10721072 uM!
Af 1 day
AN 0 cells™!
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The values of the parameters of each subsystem within
the model are reported in Table I. Parameters within the
gut microbial and metabolite production submodels were
chosen based on [7] and [19] and such that major changes in
microbial dynamics occurred within two to three days [27].
Parameters within the immune system submodel were esti-
mated such that the parameters recapitulate the the response
given in [7] within 1 order of magnitude. The parameters for
the vagus nerve submodel were modified from [20] based
on the variables used in the proposed submodel and reca-
pitulate the responses reported in [20] . Metabolite transport
kinetic parameters were estimated using [21], [22]. Finally,
parameters within the model of hippocamplal LTP were taken
directly from [9], with the exception of Ay, A2, Ay, Ay which
were chosen such that the variable Calcium (C'a) was in the
range given in [20].
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