
ar
X

iv
:2

10
4.

09
15

4v
1

 [
cs

.F
L

]
 1

9
A

pr
 2

02
1

Control Synthesis for Parametric Timed Automata under

Unavoidability Specifications

Ebru Aydin Gol

Abstract— Timed automata (TA) is used for modeling systems
with timing aspects. A TA extends a finite automaton with a set
of real valued variables called clocks, that measure the time and
constraints over the clocks guard the transitions. A parametric
TA (PTA) is a TA extension that allows parameters in clock
constraints. In this paper, we focus on synthesis of a control
strategy and parameter valuation for a PTA such that each run
of the resulting TA reaches a target location within the given
amount of time while avoiding unsafe locations. We propose
an algorithm based on depth first analysis combined with an
iterative feasibility check. The algorithm iteratively constructs
a symbolic representation of the possible solutions, and employs
a feasibility check to terminate the exploration along infeasible
directions. Once the construction is completed, a mixed integer
linear program is solved for each candidate strategy to generate
a parameter valuation and a control strategy pair. We present
a robotic planning example to motivate the problem and to
illustrate the results.

I. INTRODUCTION

Timed automata (TA) [1] is used for modeling systems

with timing aspects. A TA extends a finite automaton with

a set of real valued variables called clocks that measure the

time. The clocks enrich the semantics, and the constraints

over the clocks restrict the behavior of the automaton. The

examples of real-time systems modeled as timed automata

includes rail-road crossing systems [2], scheduling prob-

lems [3], and pace-makers [4], [5].

The correctness of a TA against high level specifications

such as safety, reachability and unavoidability can be verified

via model checking algorithms that are implemented in off-

the-shelve tools such as UPPAAL [6] and HyTech [7]. A

reachability specification requires existence of an execution

that reach a target set, whereas, an unavoidability (inevitabil-

ity) specification requires each execution to reach a target set.

Using a model checker to verify such a property requires a

complete TA model, and designing it for a complex system

(or problem) is a very challenging task. Parametric timed

automata (PTA) simplifies the design problem by allowing

the use of parameters in place of the numeric constants. Then,

the model generation is completed via parameter synthesis:

find a parameter valuation such that the resulting model

satisfies the specification [8]. However, parameter synthesis

problems are, in general, undecidable [9].

The control of timed automata problem deals with the syn-

thesis of a controller that monitors and affects the behavior of

This work has received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Skłodowska-
Curie grant agreement No 798482.

Ebru Aydin Gol is with the Department of Computer
Engineering, Middle East Technical University, Ankara/TURKEY
{ebrugol}@metu.edu.tr

the timed automata such that the resulting controlled system

satisfies the specification. In literature [10], [11], [12], [13],

the timed automaton is assumed to have controllable and

uncontrollable inputs (transitions), and a control strategy that

restricts the controllable transitions by both assigning input

symbols and delay values is synthesized. In the pioneering

work [10], the authors restricted the transitions of a timed

automaton by solving a turn-based timed game such that the

resulting automaton satisfies a safety property (avoids “bad”

states). An on-the-fly algorithm for safety and reachability

specifications is developed in [12], [13] to generate a feed-

back controller that assigns a control input or a delay value to

partial runs. In [11], a controller in the form of a timed tran-

sition system is synthesized for partially observable timed

automata. A template-based controller synthesis method for

safety specifications is studied in [14].

In this paper, we study the problem of synthesizing a

control strategy and a parameter valuation pair for a PTA

such that the resulting TA satisfies an unavoidability spec-

ification. In particular, we require each run to reach a set

of target locations (LT) within a given amount of time (D)

while avoiding unsafe locations (LA). We consider control

strategies that map a TA path (sequence of locations and

transitions) to an input and a delay value pair. It is important

to note that the controlled TA can be non-deterministic. Thus,

it is necessary to ensure that each possible run satisfies the

constrained unavoidability specification. To solve this prob-

lem, we represent candidate strategies symbolically as a tree

with respect to the specification. Then, we employ a Mixed

Integer Linear Programming (MILP) to generate a control

strategy and a parameter valuation pair from a symbolic tree.

Furthermore, we present an efficient algorithm to construct

the candidate solutions (trees). The algorithm constructs the

candidate trees in a depth first manner and employs an MILP

based feasibility check to terminate the exploration along the

infeasible directions. Finally, we show that the algorithm is

complete under a mild non-zeno assumption [10].

As summarized, in general, the parameter and controller

synthesis problems are studied separately. Here, we tune

parameters and restrict transitions via controller synthesis

such that the resulting automaton satisfies a specification,

thus we combine both problems for constrained unavoid-

ability specifications. Parameter and controller synthesis is

previously studied under safety [15] and reachability [16].

In [15], a symbolic parameter synthesis method is extended

to incorporate symbolic constraints over the TA inputs,

whereas in [16], a path is searched in a depth first manner

with an MILP encoding to find parameters.

http://arxiv.org/abs/2104.09154v1

II. PRELIMINARIES

A. Timed Automata

A timed automaton (TA) [1] is a finite-state machine

extended with a finite set of real-valued clocks denoted by

C. A clock x ∈ C measures the time spent after its last reset.

Clock constraints define timed conditions for transitions

(guard). A clock constraint is defined with the following

grammar φ := x ∼ c | φ ∧ φ where x ∈ C is a clock,

c ∈ N is a constant and ∼∈ {<,≤, >,≥} (N is the set of

natural numbers). A constraint is called parametric if some of

the numeric constants are represented with parameters. The

set of clock constraints over C is defined as Φ(C). For a

parametric clock constraint φ with P as its set of parameters

and a parameter valuation γ : P → N, φ(γ) is the constraint

obtained by replacing parameters in φ with the corresponding

constants from γ, e.g, for φ = x > p1∧y ≤ p2, and valuation

γ(p1) = 3, γ(p2) = 4, φ(γ) = x > 3 ∧ y ≤ 4.

A clock valuation v : C → R≥0 assigns non-negative

real values to each clock. The notation v |= φ denotes

that the clock constraint φ evaluates to true when each

clock x is replaced with the corresponding valuation v(x).
Two operations are defined for clock valuations: delay and

reset. For a clock valuation v and d ∈ R≥0, v + d is the

clock valuation obtained by adding d to each clock, i.e.,

(v + d)(x) = v(x) + d for each x ∈ C. For λ ⊆ C, v[λ] is

the clock valuation obtained after resetting each clock from

λ, i.e., v[λ](x) = 0 for each x ∈ λ and v[λ](x) = v(x) for

each x ∈ C \ λ.

Definition 2.1 (Timed Automata): A timed automaton

A = (L, l0,Σ, C,∆) is a tuple, where L is a finite set of

locations, l0 ∈ L is the initial location, Σ is a finite input

alphabet, C is a finite set of clocks and ∆ ⊆ L×Σ× 2C ×
Φ(C)× L is a finite transition relation.

For a transition e = (ls, a, λ, φ, lt) ∈ ∆, ls is the source

location, lt is the target location, a ∈ Σ is the input symbol,

λ is the set of clocks reset on e and φ is the guard tested for

enabling e. The set of enabled input symbols in a location

l is denoted by Σ(l) = {a | (l, a, λ, φ, l′) ∈ ∆}. The set of

locations that can be reached from l under input a is defined

as Post(l, a) = {l′ | (l, a, λ, φ, l′) ∈ ∆}. A clock x0 ∈ C

is used to measure the time passed since the start of the

execution, thus it is not reset on any transition of A.

A TA is called parametric (PTA) if it contains a parametric

clock constraint. Given a PTA A with a set of parameters P

and a valuation γ : P → N for its parameters, A(ν) is the TA

obtained by replacing each parameter with the corresponding

constant from the valuation γ.

The semantics of a TA is given by a timed transition

system (TTS). An TTS is a tuple T = (S, s0,Γ,→), where

S is a set of states, s0 ∈ S is an initial state, Γ is a set

of symbols, and →⊆ S × Γ × S is a transition relation. A

transition (s, a, s′) ∈→ is also shown as s
a
→ s′.

Definition 2.2 (TTS semantics for TA): Given a timed

automaton A = (L, l0,Σ, C,∆), the timed transition system

T (A) = (S, s0,Γ,→) is defined as follows:

• S = {(l, v) | l ∈ L, v ∈ R
|C|
≥0},

• s0 = (l0, 0), where 0(x) = 0 for each x ∈ C,

• Γ = Σ∪R≥0, and the transition relation defined by the

following rules:

– delay transition: (l, v)
d
→ (l, v+d) if v+d |= Inv(l)

– discrete transition: (l, v)
a
→ (l′, v′) if there exists

(l, a, λ, φ, l′) ∈ ∆ such that v |= φ, and v′ = v[λ].
A run ρ of A is an alternating sequence of delay and discrete

transitions:

ρ : (l0, v0)
d0→ (l0, v0 + d0)

a0→ (l1, v1)
d1→ . . . , (1)

where v0 is 0, ai ∈ Σ and di ∈ R≥0 for each i ≥ 0. A run is

called maximal if it is either infinite or can not be extended

by a discrete transition. The set of all runs of A is denoted by

JAK. A path π of A is an interleaving sequence of locations

and transitions, π : l0, e1, l1, e2, A path π is realizable if

there exists a delay sequence d0, d1, . . . such that (l0, v0)
d0→

(l0, v0 + d0)
a0→ (l1, v1)

d1→ . . . is a run of A, and for every

i ≥ 1, the ith discrete transition is taken according to ei,

i.e., ei = (li−1, ai−1, λi−1, φi−1, li), vi−1 + di−1 |= φi−1,

and vi = (vi−1 + di−1)[λi−1].
In this work, we study control strategies that assign a delay

value and an input symbol to a finite path:

Definition 2.3 (Control Strategy): A control strategy C :
(L × ∆)n × L → R≥0 × Σ, n ≥ 0, for a TTS T (A) =
(S, s0,Γ,→) of a TA A (Defn. 2.2) maps a path π of A to

a delay and input symbol pair. A run ρ as in (1) is generated

in closed loop with a strategy C if for each n ≥ 0:

(a) C(l0, e1, . . . , ln) = (dn, an),
(b) there exists en+1 = (ln, an, λn, φn, ln+1) ∈ ∆ such that

vn + dn |= φn, and vn+1 = (vn + dn)[λn].
For a timed automaton A and a valid strategy C for A, the

set of all runs of A that is generated in closed loop with C is

denoted by JACK. A strategy only limits the transitions of A,

thus JACK ⊆ JAK. Note that the resulting controlled TA can

be non-deterministic since there can be multiple transitions

satisfying condition-(b) from Def. 2.3

Definition 2.4 ((LT , LA, D)-satisfaction): Let

A = (L, l0,Σ, C,∆) be a timed automaton, LT ⊂ L

and LA ⊂ L be subsets of its locations, and D ∈ N be a

time bound. A run ρ as in (1) of A satisfies the reach-avoid

specification with deadline (LT , LA, D) if there exists i ∈ N

such that li ∈ LT , lj 6∈ LA for each j < i, and vi(x0) ≤ D.

Remark 2.1: This specification can be expressed as

a temporal logic formula with bounded until operator

(¬LAU[0,D]LT). As we focus on this particular specification,

further details on the syntax and semantics of temporal logics

are not included. Furthermore, an alternative way to enforce

the deadline is to add x0 ≤ D to each transition that

ends in a location l ∈ LT . As our goal is to enforce the

overall specification via controller and parameter synthesis,

we integrate this to the specification instead of the TA.

III. PROBLEM FORMULATION

Problem 3.1: Given a PTA A = (L, l0,Σ, C,∆) with

parameter set P , an interval Ip ⊂ N for each parameter

p ∈ P , and a reach-avoid specification (LT , LA, D), find a

parameter valuation γ : P → Πp∈P Ip and a feedback control

strategy C as in Defn. 2.3 such that each run ρ ∈ JAC(γ)K
satisfies (LT , LA, D).

Intuitively, our goal is to find a parameter valuation γ,

and restrict the behaviors of A(γ) via controller synthesis,

such that each remaining run reaches LT within D time units

while avoiding LA. Our solution for this problem constructs

a symbolic exploration tree for the given PTA. Central to

the proposed method is the iterative construction of the

symbolic model equipped with a MILP based feasibility

analysis guided by the specification. This approach avoids

computation of symbolic states that can not be part of the

solution, i.e., not reachable by a TA AC(γ) solving Prop. 3.1.

The developed method is presented for PTA satisfying the

following assumption. The extension of the method to TA

violating the assumption is explained in Remark 4.1.

Assumption 3.1: For a TA A = (L, l0,Σ, C,∆)

if (ls, a, λ, φ, lt), (ls, a, λ
′, φ′, l′t) ∈ ∆, then φ = φ′.

The assumption states that the guards of all transitions that

leave the same state (ls) under the same input (a) are the

same (φ = φ′). The following example illustrates Prob. 3.1

over a time-constrained task planning problem for a robot.

Example 3.1: An example timed automaton is shown in

Fig. 1. The automaton represents a task planning problem

for a robot. The robot has three tasks a, b and c. It needs to

complete either a or b and then c. Each task is represented

with a location in the timed automata (la, lb, lc). In addition,

it is assumed that the machines (tools/room) that the robot

needs for a task can be busy. In this case, the robot waits for

at least p1 time units (locations l′a, l′b, l
′
c). Thus, when the

robot decides to perform a task, say a, it either (1) reaches

location l′a, and then it can move to la, or (2) it reaches la
without waiting. The other tasks are represented similarly.

The task durations have relative constraints. For example, the

bound for the duration of task c should be “more than two

times and less than three times” of the bounds defined for

the duration of task a. These relative constraints are captured

with the parametric constraints. The parameter intervals are

Ip1
= Ip2

= {2, 3, 4}. Further details are given in Fig. 1.

The input alphabet of the TA is Σ = {a, b, c, d}. The goal is

to generate a strategy C and a parameter valuation γ for p1
and p2 such that each run ρ ∈ JAC(γ)K reaches lt in 15 time

units without visiting ld, i.e, the specification is (LT , LA, D)
with LT = {lt}, LA = {ld}, and D = 15.

IV. CONTROL AND PARAMETER SYNTHESIS

In this section, we present the proposed method to solve

Prob. 3.1, and prove the correctness of the result. The

method first constructs an exploration tree that symbolically

represents the TA runs, and then solves an optimization

problem for each candidate solution (a sub-tree) represented

in the tree. We first formally define the exploration tree,

and the associated candidate solutions with respect to the

specification (LT , LA, D). Then, we present an algorithm

to synthesize a control strategy-parameter valuation pair

without constructing the whole tree, which can be infinite.

l0

l′
a

la

l′
c

lc lt

l′
b

lb

ld

a, {x}

a, {x, y}

a, x ≥ p1

{x, y}

c, φa

{x}

c, φa

{x}

c, x ≥ p1, {x}

{x}, d, φd

d, φd

d, φc

c, φc

b, {x, y}

b, {x}

b, x ≥ p1

{x, y}

c, φb

{x}

c, φb

{x}

Fig. 1. The timed automaton from Ex. 3.1. l0 is the initial location. The
control inputs, reset sets and the constraints are shown next to the transitions.
For example, the transition from l′c to lc is (l′c, c, {x}, x ≥ 4, lc). The
parametric constraints are φa := p2 ≤ x ∧ x ≤ p1, φb := x ≥ 5p1,
φc := 2p1 ≤ x ∧ x ≤ 3p2 ∧ y ≥ 12, and φd := x ≥ p2 ∧ y ≥ 12.

Definition 4.1 (Exploration Tree): The exploration tree

of a PTA A = (L, l0,Σ, C,∆) is denoted by E(A) and it

is a rooted tree defined in the following way:

• The root r is labelled by the initial location l0.

• If m ∈ E(A) is a tree node labelled by l ∈ L, then for

each a ∈ Σ(l), and for each (l, a, λ, φ, l′) ∈ ∆ there

exists a node m′ ∈ E(A) that is labelled by l′ and is an

a-successor of m.

The label and the set of a-successors of a node m are denoted

by m(l) and E(A,m, a), respectively.

An exploration tree characterizes all possible paths of A. If

A includes a cycle, i.e., if it has a path π = l0, e1, l1, e2, . . . ,

with li = lj for some i 6= j, then E(A) is infinite. By the tree

definition, there is a one-to-one mapping between a tree path

from root to a node and an automaton path. Given a node

m ∈ E(A), the path from root r to m is uniquely defined

as πr→m = m0, . . . ,mn where m0 is r, mn is m, and for

each i = 0, . . . , n− 1 there exists ai ∈ Σ such that mi+1 ∈
E(A,mi, ai). The corresponding automaton path is πA

r→m =
l0, e1, l1, e2, . . . , ln where for each i = 0, . . . , n, li = mi(l),
and for each i = 1, . . . , n, ei = (li−1, ai, λi, φi, li) ∈ ∆ for

some λi and φi (ai is as in πr→m). Before introducing sub-

trees characterizing control strategies, we present an MILP

based method to decide whether a path is realizable within

the given time limit D. This method is extended to sub-trees

for controller synthesis.

Proposition 4.1: Let A = (L, l0,Σ, C,∆) be a paramet-

ric timed automaton with parameter set P , {Ip}p∈P be the

set of parameter ranges, and π = l0, e1, l1, e2, . . . , ln be a

path of A. There exists a parameter valuation γ such that

π is realizable on A(γ) within D time units if and only

if MILP (2) with the decision variables γp, p ∈ P and

d0, . . . , dn−1 is feasible.

γp ∈ Ip for each p ∈ P and (2a)

di ∈ R≥0 for each i = 0, . . . , n− 1 (2b)

M(x, π, i) ∼ g(c) for each i = 1, . . . , n,

and for each x ∼ c from φi (2c)

n−1
∑

i=0

di ≤ D, (2d)

where g(c) is γp if c is parameter p, otherwise, i.e., if c ∈ N,

g(c) = c, and

M(x, π, i) = dk + dk+1 + . . .+ di−1 and (3)

k = max({m | x ∈ λm,m < i} ∪ {0}).
The value of a clock x on a particular transition of π is

represented as the sum of the delay variables since the last

reset of x via M(·) (3). In particular, clock x equals to

M(x, π, i) on the i-th transition ei along π.

Example 4.1: Consider the TA introduced in Ex. 3.1

and its path π1 = l0, l
′
b, lb, l

′
c, lc (edges are omitted for

brevity). Delay values d0, d1, d2, d3, are the positive real

valued variables and parameters γp1
and γp2

are the integer

valued variables (with domain {2, 3, 4}) of the corresponding

MILP (2). The MILP constraints are C1 : d1 − γp1
≥ 0,

C2 : d2 − 5γp1
≥ 0, C3 : d3 − γp1

≥ 0 (from (2c)), and

C4 : d0+d1+d2+d3 ≤ 15 (2d). This MILP is feasible. Now,

consider the extended path π2 = l0, l
′
b, lb, l

′
c, lc, lt. It has an

additional delay variable d4. Its constraints are C1, C2, C3

as in π1 and C5 : d4 − 2γp1
≥ 0, C6 : −d4 + 3γp2

≥ 0,

C7 : d2+d3+d4 ≥ 0 and C8 : d0+d1+d2+d3+d4 ≤ 15.

In this case, the MILP is infeasible.

Definition 4.2 (Proper Sub-tree): A proper sub-

tree Ē(A) of an exploration tree E(A) with respect to

(LT , LA, D) has the following properties

1) The root r of Ē(A) is labelled by the initial location l0.

2) For each node m ∈ Ē(A), m is also node of E(A), and

a) m(l) ∈ L \ LA,

b) if m(l) ∈ LT , then m does not have a successor,

c) if m(l) 6∈ LT , then there exists am ∈ Σ(m(l)), such

that for each (l, am, λ, φ, l′) ∈ ∆ there exists m′ ∈
Ē(A,m, am) with m′(l) = l′, and for each b 6= am,

Ē(A,m, b) = ∅.

d) if m is not root, there is m′ ∈ Ē(A) such that m ∈
E(A,m′, a).

The proper sub-tree definition ensures that locations from

the avoid set LA are not included in the tree (a), the leaf

nodes are labelled by the target locations (LT) (b), a unique

input a ∈ Σ is assigned to each internal node (non-leaf) and

each location that is reachable under the assigned input is

represented by the corresponding nodes (c), and the tree is

connected (d). A proper sub-tree symbolically characterizes

a candidate solution in terms of an input assignment, and

integrates specifications LT and LA.

Next, we define a control strategy C and a parameter

valuation γ from a proper sub-tree Ē(A) by solving a MILP

over {γp | p ∈ P} and {dm | m ∈ Int(Ē(A))}, where

Int(Ē(A)) is the set of internal (non-leaf) nodes of Ē(A).

γp ∈ Ip for each p ∈ P and (4a)

dm ∈ R≥0 for each m ∈ Int(Ē(A)) (4b)

ME(x,m′) ∼ g(c) for each m ∈ Int(Ē(A))

and for each x ∼ c from mφ (4c)
∑

m∈πr→mt

dm ≤ D for each mt ∈ Leaf(Ē(A)) (4d)

where Leaf(Ē(A)) is the set of leaf nodes of Ē(A), φm

is the guard of a transition leaving m(l) under input am,

m′ is an am successor of m (as in Defn. 4.2-2-c), i.e.,

(m(l), am, λ, φm,m′) ∈ ∆, g(c) is as defined in (2), and

ME(x,m′) = M(x, πA
r→m′(l), length(π

A
r→m′(l))). (5)

As in (2) and (3), each clock x is mapped to sum of the delay

values since its last reset based on the path from the initial

location to the position of the constraint via ME(x,m′) (5).

With a slight abuse of notation, length(πA
r→m(l)) is used to

denote the index of the last transition along the path πA
r→m′

(automaton path obtained from the tree path from root r

to m′). Furthermore, the indices in (3) are considered as

relative indices in πA
r→m′ and assumed to map to {dm | m ∈

Int(Ē(A))} in order not to complicate the notation. Note

that φm is uniquely defined by Assumption 3.1. Essentially,

the tree represents several paths. The delay variables are

associated with the tree nodes and they are shared among

the paths. If this MILP is feasible, then each of these paths

is realizable via the corresponding delay sequence. On the

other hand, if the MILP (2) defined for a path is not feasible,

then the tree MILP (4) can not be feasible. This property is

exploited in Sec. V. Finally, even if the MILPs (2) defined

for the tree paths are all feasible, the tree MILP might not

be feasible. Next, we define a control strategy C(·) from a

feasible solution of this MILP, and prove that C(·) and γ

obtained from MILP (4) solves Prob. 3.1.

Proposition 4.2: Let A = (L, l0,Σ, C,∆) be a paramet-

ric timed automaton with parameter set P , {Ip}p∈P be the

set of parameter ranges, and Ē(A) be a proper sub-tree of A
with respect to specification (LT , LA, D). Let MILP (4) be

feasible for Ē(A), and d⋆m for each m ∈ Īnt(E(A)), γ⋆
p for

each p ∈ P be a solution, and let control strategy C w.r.t.

Ē(A) and d⋆m ∈ Ē(A) be defined as:

C(π = l0, e1, . . . en, ln) = (6)
{

(d⋆m, am) if ∃m ∈ Int(Ē(A) s.t.πA
r→m = π

(⊥,∞) otherwise

Then, each ρ ∈ JAC(γ
⋆)K satisfies (LT , LA, D).

For the given automaton path π, the control strategy gen-

erates the delay and control action pair (d⋆m, am) associated

with the last node m of the corresponding tree path πr→m

(πA
r→m = π). Note that the strategy C(·) (6) is defined until

the target set is reached due to the particular reachability

specification. As this proposition highlights, a proper sub-

tree of the exploration tree characterize a family of solutions

by assigning an input to finite paths identified in the tree.

Then, the solution of the MILP defines a strategy (as in (6))

by simultaneously finding parameter valuations for A and

delay values.

Example 4.2: The exploration tree E(A) of the TA given

in Fig. 1 is finite and it has two proper sub-trees Ē1(A)
and Ē2(A) such that Ē1(A, r, a) 6= ∅ (assigns a to l0)

and Ē2(A, r, b) 6= ∅ (assigns b to l0). Note that no proper

sub-tree assigns input d to a node m with m(l) = la
since Post(la, d) ∩ LA 6= ∅. The MILP constructed for

Ē2(A) is infeasible. In particular, Ē2(A) includes π2 from

Ex. 4.1 and the MILP (2) defined for π2 is infeasible,

which is sufficient for infeasibility of the tree MILP. On

the other hand, the MILP (4) defined for Ē1(A) is feasible

(γp1
= 3, γp2

= 3). Ē1(A) includes 4 paths that end in {lt}:

π3 : l0, l
′
a, la, l

′
c, lc, lt, π4 : l0, l

′
a, la, lc, lt, π5 : l0, la, l

′
c, lc, lt,

π6 : l0, la, lc, lt. The resulting strategy as defined in Prop. 4.2

is (edges are omitted from the paths in C(·)):

C(l0) = (0, a), C(l0, l
′
a) = (3, a), C(l0, la) = (3, c),

C(l0, l
′
a, la) = (3, c), C(l0, la, l

′
c) = (3, c), C(l0, la, lc) = (9, c),

C(l0, l
′
a, la, l

′
c) = (3, c), C(l0, l

′
a, la, lc) = (9, c),

C(l0, la, l
′
c, lc) = (6, c), C(l0, l

′
a, la, l

′
c, lc) = (6, t),

Remark 4.1: For a TA violating Assumption 3.1, a

strategy can be computed by considering all guards as-

sociated with the location and control input in (4c). In

particular, consider location ls and input a such that

(ls, a, λ, φ, lt), (ls, a, λ
′, φ′, l′t) ∈ ∆, with φ 6= φ′. Adding

a constraint as in (4c) to the MILP for each inequality from

φ∧φ′ guarantees that each symbolic path encoded in the tree

(Defn. 4.2-c)) will be realizable when the MILP is feasible.

V. SYNTHESIS ALGORITHMS

In this section, we present an iterative method to construct

the exploration tree as in Defn. 4.1, and a control strategy

via a proper sub-tree (Defn. 4.2) as shown in Prop. 4.2.

The method is summarized in Alg. 1. The algorithm starts

with the initialization of the root node (line 1) and expands

the tree recursively by analyzing the input symbols and the

corresponding transitions in a depth-first manner (described

in Alg. 2). For each considered input symbol, the feasibility

of the corresponding automaton path is checked via MILP (2)

(line 5 of Alg. 2). Thus, the exploration only continues

through promising directions. Once the exploration tree

construction terminates, MILP (4) is solved for each proper

subtree until a feasible solution is found (lines 3-7 of Alg. 1).

Algorithm 1 Synthesis(A, P , (LT , LA, D))

Require: A PTA A = (L, l0,Σ, C,∆) with parameter set P ,

P = {Ip | p ∈ P} parameter intervals for each p ∈ P ,

specification (LT , LA, D).
Ensure: Control strategy C and parameter valuation γ such

that each run from JC(A(γ))K satisfies (LT , LA, D).
1: Initialize root r of E(A) with r(l) = l0.

2: ps = ForwardAnalysis(r, r, A, P , P , (LT , LA, D))
3: for each i ∈ {1, . . . , ps} do ⊲ Enumerate each posible

solution.

4: Ēi(A) = GetSolutionT ree(i)
5: d, γ, soln = Synthesis(Ēi(A))
6: if soln then return C, γ = Controller(Ēi(A),d, γ)
7: end for

8: return No Solution

The forward analysis method (Alg. 2) takes an exploration

tree node m as input, constructs the sub-tree rooted at m

recursively, and returns the number of different sub-trees

Algorithm 2 ForwardAnalysis(r, m, A, P , (LT , LA, D))

Require: r is the root node, m is a node reachable from r,

A, P , P , and (LT , LA, D) are as in Alg. 1.

Ensure: Construct tree, and return the number of possible

proper trees that include m.

1: if m(l) ∈ LT then return 1

2: if m(l) ∈ LA then return 0

3: psm = 0 ⊲ The number of candidate solutions for m.

4: for each a ∈ Σ(m(l)) do ⊲ For each admissible action.

5: if IsFeasible(root−m− a) then

6: ps = 1
7: for each l′ ∈ Post(m(l), a) do

8: Create m′ with m′(l) = l′

9: Set E(A,m, a) = E(A,m, a) ∪ {m′}
10: ps = ps×ForwardAnalysis(root,m′,A,P , S)
11: end for

12: if ps == 0 then ⊲ No soln. from input a

13: Delete E(A,m, a) ⊲ Remove each sub-tree.

14: else

15: psm = psm + ps

16: end if

17: end if

18: end for

19: return psm

that can be part of a proper sub-tree (a candidate solution

Defn. 4.2) through m. It can be regarded as the number

of different candidate solutions that contain m. Reaching

a location from the target set (line 1) or from the avoid

set (line 2) terminates the recursive construction. Otherwise,

each admissible input is considered for the node (line 4).

First, the feasibility of the timed automaton path induced by

the exploration tree path from root to m and input a (line 5)

is checked via MILP (2) from Prop. 4.1 (e.g. considering a

location l′ ∈ Post(m(l), a) as the final location of the path).

If this MILP is not feasible, i.e., the path is not realizable by

any parameter valuation, the corresponding sub-trees of the

exploration tree (m′ ∈ E(A,m, a)) are not constructed. On

the other hand, if it is feasible, the exploration continues for

each l′ ∈ Post(m(l), a) recursively (lines 7-11).

The number of candidate solutions (proper sub-trees)

associated with node m and input a, denoted by ps, is the

product of the number of solutions associated with the a-

successors of m, i.e. ps = Πm′∈E(A,m,a)ps
m′

. Note that each

combination of these alternative choices can yield a different

proper sub-tree of E(A). Furthermore, if psm
′

is 0 for a node

m′ ∈ E(A,m, a), then the specification is not satisfiable

through m′. As A can reach m′(l) non-deterministically

when a is applied at m, ps is also set to 0, and each sub-

tree associated with m′ ∈ E(A,m, a) is removed (line 12).

Otherwise, the number of possible solutions through m is

incremented by ps reflecting the sub-trees assigning a to m.

A sub-tree constructed by Alg. 2 (extracted in line 4 of

Alg. 1) satisfies conditions of Defn. 4.2. The first condition

(1) follows from the initialization in line 1 of Alg. 1.

The condition that a node of the sub-tree belongs to the

exploration tree (e.g. cond. (2)) trivially holds since nodes

are added via Post(m(l), a) relation (line 7). The first base

condition (line 1) ensures that a child node is not constructed

for a node m when m(l) ∈ LT (2-b). The second base

condition (line 2) ensures that m(l) 6∈ LA for any m ∈
Ēi(A) since nodes with 0 number of possible solutions are

removed (see line 10 and 12) (2-a). The connectivity (2-d)

and the control assignment (2-c) conditions are satisfied by

the enumeration performed with respect to the number of

possible proper sub-trees (ps).

Note that since A is non-deterministic, the feasibility

analysis performed for paths (line 5 of Alg. 2) is not

sufficient to generate a control strategy. However, as the

specification requires each run to satisfy the property, it is

sufficient to prune violating runs. In particular, the feasibility

of MILP from (2) is a necessary condition for the feasibility

of the MILP (4) of the proper sub-trees that contain the path.

Alg. 2 returns the number ps of the proper subtrees of E(A)
that pass the path based feasibility check. In Alg. 1, each

proper sub-tree Ēi(A) is extracted (line 4), MILP (4) for the

tree Ēi(A) is solved (line 5), and if this MILP is feasible,

a control strategy C(·) as in (6) w.r.t. the MILP solution is

returned. By Prop. 4.2, we conclude that a strategy generated

by Alg. 1 solves Prop. 3.1.

Alg. 1 exhaustively searches all possible strategies via

Alg. 2. Thus, if Alg. 1 reaches line 8, then a solution to

Prop. 3.1 does not exists. Consequently, when the algorithm

terminates, either a strategy and parameter valuation pair

solving Prop. 3.1 is generated or a solution does not exist.

A final possibility is that the algorithm might not terminate.

In particular, if A has a loop, then E(A) is infinite, and in

this case Alg. 2 might fail to terminate. Next, we state an

assumption that avoids zeno behavior by guaranteeing that

the time progresses at each cycle (li = lj on a path):

Assumption 5.1: For a TA A = (L, l0,Σ, C,∆), if an

infinite run π : l0, e1, l1, e2, . . . is realizable by a delay

sequence d0, d1, . . . , then for a positive constant ǫ:

if li = lj , j > i then di + di+1 . . . dj−1 > ǫ

Finally, we can guarantee that Alg. 1 finds a solution when

one exists if timed automata A satisfies Assumption 5.1. By

the well-known pigeon hole principle, a path of length |L| ·k
includes a location at least k times. By Assumption 5.1,

if such a path is realizable, then the total duration of the

corresponding delay variables are lower bounded by k · ǫ.
Thus, the length of a path induced by the exploration tree

path is upper bounded by D
ǫ

, as otherwise the resulting

MILP (2) is infeasible due to the time bound D. Con-

sequently, if Assumption 5.1 holds, the depth of the tree

generated by Alg. 2 is bounded and the synthesis algorithm

always terminates.

Example 5.1: We run Alg. 1 on the TA A introduced in

Ex. 3.1. As shown in Ex. 4.2, path π2 is infeasible. Thus,

ps is set to 0 for root r and input b. In addition, ps = 0
is assigned to trees with E(A,m, d) 6= ∅ in line 2. As

MILPs (2) defined for paths π3, π4, π5 and π6 are feasible,

ps = 1 in Alg. 2 (line 2). As illustrated in Ex. 4.2, the

corresponding MILP is feasible and results in a control

strategy solving Prob. 3.1.

VI. CONCLUSION

In this paper, we studied the controller and parameter

synthesis problem for a PTA under unavoidability specifica-

tions with a deadline. We presented the candidate solutions

symbolically with sub-trees of the exploration tree, and

developed an algorithm to generate such trees. The algorithm

is based on depth-first analysis and it uses an iterative

feasibility check to terminate the exploration along infeasible

directions. Finally, we presented an MILP based method

to generate a feedback control strategy and a parameter

valuation pair from a sub-tree such that the resulting TA

satisfies the given specification.

REFERENCES

[1] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical

computer science, vol. 126, no. 2, pp. 183–235, 1994.
[2] F. Wang, “Formal verification of timed systems: a survey and perspec-

tive,” Proceedings of the IEEE, vol. 92, pp. 1283–1305, Aug 2004.
[3] A. David, J. Illum, K. G. Larsen, and A. Skou, “Model-based frame-

work for schedulability analysis using UPPAAL 4.1,” in Model-based

design for embedded systems, pp. 117–144, 2009.
[4] M. Kwiatkowska, A. Mereacre, N. Paoletti, and A. Patanè, “Synthe-

sising robust and optimal parameters for cardiac pacemakers using
symbolic and evolutionary computation techniques,” in Hybrid Systems

Biology (A. Abate and D. Šafránek, eds.), (Cham), pp. 119–140,
Springer International Publishing, 2015.

[5] Z. Jiang, M. Pajic, R. Alur, and R. Mangharam, “Closed-loop verifi-
cation of medical devices with model abstraction and refinement,” Int.

J. Softw. Tools Technol. Transf., vol. 16, p. 191?213, Apr. 2014.
[6] G. Behrmann, A. David, K. G. Larsen, J. Hakansson, P. Petterson,

W. Yi, and M. Hendriks, “Uppaal 4.0,” in International Conference

on the Quantitative Evaluation of Systems, QEST ’06, (Washington,
DC, USA), pp. 125–126, IEEE Computer Society, 2006.

[7] T. A. Henzinger, J. Preussig, and H. Wong-Toi, “Some lessons from
the hytech experience,” in IEEE Conference on Decision and Control

(Cat. No.01CH37228), vol. 3, pp. 2887–2892, 2001.
[8] A. Jovanovic, D. Lime, and O. H. Roux, “Integer parameter synthesis

for real-time systems,” IEEE Transactions on Software Engineering,
vol. 41, no. 5, pp. 445–461, 2015.

[9] E. André, “What’s decidable about parametric timed automata,” Int.

J. Softw. Tools Technol. Transf., vol. 21, pp. 203–219, Apr. 2019.
[10] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis, “Controller synthesis for

timed automata,” IFAC Proceedings Volumes, vol. 31, no. 18, pp. 447
– 452, 1998. 5th IFAC Conference on System Structure and Control
1998 (SSC’98), Nantes, France, 8-10 July.

[11] P. Bouyer, D. D’Souza, P. Madhusudan, and A. Petit, “Timed control
with partial observability,” in Computer Aided Verification (W. A. Hunt
and F. Somenzi, eds.), pp. 180–192, Springer Berlin Heidelberg, 2003.

[12] F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. Lime, “Efficient
on-the-fly algorithms for the analysis of timed games,” in CONCUR

2005 – Concurrency Theory (M. Abadi and L. de Alfaro, eds.), pp. 66–
80, Springer Berlin Heidelberg, 2005.

[13] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. Larsen, and
D. Lime, “Uppaal-tiga: Time for playing games!,” in Computer Aided

Verification (W. Damm and H. Hermanns, eds.), pp. 121–125, Springer
Berlin Heidelberg, 2007.

[14] B. Finkbeiner and H.-J. Peter, “Template-based controller synthesis
for timed systems,” in Tools and Algorithms for the Construction and

Analysis of Systems (C. Flanagan and B. König, eds.), pp. 392–406,
Springer Berlin Heidelberg, 2012.

[15] A. Étienne, M. Knapik, W. Penczek, and L. Petrucci, “Controlling
actions and time in parametric timed automata,” in 2016 16th Inter-

national Conference on Application of Concurrency to System Design

(ACSD), pp. 45–54, 2016.
[16] E. A. Gol, “Control synthesis for parametric timed automata under

reachability,” Turk J Elec Eng & Comp Sci, pp. 1–14, 2021 (to appear).

	I Introduction
	II Preliminaries
	II-A Timed Automata

	III Problem Formulation
	IV Control and Parameter Synthesis
	V Synthesis Algorithms
	VI Conclusion
	References

