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Abstract—Cooperative driving, enabled by Vehicle-to-
Everything (V2X) communication, is expected to significantly
contribute to the transportation system’s safety and efficiency.
Cooperative Adaptive Cruise Control (CACC), a major co-
operative driving application, has been the subject of many
studies in recent years. The primary motivation behind using
CACC is to reduce traffic congestion and improve traffic flow,
traffic throughput, and highway capacity. Since the information
flow between cooperative vehicles can significantly affect the
dynamics of a platoon, the design and performance of control
components are tightly dependent on the communication com-
ponent performance. In addition, the choice of Information Flow
Topology (IFT) can affect certain platoon’s properties such as
stability and scalability. Although cooperative vehicles’ percep-
tion can be expanded to multiple predecessors’ information by
using V2X communication, the communication technologies still
suffer from scalability issues. Therefore, cooperative vehicles
are required to predict each other’s behavior to compensate
for the effects of non-ideal communication. The notion of
Model-Based Communication (MBC) was proposed to enhance
cooperative vehicle’s perception under non-ideal communication
by introducing a new flexible content structure for broadcasting
joint vehicle’s dynamic/driver’s behavior models. By utilizing
a non-parametric (Bayesian) modeling scheme, i.e., Gaussian
Process Regression (GPR), and the MBC concept, this paper
develops a discrete hybrid stochastic model predictive control
approach and examines the impact of communication losses and
different information flow topologies on the performance and
safety of the platoon. The results demonstrate an improvement
in response time and safety using more vehicles’ information,
validating the potential of cooperation to attenuate disturbances
and improve traffic flow and safety.

Index Terms—Cooperative Adaptive Cruise Control, Stochas-
tic Model Predictive Control, Non-parametric Bayesian In-
ference, Gaussian Process, Non-ideal Communication, Model-
based Communication

I. INTRODUCTION

The main goal of cooperation in highway driving is to ensure
that all vehicles in a lane move at the same speed while
maintaining the desired formation geometry, specified by
a desired inter-vehicle gap policy. The cooperative driving
with constant spacing policy, called platooning, mandates
vehicles to maintain a constant distance from their immediate
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Fig. 1: A representation of the communication topology.
Dashed lines show the information flow among vehicles. The
distance between ith vehicle and its predecessor is shown by
di.

predecessor. However, for the cooperative adaptive cruise
control (CACC), a constant time headway gap policy is
considered, in which the desired following distance should be
proportional to the speed of the vehicle; the higher the speed,
the larger the distance. The objectives of CACC are to keep
the desired small headway time, smooth the engine/brake
input, and keep the acceleration within a reasonable and com-
fortable range. CACC and platooning have the potential to
increase the highway capacity when they reach a high market
penetration. Studies have shown that a car with a velocity of
80km/h following only one predecessor at 25m achieves a
30% reduction in aerodynamic drag, and a 40% reduction
can be attained by following two predecessors. Improvement
in traffic flow for a high market penetration rate is noticeable
for platoons as small as three cars. If all passenger cars form
vehicle platoons, a 200% growth in the road capacity can
be achieved [1], [2]. It is shown that platooning is more
sensitive to communication losses compared to the CACC,
mainly due to its very close coupling between vehicles [3].
Even though platooning is more sensitive to communication
losses, its implementation is stable using Cellular Vehicle-
To-Everything (C-V2X) [4].

Connected and Autonomous Vehicles (CAVs) are required
to frequently broadcast their dynamic and kinematic informa-
tion over the wireless channel. The concept of information
sharing among vehicles results in a level of situational aware-
ness for any vehicle and makes it aware of its surrounding
environment, crucial for the cooperative safety applications
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to function properly [5]. Although the cooperative vehicles’
perception can be expanded to multiple predecessors’ infor-
mation by using vehicle to vehicle (V2V) communication,
these technologies still suffer from scalability issues, espe-
cially in congested scenarios. In addition, as a result of packet
loss, wireless channels create random link interruption and
changes in the network connection. Therefore, it is required
for the cooperative vehicles to predict each agent’s behavior
to compensate for packet loss or latency caused by having
non-ideal communication.

Information exchange to create situational awareness is the
backbone of distributed systems that rely on communication.
The information exchange flow defines how the vehicles
in a platoon exchange information with each other. The
available information to each controller is often limited to a
neighboring region because of the range limitation of sensing
and communication systems. As a result, controllers use only
local information to achieve a global performance for the
platoon. It has been also shown that the time-headway can
be minimized using multiple predecessors’ information in the
local controller [6]–[10].

Model-based Communication (MBC) is a recently-
explored communication scalability solution, which has
shown promising potential to reduce channel congestion [11].
The fundamental intention behind the MBC scheme is to
utilize a more flexible content structure for broadcasting
packets consisting of the joint vehicle/driver behavioral mod-
els’ parameters in comparison with the Basic Safety Message
(BSM) content structure defined by the J2735 standard. For
utilizing the MBC scheme, different modeling methods can
be considered to represent the vehicle’s movement behavior.
Non-parametric Bayesian inference techniques, particularly
Gaussian Processes (GPs) are amongst the promising meth-
ods for analytically tractable modeling of joint vehicle’s
dynamic/driver’s behavior. In addition to exhibiting very
good generalization properties, a major advantage of GPs
is that they come equipped with a measure of model uncer-
tainty, making them particularly beneficial for safety-critical
applications. The driver behavioral models are functions of
different factors such as the driver’s driving style, road traffic,
weather condition, etc. Therefore, movement models may
become very complex. In this research study, a Gaussian
Process Regression (GPR) method is used to model coop-
erative vehicles’ velocity trajectories, which allows them to
predict the future behavior of their preceding vehicles during
communication loss [12].

Cooperative applications need an efficient controller to
consider the computational cost and ensure driving comfort
and high responsiveness. The advantage of Model Predictive
Control (MPC) is that it can realize high control performance
since all constraints for these applications can be explicitly
dealt with through solving an optimization problem. By
utilizing the predicted state of the preceding vehicle, an
optimization problem can be solved to obtain the vehicle’s
control input in MPC-based driving systems. Therefore, the
solution provides anticipatory car-following behavior that
improves driving efficiency by dynamically adjusting spacing

and speed. This paper takes advantage of a discrete hybrid
stochastic model predictive control, which incorporates sys-
tem modes as well as uncertainties captured by GP models.
As a safety metric in a vehicle platoon, two operating
modes for each vehicle are considered; free following and
emergency braking. The proposed control design approach
finds the vehicle’s optimal velocity trajectory to achieve a
safe and efficient platoon of vehicles with a small inter-
vehicle gap while reducing the impact of packet loss.

Sudden dynamic changes of vehicles, e.g., hard-braking or
shock waves, are the cause of start-and-stop dynamics, which,
besides disrupting traffic flow, can lead to accidents [13],
[14]. Traffic shock waves represent a threat in terms of safety
and can cause chain collisions when the drivers are distracted
or do not respect safety distances. We use a shock wave
velocity profile in our simulation studies to examine the effect
of Information Flow Topology (IFT) and random packet
losses on the safety of a platoon of homogeneous vehicles
moving in a rigid formation in shock wave scenarios. We
use 0.6s headway gap compared to previous works (varying
from 0.8s to 1.2s). In our experiments, we study the effect
of accessing the information of r leading vehicles. In other
words, the ego vehicle can only receive messages from the
r preceding vehicles in the platoon (r-look-ahead) as shown
in Fig. 1 for three-look-ahead vehicles. The results show an
improvement in response time and reducing the number of
emergency braking, demonstrating the potential of coopera-
tion to attenuate disturbances and improve traffic flow. The
communication is considered to be non-ideal with varying
Packet Error Rates (PERs) and the rate of communication is
constant and equal to 10Hz.

II. STOCHASTIC MODEL-BASED COMMUNICATION

As discussed in Section I, the collective behavior of the
platoon is not only dependent on the local controller design
but also tightly coupled with the availability and accuracy
of the predecessor vehicles’ information at each member of
the platoon [15]. In particular, the stability and scalability
of the platoon are dependent on the IFT. To study the
effect of IFT on platoon behavior, in this paper, we have
considered the r-look-ahead directional topology. Although
the information shared amongst cooperative vehicles could
include precise position, velocity, acceleration, fault warn-
ings, forward hazard warnings, and maximum braking capa-
bility, in a vehicle platoon, only the position, velocity, and
acceleration information are required. The GP-based MBC
trains the GP regression model based on the most recent
observed information. This procedure results in generating
new situational awareness messages which carry the latest
updated abstract model of the vehicle’s state.

In this paper, we consider the velocity time-series of
each cooperative vehicle, vn(t), to be a Gaussian process
defined by the mean function mn(t) and the covariance
kernel function κn(t, t′) as

vn(t) ∼ GP (mn(t), κn (t, t′)) . (1)



Fig. 2: Block diagram of networking and control modules in each member of the platoon. Ego vehicles will receive
information from preceding vehicles upon successful communication or will update the information with the stochastic
model estimator when the packet is lost. Hybrid stochastic MPC will use the information from the networking module for
control purposes. Finally, the control module will pass the current states and velocity predicted values to the networking
module for broadcasting.

We are interested in incorporating the knowledge that the ob-
served velocity data provides about the underlying function,
vn(t), and its future values. Assuming that for each coopera-
tive vehicle, the mean of the process is zero, mn(t) = 0,
the covariance kernel is a Radial Basis Function (RBF),
and the measurement noises are independent and identically
distributed with the Gaussian distribution N (0, γ2n,noise),
the covariance matrix of the observed velocity of the nth

cooperative vehicle is

Kn(t, t) = Kn
r + γ2n,noiseI

[Kn
r ]ij = κn(ti, tj),

(2)

where I denotes the identity matrix of dimension equal to
the size of the training (measured) data, and κn(ti, tj) can
be calculated using the RBF definition as

κn(t, t′) = exp(−||t− t
′||2

2γ2n
). (3)

Using the aforementioned assumptions, the joint distribution
of the past observed values, Vobs

n , and the future values V∗n,
can be represented as[

Vobs
n

Vn∗
]
∼ N

(
0,

[
Kn(t, t) Kn

r (t, t∗)
Kn

r (t∗, t) Kn
r (t∗, t∗)

])
, (4)

where t and t∗ denote the sets of observation and future value
time stamps, respectively, and Kn(., .) and Kn

r (., .) can be
obtained from (2). Therefore, the predictive distribution of
future velocity values, V∗n, conditioned on having observed
velocity values Vobs

n at time stamps t can be derived as(
Vn∗ | t∗, t,Vobs

n

)
∼ N (µ∗n,Σ

∗
n),

µ∗n = Kr
n[(t∗, t) |αn]K−1n [(t, t)|αn]Vobs

n ,

Σ∗n = −Kr
n[(t∗, t) |αn]K−1n [(t, t)|αn]Kr

n[(t, t∗) |αn]

+Kr
n[(t∗, t∗) |αn]. (5)

Upon each transmission opportunity, each cooperative vehicle
uses its 5 most recent velocity observations, measured at

equally-distanced 100ms time intervals, to train a GP model
and obtain the set of parameters α = {γn, γn,noise}. For
this purpose, the Leave-One-Out Cross Validation has been
considered. Assuming that the ith velocity observation, vi, is
left out, the log probability of observing vi given the rest of
the observations, (V−i), can be represented as

log p (vi | t,V−i, α) = −1

2
log σ2

i −
(vi − µi)

2

2σ2
i

− 1

2
log 2π,

(6)
where µi and σi can be obtained from (5). Defining
the cross validation objective function as the sum of
the log-likelihoods over all most recent observations, i.e.,
L(t,V, α) =

∑5
i=1 log p (vi | t,V−i, α), the optimal parame-

ters α∗n = {γ∗n, γ∗n,noise} can be obtained using the conjugate
gradient optimization method as proposed in [16].

After the parameters are learned, the transmitting vehicle
shares the model parameters along with its history of the 5
most recent velocity measurements and current position and
acceleration. In addition, 7 future velocity values (parameter
N in Table I) predicted by the vehicle’s model predictive
controller are included in the transmitting packet. The details
of the vehicle’s MPC prediction are discussed in the next sec-
tion. Upon receiving a packet, the receiving vehicle will use
the newly received information for local control. Otherwise,
in the case of packet loss, the cooperative vehicle will use the
GP model to predict the velocity of the transmitting vehicle
until receiving a new packet from it using (5).

In addition, the position of the transmitting vehicle is
predicted using

x̄n (t1) = xn (t0) +

∫∫ t1

t0

ṽP(ṽ)dtdṽ, (7)

where P (ṽ) is the predictive distribution of transmitting
vehicle’s velocity presented by (5). Therefore, in the case
of packet loss, these predicted values will be used for local
control.



In our experiments, we considered the packet loss to be an
independent and identically distributed random variable and
gradually changed from 0% to 60%. The communication rate
in all experiments is considered to be 10Hz.

III. VEHICLE MODEL AND STOCHASTIC MODEL
PREDICTIVE CONTROL DESIGN APPROACH

In this section, the vehicle model and the model predictive
control design are explained.

A. Vehicle Model

In this study, we consider a platoon of Nv vehicles, where
n ∈ {0, 1, . . . , Nv} denotes the nth vehicle in the platoon,
and n = 0 represents the platoon leader. As shown in Fig. 1,
dn denotes the gap between nth and (n− 1)th vehicles and
is defined as

dn = xn−1 − xn − lvn, (8)

where xn and lvn are the longitudinal location of nth vehicle
rear bumper and the vehicle length, respectively. We lever-
age the fixed time headway gap spacing policy, which can
improve the string stability and safety [17], and define the
desired spacing policy as

d∗n(t) = τn vn(t) + dsn. (9)

In (9), vn is the velocity of the nth vehicle, τn is the time
gap, and dsn represents the standstill distance. The difference
between the gap and its desired value is defined as ∆dn(t) =
dn(t)−d∗n(t), and the velocity difference between nth vehicle
and its predecessor is defined as ∆vn(t) = vn−1(t)− vn(t).
Hence, ∆ḋn turns into ∆ḋn(t) = ∆vn(t) − τn an(t) and
∆v̇n = an−1 − an, where an denotes the acceleration of
the nth vehicle. By taking the driveline dynamics fn into
account, the derivative of the acceleration for vehicle n is
ȧn(t) = −fnan(t)+fnun(t), where un(t) acts as the vehicle
input. By considering Sn = [∆dn ∆vn an]T as the vector
of states for nth vehicle, the state-space representation for
each vehicle is

Ṡn(t) = An Sn(t) +Bn un(t) +Dan−1(t)

=

0 1 −τn
0 0 −1
0 0 −fn

Sn(t) +

 0
0
fn

un(t) +

0
1
0

 an−1(t).

(10)

For n = 0 (leader), an−1(t) is replaced by zero. The
following equation describes the discrete-time state space
model when the first-order forward time approximation is
employed

Sn(k + 1) =

(I + tsAn)Sn(k) + tsBn un(k) + tsDan−1(k), (11)

where ts is the sampling time.
Some constraints on the system states and input are also

considered including bounds on the acceleration and input,
road speed limit, and distance between vehicles (note that a

negative distance implies collision and therefore should not
occur). The following inequalities (hard constraints) should
always hold true

amin
n ≤ an(k) ≤ amax

n , (12a)

umin
n ≤ un(k) ≤ umax

n , (12b)
vn(k) ≤ vmax, (12c)
dn(k) > 0. (12d)

Besides, for passenger comfort, system input changes are
bounded as

ts u
min
n ≤ un(k + 1)− un(k) ≤ ts umax

n . (13)

B. Discrete Hybrid SMPC Design

Discrete hybrid stochastic automata (DHSA) models a
stochastic system with both binary and continuous/discrete-
time variables and inputs. DHSA formulation and details are
discussed in [18]. Mixed logical dynamical (MLD) form [19]
can be used to reformulate a DHSA using linear equations
and inequalities. The reformulation enables using mixed-
integer programming to find the optimal control input for
the system.

In this paper, we consider two operating modes for each
vehicle; free following mode and emergency braking mode.
In free following mode, each vehicle tries to reach its desired
spacing policy while in emergency braking mode, it uses
minimum control input and performs hard braking to avoid
any possible accident. Emergency braking mode activates
when ∆dn(k) goes below a fixed level dn; in other words,
∆dn(k)+dn ≤ 0. The operating modes add binary variables
to the system while employing GPR for predicting velocity
turns the system into a stochastic one. To represent the
system, DHSA is used, and the system is then reformulated
using MLD. The details on how to rewrite each vehicle
equations, constraints, and modes in the MLD form can be
found in [12]. After expressing the system in MLD form, the
MPC design problem for each vehicle is

min
un,wn,zn

N−1∑
k=0

[
(Sn(k)−Rn)T Qn (Sn(k)−Rn)

]
− qn ln(π(wn))

subject to: MLD system equations,
ln(π(wn)) ≥ ln(p̃n), (14)

where ui and zi are the system inputs and the vector of
auxiliary variables from k = 0 to k = N − 1, respectively,
the quadratic term in cost function is the performance index
while qn ln(π(wn)) is the probability cost, wn stands for all
the uncontrollable event variables, which are used to consider
the variance of the velocity prediction calculated using GP
in the system model, and π(wn) is the trajectory probability.
The last constraint in (14) represents the chance constraint.

Remark 1: The given MPC problem formulation uses a
one-look-ahead topology. The r-look-ahead topology can be



TABLE I: Model and optimization parameters used in the
simulations.

parameter value parameter value

N 7 ts 0.1 s

lvn 5m dsn 2m

dn 0.5m fn 10 s−1

amin
n −4m/s2 amax

n 3m/s2

umin
n −4m/s2 umax

n 3m/s2

p̃n 0.01N qn 10

Fig. 3: Mean and 95th percentile of the absolute velocity
error for GP-based prediction and MPC-based prediction
for 7-step ahead prediction horizon using nine-look-ahead
topology. Statistics for both methods are almost the same,
showing the capability of GP in capturing the velocity profile.

considered in the problem by changing the cost function in
(14) as follows.

N−1∑
k=0

[
(Sn(k)−Rn)T Qn (Sn(k)−Rn)

+

n−1∑
i=n−r

[
cdi

(
xi(k)− xn(k)−

n∑
j=n−r+1

(d∗j (k) + lvj )
)2

+ cvi

(
vi(k)− vn(k)

)2]]
− qn ln(π(wn)), (15)

where cdi and cvi are positive coefficients, and r denotes the
number of predecessors sharing information with the nth

vehicle. In (15), each vehicle tends to achieve the desired
distances from its r predecessors while adjusting its velocity
based on the predecessors’ velocity. It is noted that when
r > n (the number of predecessors is less than r), the nth

vehicle replaces r with n in (15).

Each vehicle has access to its preceding vehicle’s future
velocity trajectory through either the communication (every
tc seconds if packet loss does not occur) or the GP model
predictions (until the next successful communication event).
During a successful communication event, a vehicle will
share its future velocity trajectory (calculated by solving the
MPC problem) with its follower vehicles.

Fig. 4: Performance of the CACC with 10 vehicles, T =
0.6 s, tc = 0.1 s, and ideal communication with one-look-
ahead topology.

IV. EXPERIMENTAL SETUP AND SIMULATION RESULTS

In our experiments, different r-look-ahead one-directional
(broadcasting) information flow topologies have been con-
sidered for the platoon of cooperative vehicles. For instance,
if r = 1, the receiving vehicle can only receive messages
from the nearest predecessor in the platoon (one-look-ahead);
however, in other cases, each vehicle can receive messages
from several preceding vehicles in the platoon. Moreover, in
our experiments, we gradually change the PER values from
0 (ideal communication) to 0.6 (randomly losing 60 percent
of packets) to study the effect of communication loss on the
CACC performance. The rate of communication is constant
and equal to 10Hz. Simulations are conducted considering a
platoon of 10 vehicles and using multiple scenarios. CVXPY
package in Python is used for implementing the optimization
problem and Gurobi optimization package is used as the
solver for the mixed-integer programming [20], [21].

The desired velocity trajectory of the leader is set as

v∗0(t) =


27 t < 15 s,

0 15 s ≤ t < 30 s,

25 t ≥ 30 s.

(16)

The parameters used in the simulations can be found in
Table I. Each scenario takes 60s, in which the objective
of the platoon is to maintain the desired gap time of 0.6s
with the preceding vehicle. Fig. 2 illustrates the overall
network/control architecture. The cooperative vehicles update



(a) one-look-ahead topology (b) nine-look-ahead topology

Fig. 5: Performance of the CACC system with 10 vehicles, T = 0.6 s, tc = 0.1 s, and PER = 0.5.

the preceding vehicles’ information either based on the newly
received information from them or based on the GP predictive
model every 100ms. This information is fed into the hybrid
stochastic MPC for updating the control action. In addition,
the control module provides the optimal predicted states’
values of the ego vehicle. Finally, the current states and
the predicted future velocity trajectory will be passed to the
networking module for broadcasting.

In order to examine the capability of GPR in modeling
the vehicles’ velocity trajectories, first, we have designed
an experiment in which only the GP models along with the
history of the velocity data are shared amongst the vehicles.
In this setup, the MPC at each platoon member is fed with the
predicted velocities and positions of the preceding vehicles
using the shared GP models. Subsequently, the predicted
values of cooperative vehicles’ velocities for up to 7 time
instants ahead are compared to ground truth to obtain the
velocity prediction errors for different time horizons using
GPR. In addition, the same procedure has been followed by
sharing the MPC states’ predictions among the vehicles and
the velocity prediction errors using the MPC outputs were
derived. Fig. 3 illustrates the mean and 95th percentile of
velocity error for both schemes. It is observed that the statis-
tics for both methods are almost the same, demonstrating the
capability of GP for capturing the velocity profile.

Two main objectives of CACC are smoothing the en-
gine/brake input, and keeping the acceleration in a reasonable
and comfortable range. Therefore, the duration of emergency

Fig. 6: Comparing the emergency braking status for Fig. 5a
with one-look-ahead topology (top) and Fig. 5b with nine-
look-ahead topology (bottom). As observed, using informa-
tion of more vehicles has led to less emergency braking for
platoon members with larger indices (i.e., the ones further
down the platoon).

braking mode and smoothness of the acceleration profile
can be considered as two measures for CACC performance
evaluation. Fig. 4 shows the regulated distances, velocity
and acceleration profiles, and emergency braking status of
vehicles in a scenario with ideal communication and one-
look-ahead IFT. It is observed that having the information of
the immediate predecessor is sufficient to maintain the 0.6s
headway with smooth acceleration profiles while avoiding
the emergency braking given an ideal communication.

In reality, however, the wireless channel is lossy, and
the communication can suffer from random packet loss. As
the PER increases, it is speculated that by accessing the



Fig. 7: The figure shows the sum of emergency braking
duration for all platoon members having different look-
ahead topologies and PERs. In the case of having semi-ideal
communication, using the information of more preceding
vehicles does not lead to an evident reduction in emergency
braking. However, in normal or adverse situations, the effect
of using more vehicles’ information in emergency braking
duration reduction is more evident.

information of more preceding vehicles, the platoon has
a quicker response which leads to the emergency braking
reduction. Fig. 5 illustrates the CACC performance when
communication PER is set to 0.5 for one-look-ahead and
nine-look-ahead topologies. It is observed that although the
vehicles’ accelerations similarly fluctuate in both scenarios,
using the nine-look-ahead IFT resulted in fewer emergency
braking events. Fig. 6 shows the emergency braking instances
of the platoon members in the aforementioned scenarios in
the time interval [17s, 28s]. It is seen that the emergency
braking duration is reduced for almost all platoon members in
the nine-look-ahead topology. This effect is more evident for
the platoon members with higher indices, i.e., the members
at the tail of the platoon. For instance, the last member of the
platoon did not have an emergency braking event in the nine-
look-ahead scenario while it stayed in the emergency braking
mode for a few seconds in the one-look-ahead scenario.

Fig. 7 shows the average sum of emergency braking
duration of all platoon members having the aforementioned
setups and 20 simulation trials. When the communication is
ideal or the PER is relatively small, accessing the information
of more predecessors does not extensively reduce the braking
emergency duration. As the PER increases, the effect of
accessing the information of more preceding vehicles on
emergency braking reduction becomes more evident. For
instance, when PER is 0.6, the emergency braking duration
is 30% less for nine-look-ahead topology compared to one-
look-ahead IFT.

V. CONCLUSION

In this paper, we explored the performance of the vehicle
platoon with different information flow topologies, where
vehicles receive information from multiple predecessors, in
ideal and non-ideal communication setups. In addition, a
discrete hybrid stochastic MPC design was used for the
CACC application by leveraging model-based communica-
tion. It was assumed that vehicles share their future velocity
profiles, as well as an updated model for their velocity profile
by using GPR at each successful communication event. For
safety purposes, vehicles may operate in either free following
mode or emergency braking mode. The performance of the
proposed controller was evaluated through simulation studies,
which validated the efficacy of the proposed method. We have
shown that using the information of multiple predecessors
can cancel shock waves in a very effective manner. Part of our
future work will include the introduction of lane-changing
policies for platoons, as lane changing is one of the known
causes of shock waves.
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[13] Tiago R. Gonçalves, Vineeth S. Varma, and Salah E. Elayoubi. Vehicle
platooning schemes considering v2v communications: A joint commu-
nication/control approach. In 2020 IEEE Wireless Communications and
Networking Conference (WCNC), pages 1–6, 2020.

[14] Raphael E. Stern, Shumo Cui, Maria Laura Delle Monache, Rahul
Bhadani, Matt Bunting, Miles Churchill, Nathaniel Hamilton, R’mani
Haulcy, Hannah Pohlmann, Fangyu Wu, Benedetto Piccoli, Benjamin
Seibold, Jonathan Sprinkle, and Daniel B. Work. Dissipation of stop-
and-go waves via control of autonomous vehicles: Field experiments.
Transportation Research Part C: Emerging Technologies, 89:205–221,
2018.

[15] Yaser P. Fallah, ChingLing Huang, Raja Sengupta, and Hariharan
Krishnan. Design of cooperative vehicle safety systems based on tight

coupling of communication, computing and physical vehicle dynamics.
New York, NY, USA, 2010. Association for Computing Machinery.

[16] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian
Processes for Machine Learning. The MIT Press, 2006.

[17] Gerrit JL Naus, Rene PA Vugts, Jeroen Ploeg, Marinus JG van
De Molengraft, and Maarten Steinbuch. String-stable cacc design
and experimental validation: A frequency-domain approach. IEEE
Transactions on vehicular technology, 59(9):4268–4279, 2010.

[18] Alberto Bemporad and Stefano Di Cairano. Model-predictive control
of discrete hybrid stochastic automata. IEEE Transactions on Auto-
matic Control, 56(6):1307–1321, 2010.

[19] Alberto Bemporad and Manfred Morari. Control of systems integrating
logic, dynamics, and constraints. Automatica, 35(3):407–427, 1999.

[20] Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded
modeling language for convex optimization. Journal of Machine
Learning Research, 17(83):1–5, 2016.

[21] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2021.


	I Introduction
	II Stochastic Model-based Communication
	III Vehicle Model and Stochastic Model Predictive Control design Approach
	III-A Vehicle Model
	III-B Discrete Hybrid SMPC Design

	IV Experimental Setup and Simulation Results
	V Conclusion
	References

