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Joint Constrained Bayesian Optimization of Planning, Guidance,

Control, and State Estimation of an Autonomous Underwater Vehicle†

David Stenger1, Maximilian Nitsch1 and Dirk Abel1

Abstract— The performance of a guidance, navigation and
control (GNC) system of an autonomous underwater vehicle
(AUV) heavily depends on the correct tuning of its parameters.
Our objective is to automatically tune these parameters with
respect to arbitrary high-level control objectives within different
operational scenarios. In contrast to literature, an overall tuning
is performed for the entire GNC system, which is new in
the context of autonomous underwater vehicles. The main
challenges in solving the optimization problem are compu-
tationally expensive objective function evaluations, crashing
simulations due to infeasible parametrization and the numerous
tunable parameters (in our case 13). These challenges are
met by using constrained Bayesian optimization with crash
constraints. The method is demonstrated in simulation on a
GNC system of an underactuated miniature AUV designed
within the TRIPLE-nanoAUV initiative for exploration of sub-
glacial lakes. We quantify the substantial reduction in energy
consumption achieved by tuning the overall system. Further-
more, different parametrizations are automatically generated
for different power consumption functions, robustness, and ac-
curacy requirements. E.g. energy consumption can be reduced
by ∼ 28%, if the maximum allowed deviation from the planned
path is increased by ∼ 65%. This shows the versatile practical
applicability of the optimization-based tuning approach.
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future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
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I. INTRODUCTION

Successful operation of an autonomous underwater vehicle

(AUV) requires the close collaboration of state estimation,

guidance, control, and path planning algorithms within a

guidance navigation and control (GNC) framework. For each

of those domains appropriate algorithms were established in

simulation and real world experiments e.g. [1], [2], [3].

However, the performance of the overall system heavily

depends on the correct tuning of their algorithmic parameters

for the specific task and vehicle at hand. These parameters

govern e.g. the aggressiveness of the guidance algorithm.

For some GNC algorithms, analytical tuning methods exist.

However, they can only be applied to a limited range of

scenarios and control objectives (e.g. LQR). In contrast, we

focus on the tuning of the overall GNC system and allow

arbitrary high-level objective functions and constraints.

The tuning problem is formulated as a black-box opti-

mization problem to be approximately solved in simula-

tion. Solving black-box problems is challenging due to the

unknown analytic relationship between the GNC parameters

and the obtained objective function values. Additionally, poor
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parametrization may result e.g. in diverging state estimation

solutions leading to simulation crash. This setting is known

as learning under crash constraints (LCC) [4]. Furthermore,

closed-loop simulations are expensive in terms of CPU time.

Thus, sample-efficiency of the used optimizer is important.

In this contribution, we use constrained Bayesian opti-

mization (BO) with crash constraints to meet these chal-

lenges. BO has become a common method used for sample-

efficient black-box optimization e.g. in control [5] and state

estimation [6]. Constrained BO in control engineering [7] as

well as LCC [4] have previously been addressed.

In the context of automatic tuning for AUVs, to the best

of the authors knowledge, tuning of the overall GNC system

has not been considered yet. Different metaheuristics have

been applied for PID tuning for AUVs [8]. However, such

metaheuristics were shown to be less sample-efficient than

BO (cf. e.g. [9], [10]). BO has been used to fairly compare

different controllers for AUVs [11]. Simplified optimal state

knowledge was assumed, though. The tuning of parameters

of navigation filters for AUVs has only been reported using

partical swarm optimization [12]. E.g. in [6], the potential of

BO for filter tuning has been show for a different application.

However, in those publications the effect of filter design on

the control performance was not considered.

In this contribution, we showcase the BO-based tuning

method on an underactuated AUV designed for the explo-

ration of subglacial lakes and oceans within the TRIPLE-

nanoAUV initiative [13], [14]. For this purpose, a GNC

system consisting of Dubins paths for planning, a side slip

compensating line of sight guidance law, a LQR controlling

different thrusters, and an UKF for state and current estima-

tion is developed. In total 13 GNC parameters spanning all

modules are optimized. This paper uses tuning in simulation

to evaluate the versatility of the GNC system and find

initial parameters for experiments with different accuracy re-

quirements. Therefore preventing constraint violations during

optimization by using safe BO (e.g. [15]) is not required.

Three main results are presented: Each component of the

GNC system has a significant influence on overall system

performance. Different accuracy requirements and power

consumption function can be facilitated with the same policy

structure. Robustness can be increased by tuning on a variety

of operational scenarios.

This paper is structured as follows: First, in Sec. II the

parameter tuning method is introduced. Afterwards, the

nanoAUV’s model (cf. Sec. III) and its GNC system (cf. Sec.

IV) are presented. Sec. V outlines the considered simulation

scenario, and results of the optimization are given in Sec. VI.
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II. PARAMETER TUNING METHOD

A. Optimization problem formulation

Fig. 1 gives an overview over the black-box optimization

setting we consider in this contribution. Let a denote the

parameters of the various modules of the GNC system. At

each iteration k of the optimization, the closed loop of GNC

system with state estimation (filter), planning, guidance, and

control as well as the AUV in its environment is simulated

with specific GNC parameters ak (cf. Sec. IV). Within the

simulation the AUV fulfills a set of specific task, in our

case following a reference path. The results of the simulation

depend on the parameter combination ak which is queried

by the optimizer. The value of the cost function jk, in

our case total energy consumption, and constraint value

gk, in our case the maximum deviation from the reference

path, are returned to the optimizer. Additionally, a binary

value lk is returned which indicates whether the simulation

was successful (lk = 1) or not (lk = 0). Reasons for a

simulation not being successful are for example diverging

state estimation solutions resulting in the AUV not reaching

its desired goal state. In this case, returned jk and gk values

are not meaningful.

Fig. 1. Considered black-box optimization setting.

With these definitions we aim at solving the following

deterministic constraint optimization problem:

a⋆ = argmin J(a) (1)

s.t. amin ≤ a ≤ amax

g(a) ≤ gmax

l(a) = 1

Note that the optimization problem is deterministic, be-

cause the same draw of disturbance, and model plant mis-

match (cf. Sec. V) is used during optimization. In Section

VI-D robust optimization is performed on the identical five

realizations and therefore still deterministic.

B. Constrained Bayesian optimization (BO) with max-value

entropy search and crash constraints

The problem stated in (1) is a real-valued and binary

constrained deterministic black-box optimization problem

with an expensive-to-evaluate objective function. BO has

become a standard tool to solve such problems in the context

of control. It can be attributed to the Micro Data RL branch

of Reinforcement Learning, see [16]. Algorithm 1 gives an

overview over BO. For a comprehensive introduction to BO

the reader is referred to e.g. [17].

Algorithm 1 Bayesian optimization with crash constraints

1: Initial sampling of A1, J1, G1 and L1:

2: for k = 1; 2; . . . ; do

3: J̃k, G̃k ← addArtificialData(Ak, Jk, Gk, Lk)

4: update probabilistic surrogate models using

Ak, J̃k, and G̃k

5: select ak+1 by optimizing an acquisition function:

ak+1 = argmax
a
(α(a|Ak , J̃k, G̃k))

6: query objective function to obtain jk+1, gk+1 and lk+1

7: augment Ak+1 = {Ak, ak+1}, Jk+1 = {Jk, jk+1}
Gk+1 = {Gk, yk+1}, Lk+1 = {Lk, lk+1}

8: end for

At iteration k = 1, an initial set of random parametriza-

tions A1 is generated to obtain initial responses for objective

function J1, constraint G1 and crash constraint L1 (cf. Step

1). We use Gaussian process regression (GPR) [18] as the

surrogate model. The surrogate model uses past evaluations

in order to give a probabilistic estimate of the objective func-

tion value and the constraint function at unknown locations

(cf. Step 4). A separate GP model is created for each re-

sponse with inputs {Ak, J̃k} and {Ak, G̃k}, respectively. We

use a squared exponential kernel with automated relevance

detection and a constant mean function for both models.

Since the objective function evaluations are deterministic

the noise hyperparameter of the GP model is set to zero.

Additionally, a smooth box hyperprior is placed on the kernel

length scales in order to avoid very large or very small length

scales. The GPs hyperparameters are tuned in each iteration

by maximizing the a posteriori likelihood via a combination

of random search and gradient decent.

Failed objective function evaluations pose a challenge for

BO, because in that case the obtained j and g are not

meaningful. This setting is known as learning under crash

constraints [4]. Setting j and g to some arbitrary large value

is not a valid option because this may result in a discon-

tinuous objective function landscapes which contradicts the

smoothness assumptions encoded in the Gaussian kernel (cf.

e.g. [10] ). Instead, here we generate artificial j̃ and g̃ values

for the failed simulations (cf. Step 3),

j̃ = µj + 3σj g̃ = µg, (2)

where µj , µg, σj are the mean and standard deviation of

the GP predictions generated ignoring the failed simulations.

This approach is similar to the idea in [4], in that it modifies

the GP-posterior in a way such it decreases the probability

to observe the optimum around the failed observation while

not contradicting the smoothness assumptions of the GP.



Constrained max-value entropy search (cMES) [19] is used

as the acquisition function α because it was shown to

outperform the more classical expected improvement with

constraints (EIC). cMES chooses the next sample point ak+1,

such that the mutual information between the evaluation

and the estimated distribution of the optimum is maximized,

and is therefore considered to be an information theoretic

acquisition function (cf. step 6).

III. THE TRIPLE NANOAUV

The nanoAUV [13], [14] is developed to explore the liquid

water column of subglacial lakes. An ice-melting probe

transports the nanoAUV to the ice-water interface [20]. The

nanoAUV acts as payload, therefore installation space is very

limited which restricts the GNC system. As a result, only low

performance on-board computers are applicable and the GNC

system needs to be developed as simple and computationally

efficient as possible.

A. Hydrodynamic model

We follow Fossen et al. [21] in modeling the AUV’s 6

degrees of freedom:

MRBν̇ +CRB(ν)ν +MAν̇r +CA(νr)νr + . . . (3)

D(νr)νr + g(η) = τ ,

with gravity g(η), mass matrices MRB , and MA and

coriolis-centripetal matrices CRB , and CA for the rigid body

(RB) and added mass (A). The state vector x = [ν,η]
consists of the motion components ν = [u, v, w, p, q, r] in

body frame and η = [n, e, d, φ, θ, ψ] denotes the positions

n, e, d of the body frame in the earth fixed frame. The

Euler angles are roll φ, pitch θ and yaw ψ. The relative

velocity νr = [u− ubc, v − v
b
c, w − w

b
c, p, q, r]

T is calculated

by considering the current vector [ubc, v
b
c , w

b
c]
T. We use a

linear hydrodynamic model without cross couplings and

identical drag in sway/heave as well as pitch/yaw movement:

D = diag[D1, D2, D2, D4, D5, D5].
Because the simulation is considered as a black-box within

the optimization, more advanced experimentally validated

models can also be used without altering the optimization

methodology.

B. Sensors & actuators

The navigation system mainly relies on measurements

provided by an IMU, a multi-magnetometer for attitude

estimation and an USBL system for positioning. The depth

estimation is aided by a pressure sensor. The IMU and mag-

netometer data are fused within an attitude heading reference

system (AHRS) algorithm. The AHRS is not optimized and

therefore not discussed in detail in this paper.

Five thrusters are used as the main actuators. The surge

thruster with control input usurge is located at the rear of the

vehicle, generating a forward pointing force. An additional 4

thrusters are located at the back of the vehicle providing force

in the sway (url) and heave (uud) directions. All thrusters

except for the surge thruster introduce moments around the

center of the vehicle. The thrusters are modeled using a

first order lag element. The generalised forces τ of Eq. (3)

are calculated by combining the geometric properties of the

thrusters with the respective control signals. Note that this

actuator setup results in an underactuated AUV. Additionally,

a buoyancy engine as well as a movable mass for pitch

motion are used, influencing MRB and CRB . They are

controlled in a feed-forward manner. Since this feed-forward

controller is not optimized, it is not described any further.

IV. GNC SYSTEM

A. State estimation

The state estimator is realized as classical UKF, proposed

by [22]. The nonlinear state space model is given by:

ẋ = f (x,u) +Gw w ∼ N (0, Q) (4)

z = h(x) + v v ∼ N (0, R) (5)

As prediction model f (x,u) the Fossen model from Eq. (3)

is used. The actuator control commands act as input u.

Furthermore, the surge and sway velocities of the current ubc
and vbc are estimated as random walk. The heave component

is neglected. This results in the following process model:
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with wν and wη as the process noise of the Fossen model

and wu
c

and wv
c

as the process noise of the current model.

For correction, three measurement models h(x) are used.

The first corrects position [n, e, d]T with the USBL at a

rate of 1 Hz. The second correct makes use of the pressure

measurement of the depth sensor at a rate of 10 Hz:

zpress = kp · d+ p0 + vpress, (7)

with pressure per meter water column kp, the atmospheric

pressure p0 and the pressure measurement noise vpress. The

third corrects the attitude [φ, θ, ψ]T using the solution of

the AHRS with 100 Hz. We parameterize the process noise

covariance matrix Q = diag[Qν ,Qη, Quc

, Qvc
] with four

optimization parameters α1, . . . , α4 such that Quc

= Qvc
=

α1, Qν =
[

α2I
1×3, α2α3I

1×3
]T

and Qη = α4Qν . The

measurement covariance matrix R is assumed to be known.

B. Path planning

Dubins curves are used to find the shortest path using the

current estimated vehicle state and the next waypoint in the

horizontal plane. The depth reference is generated by interpo-

lating linearly between starting and goal depth (cf. e.g. [23]).

Dynamic vehicle constraints are considered by imposing a

minimum turning radius. Waypoints are chosen such that a

maximum glide path angle is not superseded. Additionally, a

constant surge reference velocity is used. The Dubins curve-

based path planner will be used in future work as the local

planner within a graph based planning framework. In total,

the path planner has two tunable parameters, the reference

surge velocity uref and the Dubins path’s radius rplan.



C. Guidance

As mentioned above, the nanoAUV is underactuated. For

example, the sway and yaw components cannot be actu-

ated independently from another. In order to resolve the

underactuatedness, a line of sight guidance method with

adaptive sideslip compensation [24] is used. The main idea

is to calculate a reference for the yaw angle, which reduces

the horizontal deviation from the reference path using the

kinematic relation

ψd = γp + atan(−
he
∆

)− βest. (8)

The first term in Eq. (8) γp represents the path angle and

the second term aims at reducing the horizontal crosstrack

error he (i.e. the shortest distance between the current AUV

position and the reference path on the horizontal plane).

The side slip angle βest = atan( v
u
) occurs due to current

induced drift. Here, βest is calculated using the estimated

velocities (cf. Sec. IV-A). This way, the state estimation also

serves as a disturbance estimator. This approach is similar to

estimating βest directly within the guidance module [24]. An

analogue approach is used to calculate the pitch reference θd.

The quality of the estimation of β is influenced by the

parametrization of the state estimation. The main perfor-

mance influencing tunable parameter within the guidance

module is ∆, which determines the aggressiveness of the

guidance module.

D. Control

This section formulates a control law for the thrusters. We

use the well known LQR method to synthesize a state feed-

back controller in order to track the surge velocity provided

by the planner as well as pitch and yaw angles provided

by the guidance. The controlled states are augmented with

integral error states ui, θi and ψi resulting in an augmented

state vector xfb = [u, q, r, θ, ψ, ui, θi, ψi]. The inclusion of

integral error states is necessary in order to achieve offset

free tracking in the presence of model plant mismatch. They

are calculated by integration of the control error.

The model for LQR synthesis is obtained by discretizing

and linearizing Eq. (3). Here we choose a constant working

point at v = 0 and u = 0.5m/s with all other states

set to zero. Potentially beneficial successive linearisation at

different working points is not used to save computational

resources.

For the time discrete LQR, a state Feedback gain K is

chosen such that the cost function

J =

∞
∑

k=1

xfb(k)QLQRxfb(k)
T +ulqr(k)RLQRulqr(k)

T (9)

is minimized. The weighting matrices QLQR =
diag [q1, q2, q2, q3, q3, q4, q5, q5] and RLQR = I are

diagonal matrices with unknown entries. The LQR control

law follows as ulqr = [usurge, url, uud] = −K · xfb.

Additionally, a combination of a deadband and a hysteresis

in order to avoid small high frequency thruster actuation is

introduced. In total, 6 tunable parameters q1, . . . , q5 and the

deadband with wdb are considered.

V. SIMULATION SCENARIO

The plant model also relies on Eq. 3. However, in real

world operation, model plant mismatch and disturbances de-

teriorate control and state estimation performance. Therefore,

randomly drawn model plant mismatch is introduced in the

simulation. The model used within the navigation filter and

for controller synthesis deviates from the simulation in the

hydrodynamic parameters (e.g. with a standard deviation of

10% for the individual entries of D), and the AUV mass.

Additionally, the actuator lag is not considered in filter

and controller. Furthermore, the static gain of the thruster

transfer function is detuned with a standard deviation of

2.5%. We introduce a randomly generated varying current

as an additional disturbance (cf. Fig. 2). For the sensor

simulation, USBL, pressure sensor and AHRS signals are

perturbed with white Gaussian noise. Additionally, the USBL

measurements are delayed by twice the sonic delay. However,

the parameter tuning methodology is applicable to other,

experimentally validated models, observed mismatches, and

observed disturbances.
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Fig. 2. Randomly generated current profile: Ground truth in dark colors
and the observers estimate of the north and east components in light color
optimized for maximum controller tracking accuracy.

The reference path is obtained by applying the path

planner to a random sequence of way points. With the

exception of Sec. VI-D the same seed s = 1 for current, way

points and model-plant mismatch is used. In these cases the

simulated path has a length of 210m. Except for Sec. VI-C

the following arbitrary energy cost function

J(a|s) = Tend(a|s) +
∑

i={surge,rl,ud}

J̄i(a|s) (10)

with

J̄i(a) =

∫ Tend(a|s)

t=0

|sgn(ui(t|a, s))| · . . . (11)

(

0.025 + |ui(t|a, s) + ui(t|a, s)
1.5|

)

dt

is chosen. The time which the AUV needs to reach the final

waypoint for a given parametrization a and seed s is denoted

as Tend(a, s), therefore the first term in Eq. (10) represents

consumers with constant power demand such as sensors. The



energy consumed by each thruster is calculated via Eq. (11).

Power consumption is only zero if the control input is exactly

zero. The maximum observed deviation from the reference

path g(a, s) is constrained by gmax = 1.5m. In total, one

execution of the simulation takes around 30 seconds1.

VI. OPTIMIZATION OF THE GNC SYSTEM

In the subsequent section, we apply the tuning method to

the presented GNC system. It is examined whether the whole

GNC system needs to be tuned at once (cf. Sec. VI-A), differ-

ent accuracy requirements (cf. Sec. VI-B) and different cost

functions (cf. Sec. VI-C) require different parametrizations,

and (cf. Sec. VI-D robustness can be increased. Each test

case is ran 5 times with 45 · d objective function evalua-

tions (simulations) each, where d is the number of tunable

parameters. For the overall GNC system with 13 parameter

one optimization takes around 6.5 h. The tuning parameters

for the Q matrices of state estimation and controller are

optimized in the log domain.

A. Joint vs. individual Optimization

Table I compares the combined optimization with the

results if only the parameters of the respective GNC submod-

ules are optimized. The default parametrization is hand tuned

and does not make use of the deadband. Results indicate

that energy consumption can significantly be decreased if the

GNC system is optimized as a whole instead of optimizing

only one individual component. Additionally, it can be seen

that the optimizer finds a good solution reasonably consistent

since the deviations of the best and worst run are limited.

TABLE I

INDIVIDUAL VS. JOINT OPTIMIZATION - BEST (WORST) OF FIVE

OPTIMIZATION RUNS.

Optimized
system

Plan. &
Guid.

Control Filter Combi. Default

No. of
Params d

3 6 4 13 -

Energy Con-
sumption J

106.6
(111.9)

118.6
(121.1)

135.3
(136.4)

87.6
(94.2)

137.1

maximum
Deviation g

1.46
(1.43)

1.49
(1.06)

1.36
(1.22)

1.36
(1.46)

1.11

B. Energy consumption vs. path deviation

In this section, we use the joint optimization of all

GNC parameters to examine the conflict of goals between

tracking performance and energy consumption. Three dif-

ferent accuracy scenarios are defined. They differ in the

maximum allowed planning radius rplan and path deviation

requirements gmax. In the maximum accuracy scenario,

the maximum observed path deviation is minimized in an

unconstrained optimization without considering energy con-

sumption. Table II show the results. The conflict of goals

becomes apparent especially when comparing the maximum

1All experiments were performed on a notebook with an Intel Core i7-
10510U Processor @2.3GHZ and 16 GB Ram.

and medium accuracy scenarios. The low accuracy sce-

nario only slightly decreases energy consumption although

the tracking performance is decreased significantly. With

decreasing accuracy requirements, we observe an increase

in uref , rplan and ∆ which meets expectations. However,

for other parameters such as wdb and q4 the trend is not

as clear. Additionally, UKF parameters are tuned towards

higher position accuracy if better tracking performance is

required. In contrast, smoothness in the current estimation is

surprisingly not essential for maximum tracking performance

(cf. Fig. 2). The best reached tracking accuracy is deemed

satisfactory. For collision avoidance, different sensors (e.g.

echosounders) and guidance strategies will be used.

TABLE II

DIFFERENT ACCURACY REQUIREMENTS - BEST OF FIVE RUNS.

Scenario Max. Acc. Med. Acc. Low Acc.

Energy consumption J 121.1 87.6 85.2
Max. deviation g 0.82 1.36 2.17
Max. pos. estimation error 0.67 1.10 1.13

Max. allowed rplan 5 10 15
Deviation lim. gmax min! 1.5 3

Optimized uref 0.47 0.81 0.89
Optimized rplan 4.98 5.74 7.01
Optimized ∆ 4.0 59.0 89.3
Optimized log10 (q4) −3.08 −3.25 −2.88
Optimized wdb 0.06 0.13 0.08

C. Varying cost function

The method may also be used to automatically adapt

the GNC system for different actuator designs. In order to

mimic different actuator designs, we modify the thruster

energy function Eq. (11) to a purely quadratic one. Fig. 3

shows the resulting different actuator control signals. Both

policies exhibit pulses when following a straight line and

a more continuous control input when cornering. However,

the optimal time domain behavior changes significantly if

different energy consumption characteristics are used. Addi-

tionally, the optimized reference velocities uref is reduced

from 0.81m/s (original) to 0.48m/s (quadratic).

92 94 96 98 100 102 104 106

-0.1

0

0.1
Quadratic cost function
Original cost function

Fig. 3. Control signal in lateral direction optimized for different power
consumption functions. Straight line tracking followed by a right hand curve
starting at 96.5 s.



D. Optimization for robustness

Up to now, we only optimized for one fixed model plant

mismatch and disturbance trajectory s = 1 by using the

obj. fun. J(a|s = 1). In practice, the exact model plant

mismatch is likely not known a-priori. When validating the

Low. Acc. scenario (cf. Sec. VI-B) on 25 different randomly

drawn seeds s, eleven violate the path deviation contraint.

This indicates that over-fitting is a significant issue, if only

one seed is considered for parameter optimization. To tackle

this, the same five randomly drawn seeds are evaluated at

each objective function query step (cf. Step 6 in Algo.

1). Afterwards, energy consumption is averaged over the

five runs Ĵ(a) = 1/5
∑5

s=1 J(a|s) and the maximum path

deviation is taken ĝ(a) = maxs∈{1,...,5} g(a|s). As a result

optimization takes five times as long. Apart from that, the

optimization problem Eq. (1) is not altered. Results show,

that robustness is increased to only one infeasible validation

sample at only ∼ 5% more energy consumption on average.

VII. CONCLUSIONS

In this contribution, we have demonstrated the versatile

applicability of a BO-based automatic parameter tuning

methodology to the holistic optimization of the GNC system

of an underactuated AUV. The method can be applied to ar-

bitrary high-level control objectives, vehicles and operational

scenarios. As expected, only overall tuning yields the low-

est energy consumption. The systematic optimization-based

approach, results in a difference of minus 18% compared to

the best individual optimization and minus 36% compared

to the hand-tuned default parametrization. The method is

able to tackle various aspects of the GNC system design

procedure such as different actuator designs and robustness.

Robustness can be increased drastically by optimizing on

various environmental conditions. Furthermore, the method

was used to automatically generate different parametrizations

for different accuracy requirements. Results indicate, that dif-

ferent requirements can be met with the same GNC structure.

This suggests that during operation, different precomputed

parameter sets should be used depending on the varying

mission requirements.

In future work, the optimization will be extended by an

experimentally validated AUV model. Furthermore, it will

be investigated in which way the optimized parameters can

improve the performance in real experiments.
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