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Abstract— We propose a Predictive Group Elevator Sched-
uler by using predictive information of passengers arrivals
from a Transformer based destination predictor and a linear
regression model that predicts remaining time to destinations.
Through extensive empirical evaluation, we find that the savings
of Average Waiting Time (AWT) could be as high as above 50%
for light arrival streams and around 15% for medium arrival
streams in afternoon down-peak traffic regimes. Such results
can be obtained after carefully setting the Predicted Probability
of Going to Elevator (PPGE) threshold, thus avoiding a majority
of false predictions for people heading to the elevator, while
achieving as high as 80% of true predictive elevator landings
as early as after having seen only 60% of the whole trajectory
of a passenger.

I. INTRODUCTION
Group elevator control (GEC) is a demanding industrial

control problem that needs to be solved repeatedly within a
guaranteed time during the operation of a bank of several el-
evators in a building, under the conditions of very significant
uncertainty stemming from various sources. The job of the
group control system of an elevator bank is to decide how
to transport vertically an endless stream of passengers who
indicate their request for travel using call buttons located
at the elevator landings and inside the elevator cars, by
assigning passengers to one of the cars in the elevator bank.
The objective is to optimize a suitable performance metric.
most often to minimize the average waiting time (AWT) of
passengers, but often other components can be used, such as
the total travel time, consumed energy, etc.

Because the decision about the current passenger who
is requesting service at the current time would affect the
motion of the elevator cars in the future, GEC is not an
instantaneous, but a sequential decision making problem with
a potentially infinite optimization horizon. Even if the exact
time of arrival of every passenger within a finite time interval
was known, along with their arrival and destination floors, an
exhaustive enumeration of all possible assignment schedules
would lead to a combinatorial explosion, and is not a viable
solution strategy. To make things worse, usually none of
this information is known for passengers who are yet to
arrive in the future. Instead, the GEC system usually knows
only the arrival floor of the passengers who have already
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arrived, and either only their intended direction of travel (if
traditional up/down hall-call buttons are installed at landings)
or, possibly, the actual destination floor as well, if a full set
of the newer destination-dispatch hall-call buttons are used
[1].

Facing this lack of information about future arrivals of
passengers, current GEC solutions used in industry usually
make a radical simplification: ignore future arrivals alto-
gether. Although such a simplification makes computation
much easier, and allows the GEC system to meet real-
time response requirements, it is clear that such a myopic
solution strategy could not possibly be optimal. Attempts
to consider future arrivals during the decision process have
focused on exploiting the statistical properties of the stochas-
tic arrival process, as well as analyzing the consequences of
making a current assignment on future passengers. Pepyne
and Cassandras [2] found analytically an optimal policy
for pure up-peak elevator traffic that dispatches cars when
their occupancy exceeds a threshold related to the arrival
intensity of passengers, the performance characteristics of
the elevators, as well as the number of cars available on
the first floor. Nikovski and Brand [3] used a semi-Markov
chain with parameters (transition costs) derived from the
arrival rate at a lobby floor to estimate the waiting times
of both current and future passengers at the lobby resulting
from various patterns of cars landing at that lobby, and use
these estimates to select an assignment that would produce
the optimal pattern. Empirical evaluation in mixed up-peak
traffic (mostly from the lobby up, but also with some inter-
floor traffic) demonstrated savings of waiting time with
respect to a traditional myopic GEC algorithm on the order
of 5%-55%.

As competitive as these methods can be with respect to
traditional myopic GEC algorithms, they still use information
about future arrivals only in its aggregate form, that is,
they use the average arrival rate of passengers, with the
assumption that it follows some standard arrival process, such
as a Poisson one. This arrival rate can be estimated relatively
easily from button presses at hall-call panels. However, even
if the arrival process model is statistically correct in the
aggregate, it does not specify precisely when individual
passengers can be expected at landings. In contrast, recent
advances in sensing and communication technologies have
made it possible to collect much more detailed and accu-
rate information about potential future arrivals at elevator
landings, and deliver it in real time to the GEC system for
the purposes of better decision making. Various technologies
can be used to track the location and movement of building
occupants in real time and communicate it to a central server,
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often originally for the purposes of security and access
control. These technologies include RFID sensors attached
to ID badges ([4]), active badges with radio beacons, in-
floor sensors ([5]), cameras that track occupants’ movements,
infrared motion detectors ([6]), as well as reflections of WiFi
radio signals on the bodies of building occupants [7].

How to best use this information for GEC is still an
active area of research. Luh et al. formulated the problem
of assigning all passengers within a time window of fixed
duration (that also includes future passengers), and is updated
in a rolling-horizon fashion, as a mixed-integer program-
ming (MIP) problem, and proposed a solution algorithm
based on Lagrangian relaxation, decomposition, and dynamic
programming [8]. Kwon et al. ([9]) described a sensor-
aware GEC method that places reservation calls for future
passengers that are yet to arrive, assigns a car to service
such reservation calls along with the other passengers already
assigned to it, and potentially also moves that car proactively
towards the arrival floor before the actual hall call has
occurred.

Although these methods for using advance arrival infor-
mation can be very effective in reducing the waiting times of
passengers, they assume that these arrivals would occur with
complete certainty. This assumption can have detrimental
effects on waiting times of passengers when it is not justified.
Imagine, for example, a passenger who is likely to request
elevator service with only 70% probability. If a reservation
call is made for such a passenger, a car is selected and
dispatched to pick him/her up, and he/she ultimately does
not request service (30% of the time), the car’s trip would
have been in vain. In addition to wasting energy to move the
car, its movement might leave a large part of the building
with no elevator cars in it, and passengers arriving in that
part later might have to wait longer. Clearly, ignoring the
uncertainty in passenger arrivals might actually end up being
counterproductive.

What is needed, then, is a method for accurately assessing
the probability of passenger arrivals (both the arrival event
and its time), as well as a GEC algorithm that can make
good use of this uncertain information. The next section
proposes one such algorithm, based on a predictive model
for passenger requests for service that employs Transformer
neural networks, and a predictive group elevator controller
that makes use of the probabilistic predictions produced by
the Transformer neural networks to estimate the expected
waiting time resulting from possible assignments of future
passengers. Section III presents an empirical evaluation of
the predictive accuracy of Transformer networks in compar-
ison to other methods, and analyzes, again empirically, the
effect of the use of the predictive algorithm on reducing the
AWT of passengers.

II. PREDICTIVE GROUP ELEVATOR CONTROL
WITH TRANSFORMER NETWORKS

The overall operation of the proposed predictive group
elevator scheduler is organized as follows. A position track-
ing system located on each floor of a building tracks the

sequence of positions of individual users over time, parses
them into trajectory segments, each starting at an initial
location and ending with a destination location, and stores
them in a database of training data. This data is used to train
a Transformer neural network to predict the final destination
location based on partial trajectories. At run time, the trained
network is used to continuously predict a probability distri-
bution over all possible destinations for a specific person
moving around the floor, using as input the partial trajectory
registered for this particular person so far. The probability
that this person will go to the elevator landing, along with
the estimated time of arrival there, are passed on to the
Predictive Group Elevator Scheduler (PGES). It integrates
these predictions with similar information from all floors
of the building to make optimal decisions about assigning
elevator cars to actual requests for vertical transportation, as
well as proactively moving the elevator cars even before such
requests have been registered.

A. Overview and Principle of Operation of the PGES

The overall structure of our PGES system is shown in Fig.
2. After obtaining sufficient training/testing trajectories data
floor-by-floor (by using the SimTread simulator [10]), we
train a Transformer neural network for destination prediction
and a linear regression model for the remaining time to
destination prediction. The Transformer network was first in-
troduced in [11] as a sequence-to-sequence prediction model
operating on discrete symbols, with superior predictive per-
formance due to the attention mechanism it uses. In our pre-
vious work [12], we applied Transformer networks to predict
passengers’ destinations located on a building floor, based
on previous partial trajectories of these passengers. We use
these predictions for the purpose of GEC, when a decision is
needed about which elevator car to assign to pick up a newly
arrived passenger who has requested elevator service. At such
a time, the Transformer network is executed in turn for each
person who is currently in motion around each building floor,
in order to determine whether this person is a likely future
elevator passenger whose potential future request for service
might affect (or be affected by) the currently registered
request. To this end, the output of the Transformer network
is interpreted probabilistically as a multinomial distribution
over all possible destinations, including the elevator land-
ing. This multinomial distribution is sampled to determine
whether the passenger might be going to the elevator landing,
and if yes, he/she is placed in a possible tentative future
continuation of the current arrival stream for the elevator
bank. Furthermore, if a person is determined to be a possible
elevator passenger as a result of sampling, his/her arrival
time at the elevator landing is predicted by means of a
separately trained linear regression model. Depending on
the amount of uncertainty in the multinomial distribution,
one or more possible continuations are formed and used for
determining the optimal car for the current passenger, by
minimizing the expected Average Waiting Time (AWT) of
both existing as well as tentative future passengers present
in the continuations. In the general case, the expectation



of AWT is computed by averaging over its value across
multiple continuations, thus effectively taking a Monte-Carlo
expectation over all multinomial distributions over future
destinations produced by the Transformer network for each
possible future passenger. Assuming immediate assignment
mode, where a car is assigned to the newly arrived passenger
at the time of his/her arrival, and never reconsidered later
(as is usual in Japan and other countries), the computational
time of this decision procedure is only linear in the number
of available cars, because it is sufficient to tentatively assign
the new passenger to each car in turn, evaluate the expected
AWT of all passengers under this assignment as described
above, and after that select the car resulting in the lowest
expected AWT. The sequential operation of the scheduler
in immediate assignment mode is shown in Fig. 1, for two
continuations, and further details about this procedure can be
found in [13]. The operation of the scheduler in immediate
assignment mode essentially amounts to greedy search of
the assignment tree, as shown in Fig. 1, where each possible
car assignment for a passenger is considered only once, at
the time of arrival of that passenger, the best assignment is
selected, and all others are ignored thereafter.

Fig. 1: Operation of the predictive group elevator scheduler in
immediate assignment mode. Predictions are used to generate
one or more possible future continuations of the passenger
arrival stream (not necessarily containing the same passen-
gers), the currently arrived passenger is assigned tentatively
to each car in turn (A or B in this case), and the AWT of all
passengers, existing and future, for a given car assignment,
is computed by forward simulation of the movement of all
cars, and averaged over all continuations.

B. Detailed Description of PGES

1) Representation of Trajectories: Let us first describe
how to represent trajectories to simplify analysis for a
processor. Note that raw recordings from sensors for both
positions and time stamps are continuous variables. It would
be infeasible for a sequence-to-sequence predictor to directly
use continuous values. Thus, we preprocess the positional
and timing data by discretizing them into grid indices.

Fig. 2: The structure of our PGES system.

Let x’s and y’s denote longitudes and latitudes on a
building floor, respectively. Arbitrarily take (but fix) lower
bounds (resp., upper bounds) x and y (resp., x and y) for
longitudes and latitudes respectively. Then the grid index p∗

of any given tuple of coordinates (x, y) in an NX × NY
rectangle can be determined as p∗ = y∗NX +x∗+ 1, where
x∗ =

⌊x−x
∆x

⌋
and y∗ =

⌊
y−y
∆y

⌋
, with quantization intervals

being ∆x = x−x
NX

and ∆y =
y−y
NY

. Note that the positive
integers NX and NY could be taken reasonably large, as
long as the computational resources permit. Note also that
NX and NY could be determined by use of cross-validation,
given a set of trajectory data.

Given an upper bound Q of remaining time to destina-
tion, we determine the remaining time to destination for
any recorded time stamp t of a given tuple of positional
coordinates (x, y) in a given trajectory, whose last time
stamp is recorded as td (corresponding to the destination),
by t∗ = td−t. Taking both positional and timing information
into account, a trajectory is denoted as

S = ((p∗1, t
∗
1), (p∗2, t

∗
2), . . . , (p∗n, t

∗
n)), (1)

where n is the length of the trajectory, and the last tuple
(p∗n, t

∗
n) might correspond to the destination, provided that

the trajectory is complete.
2) Predictors: We build two predictors to deal with the

positional and timing information separately – one is based
on the Transformer network, and the other is based on linear
regression. To that end, we extract the positional sequence
from (1) as

Sp = (p∗1, p
∗
2, . . . , p

∗
n), (2)

which would be dealt with by the Transformer network.
And, for each destination, we build a linear regression
model t∗ = β1x

∗ + β2y
∗ (β1, β2 are two parameters to be

fitted) to predict remaining time to the destination, given the
current position index. Specifically, we solve the following
optimization problem for a fixed destination:

min
β1,β2∈R

m∑
i=1

(
t̃∗i − β1x̃

∗
i − β2ỹ

∗
i

)2
, (3)

where {(x̃∗i , ỹ∗i ), t̃∗i , i = 1, . . . ,m} are the training data.
Assuming (β∗1 , β

∗
2) is the optimal solution to (3), then the

resulting regression model would be t∗ = β∗1x
∗ + β∗2y

∗.
Note that for the purpose of predicting people’s remaining
time to a destination, we have implicitly assumed people
would always choose the shortest path to their destination



and their walking speeds are the same; thus, given the
current position, the remaining time to a selected destination
would be uniquely determined. It is worth pointing out
that in practice people’s walking speeds are not necessarily
the same, and in such cases, we can easily extend (3) by
adding the walking speed v∗ as an additional explanatory
variable, thus leading to a regression model in the form of
t∗ = β∗1x

∗ + β∗2y
∗ + β∗3v

∗. Admittedly, for the latter cases,
we need more training data to obtain a satisfactorily accurate
model.

3) Generation of Continuations: When the uncertainty in
the final destination of the current passenger is significant
(that is, more than one destinations are likely, and having
significant probability mass in the multinomial distribution),
the previously described process of repeated sampling of this
distribution to decide whether to place him/her in a contin-
uation can be performed, and then followed by averaging
the resulting AWT over multiple continuations to evaluate
its expected value. However, when the multinomial distribu-
tion over continuations is significantly skewed towards one
destination (likely the elevator landing for people who are
going there, or another destination for people who are not), a
simpler computational procedure can be followed to produce
a single most-likely continuation. The resulting continuation
would then be utilized by the PGES directly, as if it was the
single correct sequence of future arrivals.

The single continuation can be constructed as follows.
Denote by T the prediction length. Given a partial trajectory
S of a passenger, if the predicted probability (outputted by
the Transformer network model) of the passenger going to
the elevator is larger than some threshold δ, we decide to
place this person in the continuation, and otherwise ignore
him/her. If included, we apply the linear regression model
to predict the remaining time t∗ to the elevator and, if
t∗ ≤ T , we pass the predicted future arrival information of
this passenger to the PGES (implemented in the simulator
Elevate [14]). This use of a single continuation follows the
certainty equivalence principle, and can be expected to be
effective when the predictive method is fairly certain that the
potential passenger is going to the elevator landing or not. A
reasonable expectation is that the certainty of the predictive
method will grow with time, as more tracking information
is accumulated, and the passenger either approaches the
elevator landing, or diverges from it en route to some other
destination on the floor. This expectation is in fact supported
by the empirical evaluation presented in the next section.
Note that this method still uses probabilistic predictions, be-
cause it compares the probability that a potential passenger is
going to the elevator against a threshold. How this threshold
can be determined is explained in the next section.

4) Destination Control Dispatcher: We use a group con-
trol algorithm that uses information from a destination dis-
patch (DD) input panel that every passenger uses to register
their destination floor. (The algorithm can easily be applied
to the more common case of using only up/down hall-call
panels, too, if the algorithm makes an assumption about
the likely destination floor, as is customary in many GEC

algorithms.) Each time a new call is registered, the dispatcher
assigns it tentatively in turn to each of the available cars, and
evaluates the cost resulting from each tentative assignment,
including the component of the cost for future passengers.
The assignment leading to the lowest cost is then adopted.
Suitable cost functions include the average waiting time,
the average journey time, or a combination of both. In
this paper, we only use average waiting time. In particular,
we implement the following DD algorithm (refer to [15])
within the development interface of the commercial simulator
Elevate [14]:

Consider that a new call is to be allocated to an elevator
bank of C cars, each car (c) with N(c) calls to answer and
WT (c) accumulated waiting time for the N(c) calls. Let
NWK(c′) denote the new accumulated waiting time for
N(c′) + 1 calls, when the new call is allocated to car c′.
Then the average waiting time for all calls is

AWT =
NWT (c′) +

∑C
c=1,c 6=c′ WT (c)

1 +
∑C
c=1N(c)

,

which can be rewritten as

AWT =
NWT (c′)−WT (c′)

1 +
∑C
c=1N(c)

+

∑C
c=1WT (c)

1 +
∑C
c=1N(c)

. (4)

From (4), it is seen that minimizing AWT is equivalent
to minimizing NWT (c′) −WT (c′), where NWT (c′) and
WT (c′) can be evaluated by simulation.

III. EMPIRICAL EVALUATION

A. Experimental Setup

Fig. 3: The layout of a floor in a simulated building.

We generate people’s movement data in a building floor-
by-floor. In particular, we use the SimTread software package
for this purpose. The layout of a floor in a building that we
use in the simulation is shown in Fig. 3, where we have
16 destinations denoted d1 through d16, with d16 being the
elevator. For simplicity, we consider an 8-floor building with
floors 2 through 8 having exactly the same layout as shown
in Fig. 3; as traffic is a stochastic process, its realizations end
up being different on each floor. Also shown in Fig. 3 are five
typical trajectories; for example, the blue connected circles



TABLE I: Prior probabilities for destinations.

Destination d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 (elevator)
Probability 0.05 0.07 0.02 0.07 0.05 0.07 0.16 0.02 0.05 0.1 0.05 0.02 0.02 0.05 0 0.2

starting from d15 and ending at d16 represent a complete
trajectory with the elevator as its destination, from which we
can also see the evolution of position coordinates (formatted
as a sequence of grid indices). Note that in our simulations,
we assume all destinations d1 through d16 could also be
an origin. To generate training/testing trajectories data, we
use the prior probabilities specified in Table I. We consider
a down-peak period of a typical workday; in particular, if
a person heads to the elevator, then he/she is assumed to
go down to the lobby (the first floor) with the elevator, no
matter which floor he/she currently is located at, and leave
the building. Note that although the prior probability of going
to the elevator (0.2 in this case) is higher at the end of the
day than during other time periods, it is still not very high,
so when a passenger starts moving, it is by far not a foregone
conclusion that he/she will be going to the elevator. In order
to pre-dispatch a car for this presumptive passenger, the GEC
needs a much higher posterior probability, and it is the job of
the predictor to produce it, for passengers that actually will
need elevator service, after having observed the passenger’s
initial trajectory.

Next, we first present detailed results for a fixed arrival
rate, and then briefly show integrated results for various
arrival rates.

B. Accuracy of the Transformer-Based Destination Predictor

Of particular interest is predicting whether a person will
go to the elevator or not. In this section, we present results
from the use of the Transformer-based destination predictor.
For economy of space, we temporarily only show results for
a single floor (floor 8) from a single simulation scenario,
where the arrival rate of passengers for the elevator is 64.8
persons per hour (pph).

To build the Transformer-based destination predictor, we
generate 55 training trajectories for floor #8, out of which
11 have the elevator (d16) as the destination, covering a
period of 10 minutes. To generate test trajectories, we keep
the same simulation parameters, but only change the random
seed of the simulator, thus ending up with the same numbers
of trajectories (55 in total, and 11 of them have the elevator
as the destination). When formatting the trajectories data, we
take NX = NY = 50 (refer to Section II-B.1).

To train the Transformer model, we use the same set of
parameters as that in [12] for the network structure (a stack
of 4 encoder and decoder blocks), and the batch size and the
number of epochs are taken as 20 and 100 respectively. The
prediction results are shown in Fig. 4, where we see from
Fig. 4a that for people who are not going to the elevator,
the predictor will always output relatively low Predicted
Probability of Going to Elevator (PPGE), in this case at
most 0.112. This suggests a simple method to eliminate
practically all false positives (that is, cases when the predictor

might suggest a person is going to the elevator, when in
fact he/she is not) – simply use a suitable threshold δ on
the PPGE, for example 0.2, and set the PPGE to 0, if it
is below this threshold. In practice, the threshold can be
determined from the training data set, or a separate validation
data set, by observing how high the PPGE gets for people
who are not going to the elevator. Eliminating such low
probabilities would avoid dispatching cars to pick up non-
existing passengers, and at the same time, the threshold is
low enough to allow detection of actual elevator passengers
early enough to allow a car to be pre-dispatched on time to
reduce the waiting times of such passengers. By inspecting
Fig. 4b, it can be seen that for those people who are actually
going to the elevator, the destination predictor can know that
with high accuracy when the Remaining Time to Destination
(RTD) is as large as 10 seconds, with only 2 of the 11 people
whose ground-truth destination is the elevator being missed
by the predictor, and when the RTD is 5 seconds, none of
these 11 people would be missed. Note that missing future
elevator landings would not change the fact that the PGES’s
performance is at least as good as the myopic scheduler; in
particular, even if the destination predictor missed arrivals
of several future passengers for the elevator, the scheduler
would simply not be able to utilize the predictive information
of these passengers, but it would not do worse than the
myopic scheduler.

C. Accuracy of Linear Regression for Prediction of Remain-
ing Time to Destination

From the last section, we see that the Transformer-based
destination predictor is able to predict whether a moving
person would head to the elevator with a high accuracy.
This provides us the convenience of further predicting the
remaining time to the elevator. Noting that we are actually
only interested in the special destination – the elevator, in
this section we only present results from the linear regression
model built for the elevator (d16).

Without loss of generality, we still use floor #8 as an
example to demonstrate our results. From the 11 training
trajectories with the elevator (d16) as the destination, we
extract a training data set consisting of 468 entries (e.g.,
an entry ((43, 40), 2.0) means x∗ = 43, y∗ = 40, t∗ = 2.0
(seconds) for a point in one of the 11 training trajectories) for
the linear regression model. The test data set, also consisting
of 468 entries, is extracted from the 11 test trajectories
with the elevator (d16) as the destination. The resulting
Root Mean Square Error (RMSE) of the linear regression
model is 1.29 (seconds). Considering the total travel time
corresponding to a typical test trajectory is above 20 seconds,
the RMSE is satisfactorily small.

It is worth pointing out that in our experiments we have
also tested several more advanced regression models (random



(a) (b)

Fig. 4: Predicted Probability of Going to Elevator (PPGE) vs. Remaining Time to Destination (RTD) for (a) 44 trajectories
whose ground-truth destination is NOT the elevator, and (b) 11 trajectories whose ground-truth destination is the elevator.

forest, decision tree regression with AdaBoost, gradient
boosting regression, etc.), but their RMSE scores are very
close to that of a linear regression model. This might be due
to the fact that our problem is rather simple (only two ex-
planatory variables are included) and the prediction accuracy
can readily be guaranteed by using linear regression.

D. Effectiveness of the Predictive Group Elevator Scheduler

In this section, we present results from evaluating the
proposed predictive group elevator scheduler that uses Trans-
former networks in comparison to a myopic one, as well
as a predictive scheduler that uses a trivial predictor that
predicts the closest location to be the final destination of the
passenger. We take the prediction length T to be 10 seconds
and the PPGE threshold δ to be 0.2. We consider an elevator
bank of 3 cars for the 8-floor building as specified in Section
III-A.

1) Single Arrival Rate: In a single scenario experiment
with a medium arrival rate (64.8× 7 = 453.6 pph, assuming
floors #2-7 also have the same arrival rate as that of floor
#8), we obtain the following AWT results: (1) the prescient
scheduler (if the actual arrivals of passengers were com-
pletely known): 13.2 seconds; (2) the Transformer-based pre-
dictive scheduler (with continuations from the Transformer
based destination predictor and the linear regression based
RTD predictor): 15.3 seconds; (3) the closest-distance based
predictive scheduler (the destination with the closest distance
to the current location would be assigned a probability equal
to 1 of being the true final destination): 17.4 seconds; (4)
the myopic scheduler (that does not use future information):
18.1 seconds. This results in more than 15% savings in AWT
when using our PGES (as opposed to the myopic scheduler).
Comparatively, the rate of the AWT savings for the prescient
scheduler is about 27% and for the closest-distance based
predictive scheduler is about 4%.

2) Variable Arrival Rates: In Figures 5 and 6, we show
results of AWT values and their savings from experiments
under variable arrival rates. These are obtained by averaging
over 50 runs for each arrival rate, and we also show the
standard deviations for these values as error bars. It is seen

that the proposed Transformer-based scheduler can lead to
significant AWT savings when the arrival rate is relatively
small; the actual savings are around 50%, approaching an
upper bound of above 75% for the prescient scheduler. The
gap could be further narrowed down, depending on the
predictive performance of the Transformer/linear regression
models. On the other hand, when there are denser arrivals,
the PGES would have less AWT savings (e.g., when we have
a medium arrival stream (360 pph - 720 pph), the AWT
savings of the Transformer based scheduler is around 15%);
this is likely due to the fact that with such dense arrival
streams, the bank of elevators has less capacity to leverage
the available predictive information by pre-dispatching a car
ahead of requests for service, and instead must focus on
moving the relatively many passengers down to the lobby
as efficiently as possible by matching optimally calls for
service from different floors. In this regime, if all cars are
busy most of the time, pre-dispatching cannot occur, but still
some savings in AWT can be realized by anticipating arrivals
at landings and timing the movements of cars accordingly to
intercept them.

From a computational complexity perspective, we note
that it is unnecessary to train the Transformer model re-
peatedly for various arrival rates, as long as there are no
significant changes in the prior probabilities for destinations.

Fig. 5: AWT value of four schedulers vs. arrival rate with
error bars.



Fig. 6: Percent of AWT savings of three predictive schedulers
(with respect to the myopic scheduler) vs. arrival rate with
error bars.

IV. CONCLUSION

In this paper, we proposed a Predictive Group Elevator
Scheduler that uses predictive information about passengers
arrivals from a Transformer-based destination predictor and
a linear regression model that predicts remaining time to
destination. The effectiveness and efficiency of our approach
was validated by empirical experiments, through which we
found that the savings in AWT could be as high as 50%
for light arrival streams, and around 15% for medium arrival
streams in afternoon down-peak traffic regime. These results
are obtained after carefully setting the threshold of the
predicted probability of going to the elevator, thus avoiding
a majority of false predictions for people heading to the
elevator, while achieving as high as above 80% of true
predictive elevator landings as early as after having seen only
60% of the whole trajectory of a passenger. When such a
threshold on the probability can be established, the PGES
algorithm can work with a single future continuation of the
arrival stream, for faster computation. The effectiveness of
the PGES that uses Transformer networks for prediction in
reducing the AWT is significantly higher than that of a PGES
that uses a much simpler predictive method that assumes
that the closest location to passengers’ current location is
their final destination, demonstrating the advantages of an
advanced predictive method that can identify early on the
likely final destination.

For future work, we will consider building predictive
schedulers for various periods of the day (hence, various
prior probabilities of the passengers’ destinations). One pos-
sibility is training separate models for each period, and an-
other one is to employ transfer learning approaches between
different periods. Another promising avenue for improving
prediction accuracy is to customize predictive models for
each individual passenger (in a privacy preserving manner),
opening the possibility for truly smart buildings that are
highly adaptive and responsive to the habits and schedules
of all of their individual occupants.
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