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Abstract. We show how the solution to NMPC problems
for a special type of input-affine discrete-time systems can
be obtained by reformulating the underlying non-convex op-
timal control problem in terms of a finite number of con-
vex subproblems. The reformulation is facilitated by exact
(input-state) linearization, which is shown to provide bene-
ficial properties for the treated class of systems. We charac-
terize possible types of the resulting convex subproblems and
illustrate our approach with three numerical examples.

I. INTRODUCTION

Model predictive control (MPC) is a widely used and well-
studied control scheme, in which a dynamical model is instru-
mental for predicting and optimizing future system behavior
through suitable control actions. In particular, the classical re-
alization with linear prediction models, polyhedral constraints,
and quadratic cost functions is well understood. In fact, in this
case that is usually referred to as linear MPC, we obtain (under
mild conditions) a convex optimal control problem (OCP), which
can be solved reliably, efficiently, and even explicitly [1, 2]. For
nonlinear MPC (NMPC), convexity is usually lost due to nonlin-
ear system dynamics [3], making it hard to reliably compute the
global optimum. Therefore, the great watershed in optimization
between convexity and non-convexity [4] is typically associated
with linear and nonlinear MPC, respectively. Nevertheless, al-
though quite rare, there exist setups (such as those in [5–8]) for
which convex NMPC formulations can be derived. However,
these approaches usually build on quite restrictive assumptions.

In this paper, we contribute to the investigation of convex (or
“convexifiable”) NMPC by showing how NMPC problems for a
special type of input-affine systems can be reformulated in terms
of a finite number of convex subproblems. Similar to and build-
ing upon the approach [8], we make use of exact input-state lin-
earization (see [9] for an overview) to derive our results. While
this kind of system transformation often leads to a loss of con-
vexity for cost functions and constraints (as, e.g., noted in [10]),
we show that a certain decomposition of the constraints in com-
bination with a tailored parametrization of the stage costs allows
to obtain the desired convex reformulations.

We organize the presentation of the novel approach as fol-
lows. We summarize basics on NMPC and exact linearization
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for discrete-time systems in Section II. In Section III, we charac-
terize a special type of input-affine systems and show how exact
linearization can be applied to these systems in a way that is
beneficial for solving an NMPC problem. We present our main
result, i.e., the reformulation of special types of NMPC problems
for the presented class of systems as a finite number of convex
subproblems, in Section IV. Finally, we apply our results to three
different numerical examples in Section V and suggest directions
for future research in Section VI.

II. BASICS ON NMPC AND EXACT LINEARIZATION

We initially summarize some basics on MPC and exact (input-
state) linearization for the general class of discrete-time nonlin-
ear single-input systems

x(k + 1) = f(x(k), u(k)) (1)

with state and input constraints

x(k) ∈ X ⊂ Rn and u(k) ∈ U ⊂ R. (2)

We specify the special class of interest later in Section III.

A. Nonlinear model predictive control

Applying MPC to a nonlinear system (1) with constraints (2)
requires solving an optimal control problem (OCP) of the form

V (x) := min
x̂(0),...,x̂(N),
û(0),...,û(N−1)

ϕ(x̂(N)) +

N−1∑
k=0

`(x̂(k), û(k)) (3)

s.t. x̂(0) = x,

x̂(k + 1) = f(x̂(k), û(k)) ∀k ∈ {0, . . . , N− 1},
(x̂(k), û(k)) ∈ X × U ∀k ∈ {0, . . . , N− 1},

x̂(N) ∈ T

in each time step k for the current state x = x(k). Here, N ∈ N
is the prediction horizon, ` : Rn × R → R denotes the stage
cost, and ϕ : Rn → R refers to the terminal cost. Further,
the terminal set T ⊆ X can be used to enforce stability guar-
antees [10]. Due to the nonlinear system dynamics that occur
as equality constraints, the OCP is typically non-convex, even if
convex cost functions and constraint sets are considered. Hence,
evaluating the optimal control sequence û∗(0), . . . , û∗(N − 1)
and, in particular, the control action u(k) = û∗(0), can be nu-
merically hard.
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B. Exact linearization of discrete-time systems

The exact (input-state) linearization of discrete-time systems (1),
which from now on we will simply refer to as exact linearization,
is less popular than its continuous-time counterpart. Hence, we
briefly summarize the key ingredients and refer to, e.g., [11] for
further details. In a nutshell, exact linearization requires finding
a new set of coordinates ξ := τ (x) and a feedback u := Ψ(x, v)
with an artificial input v, which transform (1) into an equivalent
linear system

ξ(k + 1) = Ãξ(k) + b̃ v(k). (4)

To achieve this, the relative degree r with respect to an (artificial)
output

y(k) = h(x(k)) (5)

plays a central role. Intuitively, r can be seen as the minimum
number of time steps after which the input u affects y. More
precisely, r can be defined based on the recursion

h(i)(x) := h(i−1)(f(x, u)) with h(0)(x) := h(x), (6)

where we omit the argument u, since all relevant h(i)(x) will not
depend on u by assumption. The relative degree of (1) w.r.t. (5)
at (x◦, u◦) is then defined as the r ∈ N that obeys

∂

∂u
h(r−1)(f(x◦, u◦)) 6= 0 and (7a)

∂

∂u
h(i)(x) = 0 for every i ∈ {0, . . . , r − 1} (7b)

and every (x, u) in a neighborhood of (x◦, u◦), where condition
(7b) justifies the notation in (6). For the special case r = n, the
state transformation

τ (x) :=
(
h0(x) . . . hn−1(x)

)>
(8)

yields the transformed state space system

ξ(k + 1) = τ (f(x(k), u(k)))

=


ξ2(k)

...
ξn(k)

h(n−1)(f(x(k), u(k)))

 . (9)

Regarding the n-th entry of (9), we note that (7a) implies the
existence of a function Ψy : Rn × R→ R such that

h(n−1)(f(x,Ψy(x, y))) = y (10)

holds (at least locally) by the implicit function theorem. Now,
let us consider the feedback u(k) = Ψ(x(k), v(k)) with

Ψ(x, v) := Ψy

(
x, b0v −

n−1∑
i=0

aih
(i)(x)

)
(11)

for some arbitrary coefficient b0 6= 0 and a0, . . . , an−1 ∈ R.
Then, we obtain

h(n−1)(f(x(k),Ψ(x(k), v(k))) = b0v(k)−
n−1∑
i=0

aiξi+1(k),

according to (10). Together with (9), this finally leads to the
parameters

Ã :=


0 1 0 · · · 0
0 0 1 0
...

...
. . .

0 0 0 1
−a0 −a1 −a2 · · · −an−1

, b̃ :=


0
0
...
0
b0


for the exactly linearized system (4).

III. SYSTEM SPECIFICATION AND EXACT LINEARIZATION

We begin our analysis with a characterization of the special sys-
tem class for which our methodology will apply.

Assumption 1. We consider systems (1) with

f(x, u) := Ax+ g(x)bu, (12)

where A ∈ Rn×n, b ∈ Rn, and g : Rn → R. We assume that
the pair (A, b) is controllable and that g(0) 6= 0. We further
assume that X can be decomposed into s ∈ N convex subsets
Xi, i.e.,

X :=

s⋃
i=1

Xi (13)

with the following properties: For every i ∈ {1, . . . , s}, we ei-
ther have

g(x) ≥ 0, g(ηx+ (1− η)x̂) ≥ ηg(x)+(1− η)g(x̂) (14a)
or

g(x) ≤ 0, g(ηx+ (1− η)x̂) ≤ ηg(x)+(1− η)g(x̂) (14b)

for every x, x̂ ∈ Xi and every η ∈ (0, 1). Finally, we assume
that 0 ∈ int(X1) and that U := [u, u] with u < 0 < u.

Without doubt, these assumptions are restrictive. Neverthe-
less, they can be easily interpreted and they include interesting
system classes. For instance, (12) describes input-affine systems
with a linear drift and “linearly dependent” input-nonlinearities.
Moreover, (14) states that g should either be non-negative and
concave or non-positive and convex on each subset Xi. Both
assumptions are, e.g., satisfied by the special class of bilinear
systems in [8]. In fact, we there have g(x) = w>x + d with
the specifications w 6= 0 and d 6= 0 (in order to exclude trivial
linear systems and g(0) = 0). In addition, X is assumed to be
convex with 0 ∈ int(X ) in [8]. Hence, the sets

X1 := {x ∈ X | d g(x) ≥ 0} and
X2 := {x ∈ X | d g(x) ≤ 0}

are both convex and g satisfies (14) (since affine functions are
obviously both convex and concave and since the sign of g(x)
is used to specify X1 and X2). Finally, 0 ∈ int(X1) is sat-
isfied by construction (since d g(0) = d2 > 0). Now, As-
sumption 1 can also be met for piecewise affine g, which sig-
nificanly extends the former case. In fact, assuming that the



affine segments are defined over convex domains, we can eas-
ily identify convex sets Xi on which (14) holds. Finally, As-
sumption 1 can be satisfied for functions g that reflect a composi-
tion of a real function consisting of either non-negative and con-
cave or non-positive and convex segments with an affine map-
ping. For an example, such a construction underlies the function
g(x) = 4 cos (3π/8(x1 − x2)) that will be investigated in more
detail further below.

Now, for the exact linearization of a system (1) with the speci-
fication (12), we consider a linear output function h(x) := c>x,
where c is chosen such that

c>An−1b 6= 0 and (15a)

c>Aib = 0 for every i ∈ {0, . . . , n− 2}. (15b)

We note that such a choice is always possible since (A, b) is
controllable according to Assumption 1. Based on (15), it is easy
to verify that (7) holds for

x◦ ∈ X ◦ := {x ∈ Rn | g(x) 6= 0}.

Hence, the system has relative degree r = n (w.r.t. the cho-
sen output) almost everywhere. Further, due to the linear output
and the linear drift, the transformation (8) is likewise linear and
results in

τ (x) = Tx with T :=

 c>A0

...
c>An−1

 . (16)

Moreover, (10) in combination with (11) yields

c>An−1 (Ax+ g(x) Ψ(x, v)) = b0v −
n−1∑
i=0

aic
>Aix. (17)

Hence, the linearizing feedback Ψ(x, v) can be specified as

Ψ(x, v) :=
b0v −α>x
βg(x)

(18)

with

α> := c>

(
An +

n−1∑
i=0

aiA
i

)
and β := c>An−1b,

where we note that the fraction in (18) is well-defined for every
x ∈ X ◦.

Since (16) is a linear transformation, it can be reverted while
maintaining linear dynamics, resulting in

x(k + 1) = Âx(k) + b̂v(k) (19)

with Â := T−1ÃT and b̂ := T−1b̃. This traces the coordinates
of the exactly linearized system back to the original state-space,
which proves helpful regarding the use of exact linearization in
conjunction with MPC, since both the formulation of state con-
straints and cost functions can be based on the original states.

IV. CONVEX REFORMULATIONS VIA DECOMPOSITION

The central idea now is to reformulate the original OCP (3) us-
ing (19) and to exploit the resulting structure. To this end, we
first address reformulations of the constraints and cost functions
in (3). Fortunately, since (19) builds on the original states, the
terminal cost ϕ and the terminal set T will be the same. In con-
trast, the stage cost and the input (and state) constraints have to
be reformulated in order to incorporate the novel input v (instead
of u). Taking the linearizing feedback u = Ψ(x, v) into account,
the reformulated stage cost and constraints will, in principle, fol-
low from `(x,Ψ(x, v)) and

{(
x
v

)
∈ Rn+1

∣∣∣∣ x ∈ X , Ψ(x, v) ∈ U
}
. (20)

However, both expressions are well-defined only for x ∈ X ◦.
As a remedy, we first introduce the novel OCP

V (x) := min
x̂(0),...,x̂(N),
v̂(0),...,v̂(N−1)

ϕ(x̂(N)) +

N−1∑
k=0

ˆ̀(x̂(k), v̂(k)) (21)

s.t. x̂(0) = x,

x̂(k + 1) = Âx̂(k) + b̂v̂(k) ∀k ∈ {0, . . . , N− 1},(
x̂(k)
v̂(k)

)
∈ Z ∀k ∈ {0, . . . , N− 1},

x̂(N) ∈ T

and discuss suitable choices for the novel stage cost ˆ̀ and the
novel constraints Z in the following.

A. Suitable constraints and their convex decomposition

In order to fix the ill-definition of (20), we first note that u =
Ψ(x, v) implies

v =
βg(x)u+α>x

b0
. (22)

Remarkably, this relation (which could also be derived from
(17)) is well-defined for every x ∈ Rn. Now, whenever x /∈ X ◦,
we have g(x) = 0 by definition. Hence, (22) suggest to choose
v = α>x/b0 in these cases. Based on this observation and in-
spired by (20), we define Z as

Z :=

{(
x
v

)
∈ Rn+1

∣∣∣∣ x ∈ X ∩ X ◦, Ψ(x, v) ∈ U
}

∪
{(

x
v

)
∈ Rn+1

∣∣∣∣ x ∈ X \ X ◦, v =
α>x

b0

}
. (23)

One can then easily prove the following statements, which con-
firm the equivalence of the original and the novel constraints.



Lemma 1. Consider any x ∈ X and u ∈ U and define v as
in (22). Then, (

x
v

)
∈ Z. (24)

Analogously, consider any x ∈ X and v ∈ R satisfying (24).
Then,

u :=

{
Ψ(x, v) if x ∈ X ◦,
0 otherwise

is such that (22) holds and u ∈ U .

It is easy to see that the specified Z is usually non-convex.
Nevertheless, Z can be decomposed into finitely many convex
subsets as specified in the following theorem.

Theorem 2. Let Assumption 1 hold. Then, Z as in (23) can be
decomposed into s ∈ N convex subsets

Zi :=

{(
x
v

)
∈ Rn+1

∣∣∣∣x ∈ Xi, b0v −α>x ∈ Ui(x)

}
(25)

i.e., Z =
⋃s
i=1Zi, where

Ui(x) :=

{
[βg(x)u, βg(x)u] if βg(x) ≥ 0 ∀x ∈ Xi.
[βg(x)u, βg(x)u] otherwise.

Proof. We first prove that

Zi =

{(
x
v

)
∈ Rn+1

∣∣∣∣ x ∈ Xi ∩ X ◦, Ψ(x, v) ∈ U
}

∪
{(

x
v

)
∈ Rn+1

∣∣∣∣ x ∈ Xi \ X ◦, v =
α>x

b0

}
. (26)

To this end, we note that x ∈ Xi ∩ X ◦ implies

Ψ(x, v) ∈ U ⇐⇒ b0v −α>x ∈ Ui(x)

and that x ∈ Xi \ X ◦ implies Ui(x) = [0, 0].
Clearly, the latter implies v = α>x/b0, which already

proves (26). In combination with (13) and (23), this immedi-
ately leads to Z =

⋃s
i=1Zi. It remains to prove convexity of

Zi. To this end, we note that Zi as in (25) can be equivalently
characterized by the conditions

x ∈ Xi, (27a)

βg(x)u− b0v +α>x ≤ 0, (27b)

−βg(x)u+ b0v −α>x ≤ 0 (27c)

whenever βg(x) ≥ 0 for every x ∈ Xi. Now, according to
Assumption 1, we either have g(x) ≥ 0 and concavity of g or
g(x) ≤ 0 and convexity of g on Xi. Further, βg(x) ≥ 0 appears
for either β > 0 and g(x) ≥ 0 or β < 0 and g(x) ≤ 0. In
either case, the left-hand sides in (27b) and (27c) describe con-
vex functions in x and v and, hence, the associated constraints
are convex. For instance, β > 0 requires g(x) ≥ 0 and con-
sequently concavity of g, which implies that both βg(x)u and
−βg(x)u are convex due to u < 0 < u. Since also Xi is con-
vex by assumption, all conditions (27) are convex, which implies
convexity ofZi. Finally, the case βg(x) ≤ 0 can be proven anal-
ogously.

B. Choosing the cost functions and the terminal set

As previously mentioned, the expression of the exactly lin-
earized system dynamics (19) in terms of the original state x
allows for a very natural choice of the terminal ingredients ϕ(x)
and T . However, we will first discuss the more complex stage
cost ˆ̀(x, v) in more detail and examine both its design as well
as the consequences for the stage cost `(x, u) of the original
OCP (3).

We choose ˆ̀(x, v) to be convex on every Zi, which assures
convexity of the subproblems later introduced in IV.C, and posi-
tive definite, which allows for the following proposition.

Proposition 3. Let Assumption 1 hold and let ˆ̀(x, v) be positive
definite. Then `(x, u) is positive definite.

Proof. We have

`(x, u) = ˆ̀
(
x,
βg(x)u+α>x

b0

)
from (22) and

ˆ̀(x, v) = 0 for (x, v) = (0, 0)

ˆ̀(x, v) > 0 otherwise

since ˆ̀(x, v) is positive definite. But since g(x = 0) 6= 0 as per
Assumption 1, the origin (x, u) = (0, 0) is only mapped to the
origin (x, v) = (0, 0) and vice versa, which implies

`(x, u) = 0 for (x, u) = (0, 0)

`(x, u) > 0 otherwise

and thus positive definiteness of `(x, u).

Designing the stage cost ˆ̀(x, v) with respect to the artificial
input v, it is important to examine its effect on the actual stage
cost `(x, u). For simplicity, consider β = b0 = 1 and α = 0,
leading to `(x, u) = ˆ̀(x, v = g(x)u), allowing for a straight-
forward interpretation. A stage cost like this does not penalize
the actual input u, but rather its effect on the system given the
current state x. In particular, this means that for states x, where
g(x) ≈ 0 and thus a given actual input u barely affects the sys-
tem, it also essentially becomes free of cost, which is certainly
an unwanted feature. We note, however, that due to adhering to
the input constraint u ∈ U , the presented control approach does
not allow the input u to become too aggressive even for states x
where it becomes very cheap. Furthermore, although in a differ-
ent setting, arguments similar to those in in [12, Sect. 4] suggest
that `(x, u) can represent sensible stage costs.

For the construction of the terminal set T , we disregard ev-
ery convex subset except Z1 since, per Assumption 1, we have
0 ∈ int(X1) as well as 0 ∈ U and can thus conclude 0 ∈ Z1

from (26). We then choose v = κ(x) as a stabilizing control law
for the exactly linearized system and compute a convex termi-
nal set T and convex terminal cost function ϕ(x) such that the



following axioms are satisfied(
x> κ(x)

)> ∈ Z1, (28a)

Âx+ b̂κ(x) ∈ T , (28b)

ϕ
(
Âx+b̂κ(x)

)
−ϕ(x)+ˆ̀(x, κ(x)) ≤ 0 (28c)

for every x ∈ T , which ensures stability of the closed-loop sys-
tem in accordance with [10].

C. Scenario-based evaluation

Having the exactly linearized model (19), convex costs ˆ̀(x, v),
ϕ(x), a convex terminal set T and convex constraint subsets Zi
is still not sufficient for (21) to be a convex OCP, since the union
of constraintsZ is typically non-convex. However, the condition(

x̂(k)
v̂(k)

)
∈ Z =

s⋃
i=1

Zi

for each prediction step k ∈ {0, ..., N − 1} is equivalent to(
x̂(k)
v̂(k)

)
∈ Z1 or ... or

(
x̂(k)
v̂(k)

)
∈ Zs,

resulting in sN different scenarios, visualized as a tree in Fig-
ure 1. The sequence of convex constraints for a scenario j ∈
{1, ..., sN} can be compactly represented as(

x̂(k)
v̂(k)

)
∈ Zεk(j)

with unique coefficients ε0(j), ..., εN−1(j) ∈ {1, ..., s} and

j = 1 +

N−1∑
k=0

(εk(j)− 1)sk.

Therefore, the solution to (21) can be computed according to

V (x) = V (j∗)(x)

by finding the optimal constraint scenario

j∗ := arg min
j

V (j)(x).

Thus, the exact solution to the nonconvex OCP can be obtained
by solving a finite number of convex subproblems.

Remark 1. This strategy of solving the OCP can be seen as
related to similar strategies for PWA systems, such as the one
shown in [13]. There, the OCP is evaluated for different switch-
ing sequences, which correspond to the constraint scenarios j
considered here. We note that, similar to the dynamics in PWA
systems, we can also consider the case where the parameters
A and b may change for different subsets Xi without too much
additional computational cost.

Z1

Z1

Z1 · · · Zs

· · · Zs

· · · Zs

Z1 · · · Zs

Z1 · · · Zs k = N − 1

...

k = 0

· · ·

sNFigure 1: A tree visualizing the sN different constraint scenar-
ios, where in each time step k one of the constraints z(k) ∈ Zi
must hold.

Depending on g(x) and the chosen cost functions ˆ̀(x, v),
ϕ(x), these subproblems can become certain specific types of
optimization problems. Having a (piecewise) affine g(x) and
quadratic costs result in QPs as shown in [8], while a (piece-
wise) quadratic g(x) that fulfills Assumption 1 and quadratic
costs result in convex quadratically constrained quadratic pro-
grams (QCQPs). Other types of functions typically result in
more general nonlinear programs, which are, however, still con-
vex.

D. Considerations for computational complexity

Having to solve sN subproblems is certainly computationally ex-
pensive, especially for large N . However, there are strategies
that significantly reduce the effort required for online computa-
tion by preparing the solution offline. Since each constraint sce-
nario j corresponds to certain trajectories in the state-space, a lot
of scenarios might not be feasible for any initial state x̂(0) = x.
These scenarios can be identified offline by treating the subprob-
lems as multiparametric programs with parameter x, which al-
lows to fully disregard infeasible scenarios during online com-
putation.

For the identification of infeasible scenarios, it is beneficial to
use a recursive approach based on the observation that having an
infeasible scenario

j̃ = 1 +

Ñ−1∑
k=0

(ε̃k(j̃)− 1)sk.

with prediction horizon Ñ implies infeasibility for all scenarios
j with horizon N = Ñ + 1, coefficients εk(j) = ε̃k−1(j̃), k ∈
{1, ..., N − 1} and arbitrary ε0(j) ∈ {1, ..., s}. Thus, starting
from Ñ = 1 and gradually removing infeasible scenarios, we
obtain many additional removed scenarios that do not need to be
individually checked for feasibility.

Furthermore, given an initial state x̂(0) = x, all constraint
scenarios j where ε0(j) = i and x /∈ Xi can be neglected with-
out checking feasibility, since due to (26), we have

x /∈ Xi =⇒ z /∈ Zi

for any v.



V. NUMERICAL EXAMPLES

We present three numerical examples of a quadratic, a sinu-
soidal, and a PWA function g(x) leading to convex subproblems
that take the form of a QCQP, a general convex nonlinear pro-
gram, and a QP, respectively. Similar to [8], we consider a two-
dimensional example with parameters

A :=

(
1.0 0.1
0.1 1.0

)
and b :=

(
0.01
0.05

)
as well as constraints

X := {x ∈ R2 | − 2 ≤ xi ≤ 2} and U := [−2, 2]

for each of the three examples to obtain comparable results. Re-
garding the exact linearization we also choose b0 = 0.1 as well
as c> =

(
5 −1

)
, which results in β = c>Ab = 0.024, and

α = 0 which requires a0 = 0.99 and a1 = −2. These choices
result in the parameters

Â = A and b̂ =

(
0.0417
0.2083

)
of the exact linearized system for all three examples. Remark-
ably, the shown procedure does not depend upon g(x) and by
our choice all three examples have the same exactly linearized
dynamics but will eventually differ regarding their transformed
constraints Z and the effect of the stage cost function ˆ̀(x, v)
on `(x, u). Regarding the cost functions, we choose a quadratic
stage cost

ˆ̀(x, v) = x>Qx+ ρv2

with

Q =

(
0.05 0.00
0.00 0.05

)
and ρ =

0.1b20
β2

= 1.736,

as well as a quadratic terminal cost ϕ(x) = x>Px, where P is
the solution of the Riccati equation

Â
>(
P − P b̂

(
r + b̂

>
P b̂
)−1

b̂
>
P
)
Â− P +Q = 0 (29)

for the exactly linearized system. This choice eventually leads
to the subproblem of Example 1 being a QCQP and the subprob-
lems of Example 3 being QPs. In Example 2, no special type
of nonlinear program is obtained, but the costs are still chosen
quadratic for simplicity and better comparison. Furthermore, it
allows to choose

κ(x) = −
(
r + b̂

>
P b̂
)−1

b̂
>
P Âx := κ>LQRx,

i.e., the control law of the linear quadratic regulator (LQR), and
thus to represent exactly the cost of the unconstrained problem
for an infinite horizon N by the terminal cost ϕ(x). Further-
more, we choose the terminal set

T =

{
x ∈ Rn

∣∣∣∣( I
κLQR

)(
Â+ b̂κ>LQR

)k
x ∈ Z1, ∀k ∈ N

}
,

which is known to inherit convexity from Z1, to be efficiently
computable under mild conditions [14], and to satisfy the axioms

(28) for closed-loop stability. Finally, the OCPs in every example
are solved for a prediction horizon N = 15 as in [8], and the
resulting feasible sets F , terminal sets T , as well as the optimal
control law u∗(x) and the associated optimal cost V ∗(x) are
illustrated in the following.

Figure 2: Illustration of the feasible set F (in blue) and the ter-
minal set T (in cyan) for Example 1. The boundary of the set X
is shown in orange.

Figure 3: Illustration of the optimal control law u∗(x) (top) and
the optimal value function V ∗(x) (bottom) for Example 1.

Example 1. Consider the quadratic function

g(x) =
3

64
x2
1 −

1

8
x1x2 +

3

64
x2
2 − 2,

which is convex and non-positive on the set X1 = X . Hence, a
decomposition into subsets is not required here. Since there is
only a single convex subset, there also exists only 115 = 1 con-
straint scenario and thus only one convex subproblem, namely
the original OCP (21) itself. Because g(x) is quadratic, the
resulting inequality constraint functions in (27b) and (27c) are
also quadratic functions of the optimization variables. Hence,
with the chosen quadratic cost functions ˆ̀(x, v) and ϕ(x), the



OCP takes the form of a QCQP and can thus be solved quite effi-
ciently, especially since there is only a single constraint scenario
to consider. A polytopic inner approximation of the feasible set
F and the terminal set T is shown in Figure 2.

The resulting optimal control law u∗(x) and the associated
optimal cost V ∗(x) are illustrated in Figure 3. Both were ob-
tained by sampling the constrained statespace X and implicitly
solving the OCP. Note that, since g(x) = 0 for the two points
x =

(
−2 2

)>
and x =

(
2 −2

)>
that lie on the boundary of

X , the input becomes increasingly cheap towards these points,
leading to a more aggressive optimal control u∗(x). However, at
these very points, where x ∈ X \ X ◦, the optimal control law is
set to u∗ = 0 in accordance with Lemma 1. More obvious cases
of this behavior can be seen in the following examples, where
g(x) = 0 not only occurs at isolated points on the boundary of
X .

Example 2. Consider the sinusoidal function

g(x) = 4 cos

(
3π

8
(x1 − x2)

)
which is concave and non-negative on the subset

X1 =

{
x ∈ X

∣∣∣∣−4

3
≤ x1 − x2 ≤

4

3

}
with 0 ∈ int(X1), as well as convex and non-positive on the
subsets

X2 =

{
x ∈ X

∣∣∣∣−4 ≤ x1 − x2 ≤ −
4

3

}
and

X3 =

{
x ∈ X

∣∣∣∣43 ≤ x1 − x2 ≤ 4

}
.

Since we have s = 3 subsets, we obtain a total of 315 ≈ 14.3·106

convex subproblems, of which, however, only 31 turn out to be
feasible. The subsets Xi and a polytopic inner approximation of
both the associated feasible sets Fj as well as the terminal set T
are shown in Figure 4.

Since all infeasible constraint scenarios are associated with
empty feasible sets, the overall feasible setF of the NMPC prob-
lem is represented by the union of the illustrated sets. Remark-
ably, there exist feasible subproblems for constraint scenarios in
which the state trajectory leaves X1 or X3 and enters X2, but not
vice versa. The same one-way feature was observed in [8] and
is strongly associated with the input u, which becomes weaker
as we have g(x) = 0 on the hyperplanes seperating Xi, so that
possible directions depend mainly on A.

The resulting optimal control law u∗(x) and the associated
optimal cost V ∗(x) are illustrated in Figure 5. Again, both were
obtained by sampling the constrained statespace X and implic-
itly solving the OCP. Note that the optimal control u∗(x) be-
comes increasingly aggressive near the hyperplanes separating
X1, X2 and X3, where we have g(x) = 0 by construction of the

Figure 4: Illustration of the (partially overlapping) feasible sets
Fj (in blue) and the terminal set T (in cyan) for Example 2. The
boundary of the sets Xi is shown in orange.

Figure 5: Illustration of the optimal control law u∗(x) (top) and
the optimal value function V ∗(x) (bottom) for Example 2.

subsets Xi. Furthermore, because g(x) changes sign exactly at
these two hyperplanes, the optimal control u∗(x) jumps from its
maximum u to its minimum u and vice versa, with u∗(x) = 0 for
g(x) = 0 as noted in Lemma 1. We also note that both u∗(x)
and V ∗(x) may be discontinuous not only at these hyperplanes
but also at any part of X with overlapping feasible sets Fj . This
can be intuitively explained by the fact that for a given state x
the optimal value V ∗(x) can be obtained for more than a sin-
gle constraint scenario at a time, which is consistent with the
fact that the optimal control sequence of a nonconvex OCP is
not guaranteed to be a singleton. A more formal argument can
be made by considering the OCP as a multiparametric nonlinear
program, for which continuity conditions are stated in, e.g., [15].



Example 3. Consider a continuous PWA function

g(x) = w>µx+ dµ x ∈ Sµ(x)

defined on polytopic partitions Sµ(x) of X . Since affine func-
tions are both convex and concave, it is easy to construct poly-
topic convex subsets Xi such that Assumption 1 holds. Note
that, similar to [8], it can be shown that the resulting Zi are
not only convex but polyhedral, and therefore so is the terminal
set T [14]. It follows that the resulting convex subproblems have
linear inequality constraints as well as quadratic costs, and thus
take the form of QPs.

For this example, we consider the PWA function shown in Fig-
ure 6 which may be defined on a total of 12 partitions Sµ(x), but
for brevity the definitions are not explicitly written down here.
Note that the subsets Xi need not correspond to these partitions
Sµ(x) of the PWA definition, but instead we choose the largest
possible subsets for which Assumption 1 is satisfied. This gives
s = 9 subsets and thus a total number of 915 ≈ 2.1 · 1014

convex subproblems, which, however, result in only 217 feasi-
ble subproblems after recursive inspection. The chosen subsets
Xi and both the feasible sets Fj as well as the terminal set T ,
which were computed exactly here since only linear inequality
constraints occur, are shown in Figure 7 and, again, the over-
all feasible set F is represented by the union of the illustrated
Fj . The same one-way feature as in Example 2 is observed here,
which helps to explain the small number of feasible constraint
scenarios compared to their total number.

Since in this example the underlying subproblems for each
constraint scenario correspond to linear MPC problems, V ∗(x)
and v∗(x) were obtained by evaluating explicit solutions as de-
scribed in [16]. The resulting optimal control law u∗(x) and
the associated optimal cost V ∗(x) are illustrated in Figure 5.
Again, we observe discontinuity and increasing aggressiveness
of the optimal control u∗(x) for g(x) approaching zero.

VI. SUMMARY AND OUTLOOK

We showed that a special class of (nonconvex) NMPC problems
can be reformulated as the solution of a finite number of convex
subproblems. These results can be obtained for a special sub-
class of input-affine nonlinear discrete-time systems (12) satis-
fying Assumption 1 by utilizing exact (input-state) linearization.
While exact linearization alone does not usually lead to a convex
OCP, we have shown how the cost functions and a decomposition
of the constraints can be chosen to allow a convex reformulation.
We applied these results to three numerical examples, where we
also show that the resulting subproblems can take certain stan-
dard forms of mathematical programs depending on the structure
of the system itself.

While the shown results generalize previous findings of [8] to
a much broader class of systems, the applicability is still very
much limited due to the restrictive Assumption 1. Future re-
search on this topic should aim to generalize it even further or
find similar kinds of convex reformulations for other classes of
systems. A natural next step would be, e.g., the treatment of
multi-input systems.

Figure 6: PWA function g(x) considered in Example 3.

Figure 7: Illustration of the (partially overlapping) feasible sets
Fj (in blue) and the terminal set T (in cyan) for Example 3. The
boundary of the sets Xi is shown in orange.

Figure 8: Illustration of the optimal control law u∗(x) (top) and
the optimal value function V ∗(x) (bottom) for Example 3.
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