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Abstract— This paper discusses Routh reduction for simple hybrid
forced mechanical systems. We give general conditions on whether it is
possible to perform symmetry reduction for a simple hybrid Lagrangian
system subject to non-conservative external forces, emphasizing the case
of cyclic coordinates. We illustrate the applicability of the symmetry
reduction procedure with an example and numerical simulations.

I. INTRODUCTION

Dimensionality reduction for large scale systems has become
an active problem of interest within the automatic control and
robotics communities. For instance, in large robotic swarms, guid-
ance and trajectory planning algorithms for coordination while
optimizing qualitative features for the swarm of multiple robots
are determined by solutions of nonlinear equations which demand
a high-computational cost along its integration. A key element
in the reduction is a Lie group of symmetries. Lie groups of
symmetries appear naturally in many control systems problems [5],
[19]. Examples of invariant control problems on Lie groups include
motion planning for underwater vehicles [26], conflict resolution in
differential games [33], collective motion in biological models [25],
and coordination of multi-agent systems [32], [8]. The construction
of methods for reduction of dimensionality also permits, for in-
stance, fast computations for the generation of optimal trajectories
in optimal control problems of mechanical systems [9].

Hybrid systems are dynamical systems with continuous-time and
discrete-time components on its dynamics. Simple hybrid systems
are a class of hybrid system introduced in [24], denoted as such
because of their simple structure. A simple hybrid system is
characterized by a tuple L = (D,X, S,∆) where D is a smooth
manifold, X is a smooth vector field on D, S is an embedded
submanifold of D with co-dimension 1, and ∆ : S → D is a
smooth embedding. This type of hybrid system has been mainly
employed for the understanding of locomotion gaits in bipeds and
insects [2], [21], [34]. In the situation where the vector field X is
associated with a mechanical system (Lagrangian or Hamiltonian),
alternative approaches for mechanical systems with nonholonomic
and unilateral constraints have been considered in [7], [12], [13],
[22], [23].

When a dynamical system exhibits a symmetry, it produces a
conserved quantity for the system and allows to reduce the degrees
of freedom in the dynamics by using the conserved quantity. One of
the classical reduction by symmetry procedures in mechanics is the
Routh reduction method [18], [1]. During the last few years there
has been a growing interest in Routh reduction, mainly motivated
by physical applications - see [16], [29], [30] and references therein.
Routh reduction for hybrid systems has been introduced and applied
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in the field of bipedal locomotion [2]. The reduced simple hybrid
system is called simple hybrid Routhian system [4]. A hybrid
scheme for Routh reduction for simple hybrid Lagrangian systems
with cyclic variables is found in [4] and [11], inspired to gain a
better understanding of bipedal walking models (see also [2] and
references therein). Symplectic reduction for hybrid Hamiltonian
systems has been introduced in [3] and extended Poisson reduction
in [14] and to time-dependent systems in [10], but to the best
of our knowledge, the hybrid analogue for symmetry reduction in
mechanical systems subject to external forces has not been explored
in the literature. This paper attempts to go one step further and to
consider symmetry reduction of simple hybrid Lagrangian system
subject to external non-conservative forces via Routh reduction
for simple hybrid forced systems. Fundamental to the reduction
procedure has been the recent work [28] on reduction of (non-
hybrid) forced Lagrangian systems.

The paper is organized as follows. Sec. II presents the necessary
background on the geometry of forced mechanical systems and
Routh reduction. Sec. III introduces the class of simple hybrid
forced Lagrangian and Hamiltonian systems under consideration
and the corresponding relation between both formalisms. The reduc-
tion scheme is proposed in Section IV. The reduction technique has
been illustrated both analytically and numerically in an expository
example.

II. ROUTH REDUCTION FOR FORCED SYSTEMS

We start by recalling some basic facts about mechanical systems
subject to external forces.

Let Q be an n-dimensional differentiable manifold with local
coordinates (qi), 1 ≤ i ≤ n, the configuration space of a
mechanical system. Denote by TQ its tangent bundle, that is, if
TqQ denotes the tangent space of Q at the point q ∈ Q, then
TQ :=

⋃
q∈Q

TqQ, with induced local coordinates (qi, q̇i). Since

TqQ has a vector space structure, we may consider its dual space,
T ∗q Q, and define the cotangent bundle as T ∗Q :=

⋃
q∈Q

T ∗q Q, with

local coordinates (qi, pi).
The dynamics of a mechanical system can be determined by the

Euler-Lagrange equations associated with a Lagrangian function L :
TQ→ R given by L(q, q̇) = K(q, q̇)−V (q), where K = 1

2
‖q̇‖2q

is the kinetic energy and V : Q → R the potential energy. The

Lagrangian L is said to be regular if detM := det

(
∂2L

∂q̇i∂q̇j

)
6= 0

for all i, j with 1 ≤ i, j ≤ n.
The equations describing the dynamics of the system are given

by the Euler-Lagrange equations
d

dt

(
∂L

∂q̇i

)
=
∂L

∂qi
, with i =

1, . . . , n; a system of n second-order ordinary differential equa-
tions. If L is regular, the Euler-Lagrange equations induce a vector
field XL : TQ → T (TQ) describing the dynamics of the

ar
X

iv
:2

20
2.

08
58

8v
2 

 [
m

at
h.

D
S]

  1
2 

A
pr

 2
02

2



Lagrangian system, given by

XL(qi, q̇i) =

(
qi, q̇i; q̇i,M−1

(
∂L

∂qi
− ∂2L

∂q̇i∂qj
q̇j
))

.

In addition, the motion of the system may be influenced by a
non-conservative force (conservative forces may be included into
the potential energy), which is a smooth map F : TQ → T ∗Q,
locally given by F = Fidq

i and geometrically respresented by
a 1-form on Q. At a given position and velocity, the force will
act against variations of the position (i.e., virtual displacements).
Lagrange-d’Alembert principle leads to the so-called forced Euler-

Lagrange equations
d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= Fi(q, q̇), i = 1, . . . , n;

a system of n second-order ordinary differential equations. If L is
regular equations those equations induce a vector field XF

L : TQ→
T (TQ) describing the dynamics of the forced Lagrangian system,
given by

XF
L (qi, q̇i) =

(
qi, q̇i; q̇i,M−1

(
Fi +

∂L

∂qi
− ∂2L

∂q̇i∂qj
q̇j
))

.

For the Lagrangian L : TQ→ R, let us denote by FL : TQ→
T ∗Q the Legendre transformation associated with L; that is,
FL : TQ → T ∗Q, (q, q̇) 7→ (q, p := ∂L/∂q̇). The map FL :
TQ→ T ∗Q relates velocities and momenta. In fact, the Legendre
Transformation connects Lagrangian and Hamiltonian formulations
of mechanics (see [1]).

We said that the Lagrangian is hyperregular, if FL is a diffeomor-
phism between TQ and T ∗Q (this is always the case for mechanical
Lagrangians). If L is hyperregular, one can work out the velocities
q̇ = q̇(q, p) in terms of (q, p) and define the Hamiltonian function
(the “total energy”) H : T ∗Q → R as H(q, p) = pT q̇(q, p) −
L(q, q̇(q, p)), where we have used the inverse of the Legendre
transformation to express q̇ = q̇(q, p). The evolution vector field
corresponding to the Hamiltonian H , denoted by XH , is defined by

XH =
∂H

∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi
, and its integral curves are solutions of

Hamilton’s equations q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
.

If the system is influenced by a nonconservative force, forced

Hamilton’s equations are given by q̇i =
∂H

∂pi
, ṗi = FHi −

∂H

∂qi
,

where FH = FL(F ).
There exists a large class of systems for which the Lagrangian

(resp. Hamiltonian) does not depend on some of the generalized
coordinates. Such coordinates are called cyclic or ignorable, and
the corresponding generalized momenta are easily checked to be
constants of motion - see [1], [18]. Routh’s reduction procedure
is a classical reduction technique which takes advantage of the
conservation laws to define a reduced Lagrangian function, so-
called Routhian funtion, such that the solutions of the Euler-
Lagrange equations for the Routhian are in correspondence with the
solutions of Euler-Lagrange equations for the original Lagrangian,
when the conservation of momenta is taken into account.

Routh’s reduction can be extended to forced systems as follows
[18]: the starting point for Routhian reduction for forced Lagrangian
systems is a configuration space of the form Q = Q1×Q2, where
we denote an element qi ∈ Q by qi = (q1, qj) with q1 ∈ Q1 and
qj ∈ Q2, with j = 2, . . . , n.

Let L(q1, q̇1, qj , q̇j) be a hyper-regular Lagrangian with cyclic

coordinate q1, that is,
∂L

∂q1
= 0 and let Fi be a non-conservative

force such that Fi is independent of q1 for all i = 1, ..., n
and F1(q2, ..., qn) = 0. Fundamental to reduction is the notion

of a momentum map JL : TQ → g∗, which makes explicit
the conserved quantities in the system, with g the Lie algebra
associated with the Lie group of symmetries and g∗ denoting its
dual as vector space. In the framework we are considering here,

JL(q1, q̇1, qj , q̇j) =
∂L

∂q̇1
. Fix a value of the momentum µ =

∂L

∂q̇1
.

Since L is hyper-regular, the last equation admits an inverse,
and allows us to write q̇1 = f(q2, ..., qn, q̇2, ..., q̇n, µ). Consider
the function Rµ(qj , q̇j) =

(
L− q̇1µ

) ∣∣∣
µ

, where the notation |µ

means that we have used the relation µ =
∂L

∂q̇1
to replace all the

appearances of q̇1 in terms of (qj , q̇j) and the parameter µ. Rµ is
called Routhian function.

If we regard Rµ and Fµ as a new Lagrangian and external force
in the variables (qj , q̇j), then the solutions of the forced Euler-
Lagrange equations for Rµ with Fµ are in correspondence with
those of L with F when one takes into account the relation µ =
∂L

∂q̇1
. More precisely:

(a) Any solution of the forced Euler-Lagrange equation for L and

F with momentum µ =
∂L

∂q̇1
projects onto a solutions of the

forced Euler-Lagrange equations for Rµ and Fµ, d
dt

(
∂Rµ

∂q̇j

)
−

∂Rµ

∂qj
= (Fµ)j , j = 2, . . . , n. These equations will be referred

to as forced Routh equations and they induce a vector field
XF
R : TQ2 → T (TQ2) describing the dynamics of the

reduced system, called Routhian vector field.
(b) Conversely, any solution of forced Routh equations for Rµ and

Fµ can be lifted to a solution of the forced Euler-Lagrange

equations for L and F with µ =
∂L

∂q̇1
.

Example 2.1 (Billiard with dissipation): Consider a particle of
mass m in the plane which is free to move inside the surface defined
by x2+y2 = 1. The surface of the “billiard” is assumed to be rough
in such a way that the friction is non-linear on the velocities.

The Lagrangian L : TR2 → R is given by

L(x, y, ẋ, ẏ) =

[
1

2
m(ẋ2 + ẏ2)

]
and F (x, y, ẋ, ẏ) = Fxdx+Fydy

is an external force given by Fx = 2c(ẋxy − ẏx2),
Fy = −2c(ẏxy − ẋy2), for a constant c > 0. The equations of
motion for the particle off the boundary are then

mẍ = −2c(ẏx2 − ẋxy), mÿ = 2c(ẋy2 − ẏxy).

By introducing polar coordinates L and F become
L(θ, r, θ̇, ṙ) =

m

2
(ṙ2 + r2θ̇2), and F (θ, r, θ̇, ṙ) = −2cr3θ̇dr +

0dθ, respectively. L is hyper-regular and both L and F are
independent of θ. The forced Euler-Lagrange equations (in polar

coordinates) are r̈ = (r − 2c

m
r3)θ̇, mr2θ̈ = 0.

Note that the momentum map JL for θ, JL(r, ṙ, θ, θ̇) = mr2θ̇
is preserved, that is, by considering µ = mr2θ̇ (i.e., θ̇ = µ

mr2
) the

Routhian and the reduced force takes the form Rµ(r, ṙ) = m
2
ṙ2 −

µ2

2mr2
, Fµ = −2cr µ

m
dr and the forced reduced Euler-Lagrange

equations for the Routhian Rµ are given by r̈ = µ2

m2r3
− 2cr µ

m2 .

III. SIMPLE HYBRID FORCED LAGRANGIAN SYSTEMS

Roughly speaking, the term hybrid system refers to a dynamical
system which exhibits both a continuous and a discrete time
behaviors. In the literature, one finds slightly different definitions
of hybrid system depending on the specific class of applications of
interest. For simplicity, and following [24], [4], we will restrict



ourselves to the so-called simple hybrid mechanical systems in
Lagrangian form.

Simple hybrid systems [24] (see also [34]) are characterized by
the 4-tuple L = (D,X, S,∆) where D is a smooth manifold,
the domain, X is a smooth vector field on D, S is an embedded
submanifold of D with co-dimension 1 called switching surface,
and ∆ : S → D is a smooth embedding called the impact map. S
and ∆ are also refered as the guard and reset map, respectively. The
dynamics associated with a simple hybrid system is described by
an autonomous system with impulse effects as in [34]. We denote
by ΣL the simple hybrid dynamical system generated by L , that
is,

ΣL :

{
γ̇(t) = X(γ(t)), γ−(t) /∈ S
γ+(t) = ∆(γ−(t)) γ−(t) ∈ S

(1)

where γ : I ⊂ R→ D, and γ−, γ+ denote the states immediately
before and after the times when integral curves of X intersects
S (i.e., pre and post impact of the solution γ(t) with S), where
γ−(t) := lim

τ→t−
x(τ), γ+(t) := lim

τ→t+
x(τ) are the left and right

limits of the state trajectory γ(t).
A solution of a hybrid system may experience a Zeno state if

infinity many impacts occur in a finite amount of time. It is partic-
ularly problematic in applications where numerical work is used, as
computation time grows infinitely large at these Zeno points. There
are two primary modes through which Zeno behavior can occur:
(i) A trajectory is reset back onto the guard, prompting additional
resets. To exclude this behavior, we require that S ∩ ∆(S) = ∅,
where ∆(S) denotes the closure as a set of ∆(S). This ensures
that the trajectory will always be reset to a point with positive
distance from the guard. (ii) The set of times where a solution to
our system reaches the guard (and is correspondingly reset) has a
limit point. This happens, for example, in the case of the bouncing
ball with coefficient of restitution 1/2 - see [6]. To exclude these
types of situations, we require the set of impact times to be closed
and discrete, as in [34], so, we will assume implicitly throughout
the remainder of the paper that ∆(S)∩S = ∅ and the set of impact
times is closed and discrete.

Given a smooth (constraint) function h : Q → R on a
configuration space Q such that h−1(0) is a smooth submanifold,
we can construct a domain and a guard explicitly - see [6], [4].
For this constraint function we have an associated domain, D,
defined to be the manifold (with boundary) D = {(q, q̇) ∈ TQ :
h(q) ≥ 0}. Similarly, we have an associated guard, S, defined as the
submanifold of D as S = {(q, q̇) ∈ TQ : h(q) = 0, dhq q̇ ≥ 0},
where dhq = ∂h

∂q
.

In a simple hybrid Lagrangian system the impact can be obtained
from the Newtonian impact equation (see [6] for instance) P :
TQ→ TQ given by

P (q, q̇) = q̇ − (1 + e)
dhq q̇

dhqM(q)−1dhTq
M(q)−1dhTq

where M(q) is the inertial matrix for the Lagrangian system.
Definition 3.1: A simple hybrid system L = (D,X, S,∆)

is said to be a simple hybrid forced Lagrangian system if it is
determined by LF := (TQ,XF

L , S,∆), where XF
L : TQ →

T (TQ) is the forced Lagrangian vector field, S the switching
surface and ∆ : S → TQ the impact map.

Definition 3.2: The simple hybrid forced dynamical system gen-
erated by LF is given by

ΣLF :

{
γ̇(t) = XF

L (γ(t)), if γ−(t) /∈ S,
γ+(t) = ∆(γ−(t)), if γ−(t) ∈ S,

(2)

where γ(t) = (qa(t), q̇a(t)) ∈ TQ.
Definition 3.3: A hybrid flow for LF is a tuple χLF =

(Λ,J ,C ), where

• Λ = {0, 1, 2, ...} ⊆ N is a finite (or infinite) indexing set,
• J = {Ii}i∈Λ a set of intervales, called hybrid intervals where
Ii = [τi, τi+1] if i, i + 1 ∈ Λ and IN−1 = [τN−1, τN ]
or [τN−1, τN ) or [τN−1,∞) if |Λ| = N , N finite, with
τi, τi+1, τN ∈ R and τi ≤ τi+1,

• C = {ci}i∈Λ is a collection of solutions for the vector
field XF

L specifying the continous-time dynamics, i.e., ċi =
XF
L (ci(t)) for all i ∈ Λ, and such that for each i, i+ 1 ∈ Λ,

(i) ci(τi+1) ∈ S, and (ii) ∆(ci(τi+1)) = ci+1(τi+1).
Analogously, one can introduce the notion of hybrid flow χH

for a simple hybrid forced Hamiltonian system H . The relation
between both hybrid flows is given by the following result, based
on the well-known equivalence between the Lagrangian and Hamil-
tonian dynamics in the hyperregular case achieved via FL.

Proposition 3.1: If χLF = (Λ,J ,C ) is a hybrid flow for
LF , SH = FL(S), and ∆H is defined in such a way that
FL ◦ ∆ = ∆H ◦ FL |S , then χH = (Λ,J , (FL)(C )) with
(FL)(C ) = {(FL)(ci)}i∈Λ.

Proof: If ci(t) is an integral curve of XF
L , c̃i(t) = (FL ◦ ci)(t)

is an integral curve for XF
H . In this way, if we consider a solution

c0(t) with initial value c0 = (q0, q̇0) defined on [τ0, τ1], then
c̃0(t) is a solution with initial value c̃0 = (q0, p0) defined on
[τ0, τ1]. Likewise for a solution c1(t) defined on [τ1, τ2], we
get a corresponding solution c̃1(t) defined on the same hybrid
interval [τ1, τ2]. Proceeding inductively, one finds ci(t) defined on
[τi, τi+1]. It only remains to check that c̃i(t) satisfies c̃i(τi+1) ∈
SH and ∆H(c̃i(τi+1)) = c̃i+1(τi+1), but using the properties of
FL,

(i) c̃i(τi+1) = (FL ◦ ci)(τi+1) = FL(ci(τi+1)) and given that
ci(τi+1) ∈ S then c̃i(τi+1) ∈ SH .

(ii) ∆H(c̃i(τi+1)) = ∆H ◦ FL ◦ ci(τi+1) = FL ◦∆ ◦ ci(τi+1) =
FL ◦ ci+1(τi+1) = c̃i+1(τi+1). �

Example 3.4: Continuing with Example 2.1, we consider the
guard as the subset of TR2 ' R2 × R2 given by

S = (TR2) ∩ {x2 + y2 = 1, (ẋ, ẏ) · (x, y) ≥ 0}.

Under the assumption of an elastic collision, using the Newtonian
impact equation, the reset map (x, y, ẋ−, ẏ−) 7→ (x, y, ẋ+, ẏ+), is
given by

ẋ+ = ẋ−−2(xẋ− + yẏ−)x, (3)

ẏ+ = ẏ−−2(xẋ− + yẏ−)y. (4)

Therefore, the 4-tuple LF = (TQ,XF
L , S,∆), is a simple hybrid

forced Lagrangian system with Q = R2, and L and F as described
in Example 2.1.

IV. ROUTH REDUCTION OF SIMPLE HYBRID FORCED

LAGRANGIAN SYSTEMS

Let LF = (TQ,XF
L , S,∆) be a simple hybrid forced La-

grangian system. The starting point for symmetry reduction is a Lie
group action ψ : G×Q→ Q of some Lie group G on the manifold
Q. We will assume that all the actions satisfy some regularity
conditions as to do reduction, for instance, one can consider free
and proper actions [1].

There is a natural lift ψT
∗Q of the action ψ to T ∗Q, the

cotangent lift, defined by (g, (q, q̇)) 7→ (T ∗ψg−1(q, q̇)). It enjoys
the following properties [1], [27]:



• ψT
∗Q is a symplectic action, meaning that (ψT

∗Q
g )∗Ω = Ω,

with Ω being the canonical symplectic 2-form on T ∗Q, Ω =
dq ∧ dp.

• It admits an Ad∗-equivariant momentum map J : T ∗Q → g∗

given by 〈J(q, p), ξ〉 = 〈p, ξQ〉, ∀ξ ∈ g, where ξQ(q) =
d(ψexp(tξ)q)/dt is the infinitesimal generator of ξ ∈ g, with
g the Lie algebra of G.

Likewise, ψTQ denotes the tangent lift action on TQ, defined by
ψTQg = Tψg(q, q̇).

To perform a hybrid reduction one needs to impose some
compatibility conditions between the action and the hybrid system
(see [4] and [3]). By an hybrid action on the simple hybrid forced
Lagrangian system LF we mean a Lie group action ψ : G×Q→ Q
such that
• L is invariant under ψTQ, i.e. L ◦ ψTQ = L.
• ψTQ restricts to an action of G on S.
• ∆ is equivariant with respect to the previous action, namely

∆ ◦ ψTQg |S= ψTQg ◦∆.
Recall that ψTQ admits an Ad∗-equivariant momentum map JL :
TQ → g∗ given by JL = J ◦ FL. This follows directly from
the invariance of L, since it implies that FL is an equivariant
diffeomorphism, i.e. FL ◦ ψTQg = ψg ◦ FL.

The hybrid equivalent of momentum map is the notion of hybrid
momentum map introduced in [4], JL is an hybrid momentum map
if the diagram

g∗

TQ S TQ

JL
JL|S

i ∆

JL (5)

commutes, where i is the canonical inclusion from S to TQ.
We remind that (see [27] for instance) by denoting {φXt } the flow

of a vector field X on Q, we can also define the complete lift Xc

of X in terms of its flow. We say that Xc is the vector field on TQ
with flow {TφXt }. In other words, Xc(vq) = d

dt

∣∣
t=0

(
Tqφ

X
t (vq)

)
,

or in local coordinates, Xc = Xi ∂
∂qi

+ q̇j ∂X
i

∂qj
∂
∂q̇i

.
For the Lagrangian side, one needs a further regularity condition,

sometimes referred to as G-regularity. Precisely, one has the
following definition [30] (for an alternative, equivalent definition,
see [29]). Let L be an invariant Lagrangian on TQ and denote by
ξQ the infinitesimal generator for the associated action. We say that
L is G-regular if, for each vq ∈ TQ, the map J vqL : g→ g∗, ξ 7→
JL (vq + ξQ(q)) , vq ∈ TqQ, is a diffeomorphism. In a nutshell,
G-regularity amounts to regularity “with respect to the group
variables”. From now on we will assume that the Lagrangian is G-
regular. In fact, this is always the case for mechanical Lagrangians.

Consider a simple hybrid forced Lagrangian system LF =
(TQ,XF

L , S,∆) equipped with an hybrid action ψ and L invariant
under ψTQ. We can apply a hybrid analog of the symplectic
reduction Theorem for forced Lagrangian systems [28] to the
simple hybrid forced Lagrangian system LF = (TQ,XF

L , S,∆)
as follows: Consider the momentum map JL : TQ → g∗, given
by JL(vq)(ξ) = αL(vq)(ξ

c
Q(vq)), where αL = S∗(dL) being

S the vertical endomorphism on TQ (see [27]) locally given by
S = dqi ⊗ ∂L

∂q̇i
and denote by ωL = −dαL the Poincaré-Cartan

2-form [27], where the symbol ⊗ denotes a tensorial product. In
addition, the invariance of L implies the invariance of αL and ωL
and the equivariance of the momentum map JL [27].

For each ξ ∈ g and vq ∈ TQ, consider the function JξL :
TQ → R given by JξL(vq) = 〈JL(vq), ξ〉. Let ξ ∈ g, then JξL

is a conserved quantity for XF
L if and only if F (ξcQ) = 0 (see

[28]), where ξcQ denotes the complete lift of the vector field ξQ
given by the infinitesimal generator for the Lie group action ψ. In
addition, the vector subspace of g given by gF = {ξ ∈ g : F (ξcQ) =
0, iξc

Q
dF = 0} is a Lie subalgebra of g (see [28]). In particular,

for each ξ ∈ gF , ξcQ is a symmetry of the forced Lagrangian system
given by L and F .

Let GF ⊂ G be the Lie subgroup generated by gF and JF :
TQ → g∗F the reduced hybrid momentum map. Let µ ∈ g∗F be a
hybrid regular value of JF , which means that µ is a regular value
of both JF and JF |S and let (GF )µ be the isotropy subgroup in
µ. Note that, since L is invariant under ψTQ and G-regular, then:

(i) The reduced space Mµ := J−1
F (µ)/(GF )µ is a symplectic

manifold, with symplectic structure ωµ, uniquely determined
by π∗µωµ = i∗µωL, where πµ : J−1

F (µ) → Mµ and
iµ : J−1

F (µ) → TQ denotes the canonical projection and
the canonical inclusion, respectively. Moreover, J−1

F (µ) is a
submanifold of TQ and XF

L is tangent to it.
(ii) L induces a function Rµ : Mµ → R defined by Rµ ◦ πµ =

L ◦ iµ.
(iii) JF |−1

S (µ) ⊂ S is (GF )µ−invariant and hence reduces to
a submanifold of the reduced space which we denote Sµ ⊂
J−1
F (µ)/(GF )µ.

(iv) Again, using invariance, ∆ reduces to a map ∆µ : Sµ →
J−1
F (µ)/(GF )µ.

(v) F induces a reduced 1-form Fµ on Mµ, uniquely determined
by π∗µFµ = i∗µF .

A case of special interest with regards to applications is when
Q = S1 ×M, where M is called the shape space and the action
is simply (θ, x) 7→ (θ + α, x). This is often the situation when
dealing with simple models of bipedal walkers, see e.g. [2]. From
now on, we will assume we work in this setting. While this is
indeed a strong assumption, it is always the case locally, so as long
as it applies to the domain of interest of an specific problem the
procedure applies.

The forced Lagrangian system has a cyclic coordinate θ, i.e., L
is a function of the form L(θ̇, x, ẋ), and the forced F is such that
Fθ = 0 and Fx is independent of θ with F = Fθdθ + Fxdx. The
conservation of the momentum map JF = µ reads ∂L

∂θ̇
= µ, and

one can use this relation to express θ̇ as a function of the remaining
-non cyclic- coordinates and their velocities, and the prescribed
regular value of the momentum map µ. We point out that it is at
this stage that G-regularity of L is used: it guarantees that θ̇ can be
worked out in terms of x, ẋ and µ. If one chooses the cannonical
flat connection on Q → Q/S1 = M, then the Routhian can be
computed as

Rµ(x, ẋ) =
[
L(θ̇, x, ẋ)− µθ̇

] ∣∣∣
θ̇=θ̇(x,ẋ,µ)

, (6)

where the notation means that we have everywhere expressed θ̇
as a function of (x, ẋ, µ). Note that (6) is the classical definition
of the Routhian [31]. Let us first consider the case in which the
momentum map is preserved in the collisions with the switching
surface (elastic case). We then have:

Proposition 4.1: In the situation above:

(a) Any solution of LF = (TQ,XF
L , S,∆) with momentum µ

projects onto a solution of L µ
F = (T (Q/S1), Xµ

RF
, Sµ,∆µ).

(b) Any solution of L µ
F = (T (Q/S1), Xµ

RF
, Sµ,∆µ) is the

projection of a solution of LF = (TQ,XF
L , S,∆) with

momentum µ.



Collisions with the switching surface will, in general, modify
the value of the momentum map (nonelastic case). Therefore, if
J = {Ii}i∈Λ is the hybrid interval, the Routhian has to be defined
in each Ii taking into account the value of the momentum µi after
the collision at time τi. Note that this also has influence in the way
the reset map ∆ is reduced. This will be clarified in the examples
below.

Let us denote: (1) µi the momentum of the system in Ii =
[τi, τi+1], (2) ∆µi the reduction of ∆, and (3) Sµi the reduction
of S, so there is a sequence of reduced simple hybrid Routhian
systems. The fact that the momentum will, in general, change with
the collisions makes the reconstruction procedure more challenging.
If one wishes, as usual, to use a reduced solution to reconstruct the
original dynamics, one needs to compute the reduced hybrid data
after each collision. This means that once the reduced solution has
been obtained between two collison events, say at t = τn and
t = τn+1, one should reconstruct this solution to obtain the new
momentum after the collision at τn+1 and use this new momentum
to build a new reduced hybrid system whose solution should be
obtained until the next collision event at τn+2 and so on. As usual,
the reconstruction procedure from the reduced hybrid flow to the
hybrid flow involves an integration at each stage in the previous
diagram of the cyclic variable using the solution of the reduced
simple hybrid forced Lagrangian system. Essentially, this accounts
to imposing the momentum constraint on the reconstructed solution.

Example 4.1: Continuing with Examples 2.1 and 3.4 if we
square both sides of (4), and noting that

2xẋ+ 2yẏ =
d

dt
(x2 + y2) =

d

dt
(r2) = 2rṙ,

we have (ẋ+)2 = (ẋ−)2 + (2rṙ−)2x2 − 4xẋ−rṙ−, and symmet-
rically to ẏ+. Add (ẋ+)2 + (ẏ+)2. We can conclude

(ṙ+)2 = (ṙ−)2 + (2rṙ−)2(x2 + y2)− 4(xẋ− + yẏ−)rṙ−

= (ṙ−)2 + 4r2(ṙ−)(r2 − 1).

This means that, since the collision occurs at r = 1, we have to
(ṙ+)2 = (ṙ−)2, then the solution that is obtained (physically) is
ṙ+ = −ṙ−. For θ = arctan(y/x), we have

θ̇+ =
1

1 + (y/x)2

(
ẏ+x− yẋ+

x2

)
=

1

r2

(
ẏ−x− yẋ−

)
= θ̇−.

where we have replaced the expression for ẋ+, ẏ+ and we used that
x2 + y2 = r2 and

(
yẋ− − ẏ−x

)
= −r2θ̇−. It is understood that

the “minus” square root is taken in ṙ+ (the particle bounces on the
boundary after the collision). The assumption of elastic collision
implies, in particular, that the momentum map is preserved. This is
clear since r and θ̇ do not change with the collision. The Routhian,
the reduced force and the reduced forced Euler-Lagrange equations
are given in Example 2.1. The reduced reset map is determined by
the expression for ṙ+ (note that the expression drops to the quotient
since it only involves r and ṙ ). The reduced switching surface is
Sµ = {r2 = 1, ṙ > 0}. One obtains the simple hybrid forced
Routhian system L F

β = (TQred, R
µ, Sµ,∆µ), with Qred ' R+

parametrized by the radial coordinate r.
Figures 1 and 2 show numerical results using PYTHON for

two different values of the dissipation parameter c. The remaining
parameters are the same for both simulations: m = 1, r(0) = 0.5,
ṙ(0) = 2, θ(0) = 0 (rad) and θ̇(0) = 1 (rad/s). The reduced
dynamics is solved numerically (dashed purple line) and used to
integrate (numerically) the reconstruction equation θ̇ = µ

mr2
, with

µ determined from the initial conditions. Switching surfaces S and

Fig. 1. Simulation for c = 2. The first figure corresponds with the reduced
trajectory while the second figure with the reconstructed solution.

Sµ are represented with a green solid line. Note also that the impact
times on which the particle bounces are also obtained numerically.

Fig. 2. Simulation for c = 0.20. The first figure corresponds with the
reduced trajectory while the second figure with the reconstructed solution.
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