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Abstract— This paper proposes a resilient distributed energy
management algorithm able to cope with different types of
faults in a DC microgrid system. A distributed optimization
method allows to solve the energy management problem without
sharing any private data with the network and reducing the
computational cost for each agent, with respect to the cen-
tralised case. A distributed MPC scheme based on distributed
optimization is used to cope with uncertainty that characterizes
the microgrid operation. In order to be resilient to faults
that limit the amount of power available to consumers, we
propose to adaptively store an amount of power in the storage
systems to support the loads. A soft constraint on the minimum
energy stored in each battery is introduced for feasibility and
to cope with persistent faults. The effectiveness of the method
is proved by extensive simulation results considering faults on
three types of components: renewable generator, distribution
grid and communication network.

I. INTRODUCTION

The microgrid control is typically deployed in three lay-
ers [24]. In particular, the design of the higher layer (or
tertiary level) is made difficult by uncertainties in power
generation and demand. Moreover, in order to manage the
energy optimally, the future power trajectories of loads and
generators have often to be shared with a central unit or
the other grid players and this can cause privacy issues.
Finally, if the number of agents of the network is high, a
large computational power may be required. In this paper, we
consider these challenges by proposing a distributed method
for Energy Management System (EMS) that is privacy-
preserving, reduces the computational cost with respect to
the centralised case and allows to deal with uncertainties.

Moreover, the possible occurrence of faults can pose
an additional challenge to the controller design. Indeed,
microgrids offer advantages in terms of system reliability
[19]: for example, since they are designed to operate both in
grid connected mode or in island mode, in case of fault of the
distribution grid, the microgrid can be disconnected and it is
possible to deliver to the loads the power that is produced by
renewable generators or stored in the batteries. As soon as
the fault is recovered, the microgrid can be reconnected to
the electricity grid. Hence, it is clear that a microgrid EMS
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has to be reconfigured in case of fault occurrence to take
into account and mitigate the effects of a fault.

Multiple variants of optimization-based algorithms for
energy management have been proposed in the literature. In
particular, MPC-based methods are very successful thanks
to their ability to efficiently compensate uncertainty and
handle constraints. Centralised MPC algorithms have been
used in [20], [17] and [9] to schedule the operation of
loads, generators and electric vehicles charging. To improve
performances under uncertainty in power production and
consumption, stochastic MPC algorithms have been proposed
in [3] and [11]. Centralised MPC may not be suitable for
LSSs because of the computational power required and in the
case that private data cannot be shared with a central unit or
other microgrid players. Distributed MPC algorithms have
been proposed to overcome these limitations. In [16] and
[4], methods to coordinate microgrid players and multiple
microgrids are presented; in [1] a large scale problem is
solved at each time step using Alternating Direction Method
of Multipliers algorithm. The main drawback of these meth-
ods is that they require a central unit for coordination,
hence they are not fully distributed. Alternative methods
are presented in [18] and [26], however the coordination
is achieved sharing the future trajectories with the other
microgrid agents. In [14] a fully distributed algorithm based
on distributed optimization is proposed however faults and
uncertainty that characterizes the microgrid operation is not
considered as well as the specific microgrid topology.

Although many papers propose algorithms for energy
management, a few consider the possible occurrence of faults
and propose centralised methods to handle them. In [12] and
[7] a certain amount of backup power is preserved in the
storage systems to ensure power delivery to the loads during
power outages. However, being a fixed amount (20-30% of
the capacity), the future power requirement of the loads is
not taken into account. In [21] a centralised architecture able
to cope with generator faults is presented but requiring the
loads to share their future power demand with a central
unit at each time step. A different approach is proposed
in [10] where resilience against planned power outages is
considered, updating objectives and constraints as soon as
a fault occurs. Finally, authors of [22] propose to use the
power stored in the battery of electric vehicles to sustain
loads during power outages (vehicle-to-home technology)
and, at the same time, controlling the operation of loads’
appliances.

The goal of this paper is to present a distributed fault-
tolerant and resilient architecture for the tertiary level control



of microgrids. Specifically, we propose a controller recon-
figuration algorithm that allows to guarantee that the critical
amount of power is provided to loads during different types
of faults. The paper builds on preliminary work, recently
presented in [2], where a distributed optimisation-based MPC
for energy management is proposed. In this paper we address
the problem of possible faults occurring in the microgrid
system. Moreover, further novel contributions of the paper
are:

• the constraint on the backup energy is enforced without
sharing the future power demand of loads, thus preserv-
ing privacy among different local controllers;

• the constraint on minimum battery charge is relaxed to
cope with persistent faults of unknown duration;

• the method is resilient to faults in the communication
network used to share the variables among local con-
trollers.

The remainder of the paper is organized as follows. In
Section II the model of the microgrid and the possible
faults are described. In Section III the proposed energy
management algorithm is presented. Finally, Sections IV and
V report simulation results and conclusions.

II. MICROGRID MODEL

In this section the model of each microgrid component
as well as the communication network and the types of
faults are presented. The microgrid includes four types of
components (loads, renewable generators, storage systems
and connections to the utility grid) assumed to be provided
with computation and communication capabilities.

A. Microgrid agents

Loads connected to a microgrid are characterized by a
power demand which is composed of a critical Pm

l,i (t) and
a non-critical part. In particular, we assume that for each
power demand profile it holds:

Pm
l,i (t) ≤ Pl,i(t) ≤ PM

l,i (t), (1)

where Pl,i(t) is the power demand of load i and PM
l,i (t) is the

target power demand. Each load will try to draw the target
power demand at each time step, hence the finite horizon
cost of each load is:

Jl,i =

T−1∑
t=0

wl

[
PM
l,i (t)− Pl,i(t)

]2
(2)

where T is the horizon length and wl is a weight term used
to balance the objectives functions.

Renewable generators produce the power that is sold to
the other microgrid agents. The amount of power that they
can inject in the microgrid is limited by the power that they
produce:

0 ≤ Pr,i(t) ≤ PM
r,i (t) (3)

where Pr,i(t) is the power demand of renewable generator
agent i at time t and PM

r,i (t) is the maximum power that can
be injected. Since we cannot predict exactly how much power
they will produce, we rely on predictions on the maximum

power production. Each generator agent will try to maximise
the amount of power that it sells to the hence, the objective
function is set as:

Jr,i = wr,i

T−1∑
t=0

γt
[
PM
r,i (t)− Pr,i(t)

]2
, (4)

where wr,i is a weight parameter used to balance the objec-
tives functions and γ ∈ [0; 1] is used to reduce progressively
the importance of time steps further away in the future.

A storage system is modelled as a first-order linear system:

si(t+ 1) = si(t) + µi,c/dTsPs,i(t) (5)

where si(t) is the state of charge of storage i, µi,c/d is the
energy conversion efficiency for charging and discharging
(µi,c < 0 and µi,d > 0), Ts is the sample time of the
controller and Psi(t) is the power flow. The amount of energy
which can be stored in a storage is limited by a maximum
and a minimum value:

smi ≤ si(t) ≤ sMi (6)

In order to increase the battery lifetime and avoid a quick
degradation of its performance the lower limit of charge is
higher than zero. The power that can be drawn from (or
injected in) the grid is limited by a maximum value:

−PM
s,i ≤ Ps,i(t) ≤ PM

s,i (7)

The objectives of each storage system can be written in terms
of power and state of charge:

Js,i =

T−1∑
t=0

wPs,i

[
Ps,i(t)− P̄s,i(t)

]2
+ ws,i [si(t)− s̄i(t)]

2

(8)
where wPs

and ws are weights used to balance the objectives
functions and P̄s,i(t) and s̄i(t) are the target values.

A microgrid may be connected to the utility grid in one or
more points and power can flow in both directions, from the
microgrid to the distribution grid and vice versa. The power
sign is assumed positive when energy is sold to the utility
grid. The limit on the maximum power that can flow is:

Pm
g,i ≤ Pg,i(t) ≤ PM

g,i (9)

where Pg,i(t) is the power drawn from the distribution grid,
Pm
g,i and PM

g,i are the minimum and maximum power flows
respectively. The goal of this agent is to minimize the energy
that is bought, hence its objective function is:

Jg,i = −
T−1∑
t=0

λg(t)Pg,i(t) (10)

where λg is the electricity price and T is an horizon length.

B. Buses and lines

Each agent of the microgrid is connected to a bus and
buses are connected through lines, hence these intercon-
nections represent additional constraints [13][11]. The first



constraint is the power balance, that is, the sum of the powers
exchanged with each bus has to be equal to zero:

NB∑
i=1

PBi = 0. (11)

The second constraint limits the maximum power flow for
each line:

|PL,i(t)| ≤ PM
L,i (12)

The line power flow can be calculated using the DC power
flow equation [23]:

PL(t) = bAL
BB

−1PB(t) (13)

where PL(t) ∈ RNL is the vector obtained stacking the
power flowing in each line PL,i, i ∈ {1, . . . NL}, at time
t, b ∈ RNL×NL is a diagonal matrix in which each element
b(i, i) is the susceptance of line i, B ∈ RNB×NB is the
admittance matrix and PB ∈ RNB is the vector obtained by
stacking all the bus power injections PBi

. The entries of the
adjacency matrix AL

B ∈ RNL×NB are AL
B(i, j) ∈ {0, 1,−1}

respectively if the line i and the bus j are not connected,
line i starts at bus j or line i ends at bus j.

C. Communication network

The communication network is used by the agents to
exchange data to run the distributed optimization algorithm.
It is modelled as an undirected graph G(V, E) in which
V is the set of nodes and E is the set of edges. Since
each microgrid agent is provided with a local controller, the
cardinality of the set of nodes is the total number of agents:

|V| = Nl +Ns +Nr +Ng (14)

where N∗ is the number of renewable generators, loads,
storage systems and connections to the utility grid. The
adjacency matrix of the graph at time t is denoted by A(t) ∈
R|V|×|V| (ai,j(t) = 1 if component i can communicate with
component j, ai,j(t) = 0 otherwise). The adjacency matrix
depends on time since communication network can change
over time due to faults in the communication network.

D. Fault models

In this paper we consider three types of faults which
may affect a microgrid system: a distribution grid fault
(e.g. a power outage), a renewable generator fault and a
communication network fault. In the first case, the power
cannot be drawn from the distribution grid anymore, which
is equivalent to set the lower and upper limit of equation (9)
to zero:

Pg(t) = 0 ∀ t ∈
[
T i
GF , T

f
GF

]
, (15)

where T i
GF and T f

GF are the initial and the final fault time.
In the second case, a renewable generator cannot provide
power to the loads anymore, hence the maximum available
power in (3) is set to zero:

Pr,i(t) = 0 ∀ t ∈
[
T i
RFi

, T f
RFi

]
, (16)

where T i
RFi

and T f
RFi

are the initial and the final re-
newable generator fault time. Finally, a fault in one link
of the communication network prevents two agents from
exchanging data. A faulty link is modelled through the
adjacency matrix of the communication graph; specifically,
if the communication link among agent i and j is broken,
the corresponding entries of the matrix A are set to zero
ai,j(t) = aj,i(t) = 0. Differently from the previous faults,
a communication network fault does not affect the power
flows, however it degrades the algorithm performances.

III. ENERGY MANAGEMENT SYSTEM

The EMS is formulated as an MPC whose optimization
problem is solved by a distributed algorithm to obtain a
fully distributed controller. In this framework, at each time
step, each agent of the network formulates a local small-scale
optimization problem which is interconnected to the others
through a number of so-called coupling constraints [15].

A. Distributed optimization-based MPC

Similarly to [14] the energy management problem for a
network of N agents is formulated as an MPC problem to
be solved using a distributed optimization algorithm. At each
step the following constrained-coupled problem is solved:

min
{x1,...xN}

N∑
i=1

fi(xi) (17a)

s.t. xi ∈ Xi, (17b)
N∑
i=1

gi(xi) ≤ 0. (17c)

The local decision variable is the power profile of agent i
over the prediction horizon xi = {Pi(t), . . . Pi(t+ T − 1)}.

The local objective functions fi have been introduced in
Section II. The global objective function to be minimized
can be expressed as the sum of the local objectives:

N∑
i=1

fi(xi) =

Nl∑
i=1

Jl,i +

Nr∑
i=1

Jr,i +

Ng∑
i=1

Jg,i +

Ns∑
i=1

Js,i, (18)

The local constraint set of each agent is composed of the
bounds on power (1), (3), (7) and (9), states (6) and system
dynamics (5). As for the storage agent, there is an additional
constraint on the current state value.

The coupling constraint (17c) is used to model the inter-
connections of the microgrid agents and it is represented by
equations (11) and (12).

In this paper we make use of the distributed dual sub-
gradient method presented in [5]. This algorithm allows to
converge to the optimal solution sharing only dual variables
with the other agents of the network hence keeping private
any sensitive information. Due to length constraints, the
details of the adopted distributed optimization algorithm [5]
are omitted; however such algorithm can be employed in
the described scenario since objectives and constraints of the
agents are separable, objective functions fi are convex and
the sets Xi are compact.



B. Resilient energy management system

In this subsection, the method used to make the distributed
energy management algorithm resilient to faults is outlined.
We propose to store the energy to sustain the loads during
faults in storage systems. Thanks to distributed optimization
algorithms this can be done through the coupling constraints,
thus without sharing the future energy requirement of the
loads with other agents. The minimum energy requirement
of the microgrid for the next δ time steps is:

s̃δ(t) =

Nl∑
i=1

t+δ∑
τ=t

TsP
m
l,i (τ) (19)

Hence, in order to store enough energy stored for the next δ
steps it is sufficient to set:

Ns∑
i=1

si(t) ≥ s̃δ(t) (20)

In some cases it is tolerable to drain a battery below
the lower limit (for example refer to [8] for the case of
electric vehicles). Since the duration of a fault is not known
in advance, this additional amount of energy can be used
to cope with persistent faults. The lower bound is set as a
soft constraint to avoid frequent discharges of the battery in
the following way. A new optimization variable ε ∈ R is
introduced for storage agents together with the replacement
of constraint (6) when a fault is detected:

smi − εi ≤ si(t) ≤ sMi , (21)

0 ≤ εi ≤ smi . (22)

This optimization variable is accounted in the objective
function (18) by considering the term:

Jε,i = ρ ε2i . (23)

The weight ρ ∈ R needs to be tuned and depending on its
value, it is more or less likely to drain the energy of the
battery below its minimum value.

The MPC algorithm reformulates the optimization prob-
lem (17a)-(17c) at each time step, hence it allows to modify
the cost functions and the constraints depending on the
current situation. When a faulty component is detected, its
power is set to zero and the controller switches to safe mode
enabling (21), (22) and its corresponding cost term (23) while
disabling (20) in order to allow full discharge of the batteries.

The algorithm steps can be computed independently by
each agent, then the optimization problem is solved via
the distributed dual subgradient exchanging only the dual
variables of the optimization problem. Hence, since each
agent has a partial knowledge of the problem, it is not
possible to reconstruct the power profile of each agent.

IV. SIMULATION RESULTS

In this Section results obtained applying the algorithm to
the 4-bus system microgrid [25] in Figure 1 are presented.
The microgrid is composed of 1 load L1, 1 renewable gener-
ator R1, 1 battery S1 and one connection to the distribution

grid G1. The main simulation parameter values are given in
Table I and Figure 2 shows the electricity price profile.

The distributed optimization problem is solved at each
simulation step using the distributed dual subgradient algo-
rithm presented in [5] with the number of iterations set to
1000 and a decreasing step-size defined as 1

(k+1)0.1
where

k is the algorithm iteration. Simulations have been imple-
mented using the DISROPT Python package [6]. Given the

Variable Value Variable Value Variable Value
T 20 δ 2 h ws 0
Ts 1 h Ng 1 ρ 10
sM1 2184 Wh Nl 1 wr 10
sm1 500 Wh Nr 1 wl 10
PM
g,1 2100 W Ns 1 wPs 0

Pm
g,1 -4200 W µ1,c 0.95 µ1,d 1.05

TABLE I
MAIN SIMULATION DATA

MPC prediction horizon of 20 steps, the resulting optimiza-
tion problem for this case study has 80 decision variables,
223 local constraints and 220 coupling constraints. Power
and SoC profiles obtained running three different simulations
are shown in Figures 3, Table II instead gives some numerical
results. In particular, the three scenarios are compared based
on the following performance indices:

• total energy cost C =
∑23

k=0 λg(k)Pg,i(k)
• energy delivered to load with respect to the maximum

load energy demand E%
l = El

EM
l

× 100

• energy injected in the grid by the generator with respect
to the total produced energy E%

r = Er

EM
r

× 100

Variables El and Er are computed as E∗ =
∑23

k=0 P∗(k)Ts,
in which ∗ denotes either l or r. The maximum energy EM

∗
is computed accordingly by using PM

l and PM
r .

A. Simulation scenarios

In the first simulation scenario no faults are simulated
over the 24 hours simulation, while in the second scenario a
renewable generator fault occurs between t = 10 and t = 22.
Finally, in the last simulation scenario a utility grid fault is
simulated in the same time span. The time period in which
there is a faulty component is highlighted in grey in the
figures.

R1 L1

G1

S1

PL,4

PL,3

PL,2

PL,1

Fig. 1. Microgrid system.
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Fig. 2. Electricity price profile.

In simulation scenario 1 all the critical and non-critical
power demand is delivered to the load. At time t = 8, at
the peak of renewable power production the PV panels are
sustaining the load, charging the battery at maximum rate
and selling power to the utility grid. Since at this time step
all power flows are at their maximum a little amount of
renewable power cannot be injected in the grid. The storage
SoC is kept always above its minimum value s̃δ , hence in
case of fault of the utility grid and the renewable generator,
the battery would be able to sustain the load critical demand
for 2 hours. The auxiliary variable ε1 is always equal to
0, meaning that the controller predicts that it will not be
necessary to discharge the battery below its lower value sm1 .

In the second simulation scenario a renewable generator
fault is simulated, hence during this time period the power
injected in the microgrid by the renewable generator is zero
(top right plot of Figure 3). The load draws fully its critical
and non-critical power demand, however this comes at the
cost of an higher energy price. Indeed, during the fault
occurrence power has to be provided mostly by the electricity
grid. Since during faults constraint (20) is disabled, the
battery charge drops below s̃δ .

In the last simulation scenario a power outage is simulated,
hence power cannot be exchanged with the distribution grid
during fault. At t = 10, when the fault starts, the renewable
power production is still high enough to sustain the load.
At the following time steps, since the renewable power
production decreases, the load can draw power only from the
storage, hence the load power has to be curtailed. Indeed,
during the whole fault duration the load absorbs only the
critical power demand, making the storage SoC drop below
its lower limit sm1 . This is allowed since during faults the
lower SoC constraint is softened (see equations (21)-(23))
and the auxiliary variable ε1 is at its maximum value. The
auxiliary variable is at its maximum value before the battery
is discharged below its lower limit since ε1 is a scalar
value used for the whole prediction horizon. It is clear from
Table II that the main effect of this fault is a curtailment
of the load energy demand, however the safety constraints
described in paragraph III-B allows to provide the critical
energy demand to the load.

B. Communication network fault

In case of faults or attacks on the communication network,
some communication links are disabled. Though convergence
is guaranteed as long as the communication graph remains
connected [5], the number of active communication links
affects the convergence time of the optimisation algorithm.
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Fig. 3. Power and state of charge profiles.

Scenario E%
l [%] E%

r [%] C [e]
1 100 99.6 2.6
2 100 69.7 4.1
3 62.8 95.2 -0.1

TABLE II
NUMERICAL RESULTS CORRESPONDING TO SCENARIO 1

Figure 4 shows the convergence of the cost in Eq. (18) to
the cost obtained using a centralised optimisation algorithm,
over the first 500 algorithm iterations in two different cases:

• case 1: 100% comm. links are active (6 out of 6 links);
• case 2: 50% comm. links are active (3 out of 6 links).

0 100 200 300 400 500

2× 106

4× 106

Iterations

N ∑ i=
1

f i
(x

i)

Case 1
Case 2

Fig. 4. Convergence of the distributed costs to the centralised cost.

V. CONCLUSIONS

In this paper a novel resilient and privacy-aware distributed
method for energy management in microgrids is presented.
Resilience is achieved by storing energy in the storage
systems to supply to the loads when it is not available



from other sources. This can be done without sharing with
the network the future power profiles of loads, thanks to
the employed distributed optimization algorithm. Since the
duration of faults is typically not known, we introduced a soft
constraint on the minimum energy stored in the batteries in
order to use this backup energy only when it is necessary.
Future work will take into account the estimated duration
of a fault in the optimization problem. Moreover we will
investigate the fault detection problem.
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