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Abstract— This paper presents a convex optimization frame-
work to compute the minimum-lap-time control strategies of
all-wheel drive (AWD) battery electric race cars, accounting
for the grip limitations of the individual tyres. Specifically,
we first derive the equations of motion (EOM) of the race
car and simplify them to a convex form. Second, we leverage
convex models of the electric motors (EMs) and battery, and
frame the time-optimal final-drives design and EMs control
problem in space domain. The resulting optimization problem
is fully convex and can be efficiently solved with global
optimality guarantees using second-order conic programming
algorithms. Finally, we validate our modeling assumptions via
the original non-convex EOM, and simulate our framework
on the Formula Student Netherlands endurance race track.
Thereby, we compare a torque vectoring with a fixed power
split configuration, showing that via torque vectoring we can
make a better use of the individual tyre grip, and significantly
improve the achievable lap time by more than 4%. Finally, we
present a design study investigating the respective impact of
the front and rear EM size on lap time, revealing that the rear
motor sizing is predominant due to the higher vertical rear tyre
load caused by the center of pressure position and rearwards
load transfer under acceleration.

I. INTRODUCTION

IN recent times, passenger cars and heavy duty trucks have
been undergoing an extensive powertrain electrification

process, with the hybridization of internal combustion en-
gines and the deployment of battery electric vehicles. This
trend has also affected the racing community: Since 2014,
the Formula 1 car has been equipped with a hybrid electric
powertrain, whilst in the same year the full-electric race class
Formula E has been launched [1]. More recently, we have
also witnessed the advent of autonomous electric racing, such
as Roborace [2] and the Formula Student AI competition [3].
In all competitions, the chemical energy carried on-board in
the fuel tank or the battery must be carefully administered
in order to achieve the fastest lap time possible. Moreover,
the possibility of operating the wheels individually and fully
exploiting the grip limitations of each single tyre may further
improve the achievable lap time. This calls for methods
to jointly optimize the individual wheels control algorithms
with the energy management strategies. Against this back-
drop, this paper presents a convex optimization framework to
efficiently compute the minimum-lap-time control strategies
for all-wheel drive (AWD) electric race cars (see Fig. 1),
accounting for their energy limits and the grip limitations of
each individual tyre.
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Fig. 1. Side view and top view of the race car model. COG implies the
center of gravity and COP the center of pressure. Shown in red are the force
vectors and in green the velocity vectors acting on the race car.

Related Literature: This paper pertains to two research
streams: design and control of (hybrid) electric vehicles, and
time-optimal control of (hybrid) electric race cars.

The first research stream consists of solving optimal
control problems related to the energy management of hybrid
and battery electric vehicles. Hereby, energy minimization is
achieved either by control strategies based on dynamic pro-
gramming [4], Pontryagin’s Minimum Principle (PMP) [5],
and convex optimization [6], [7] or by scaling the powertrain
components using derivative-free methods [8]–[10], convex
models [11]–[14] or using Pareto-optimal sets [15]. Overall,
these methods minimize the energy consumption of conven-
tional vehicles and are not suited for racing applications.

The second area of research studies time-optimal control
strategies for (hybrid) electric racing vehicles, and can be
categorized in two sub-classes: models that jointly opti-
mize the racing trajectory and control inputs using Non-
Linear Programming (NLP) methods [16]–[23], and models
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which compute the optimal control inputs separately using
PMP [24], quadratic programming [25] and convex optimiza-
tion [26]–[30]. The NLP methods are able to describe the
vehicle dynamics rather well, but are not able to provide
globally optimal solutions due to the non-convexity of the
models used. In contrast, the convex methods always provide
a global minimum. Yet they do not capture the dynamics of
the vehicle nor the grip limitations of the individual wheels,
but rather model the car as a point mass and rely on a pre-
computed maximum speed profile.

In conclusion, to the best of the authors’ knowledge, there
are no optimization methods for race cars that account for
the vehicle dynamics and grip limitations whilst guaranteeing
global optimality of the solution found.

Statement of Contributions: This paper presents a convex
optimization framework to compute the optimal control
strategies for AWD battery electric race cars, accounting
for their vehicle dynamics and the grip limitations of each
individual wheel. Critically, our approach does not rely on a
pre-computed maximum speed trajectory, but only leverages
the curvature of the race trajectory. Moreover, it is not limited
to fully-electric and AWD cars, but can be readily applied to
cars with different powertrains and traction systems. Thereby,
we include the grip limitations of the individual tyres directly
into the minimum-lap-time control problem, removing the
need to acquire speed limitations by means of measurements
or simulations in advance. Specifically, we first derive a
fully convex model of the powertrain and tyre dynamics,
and devise a framework to solve the time-optimal control
problem with global optimality guarantees via second order
conic programming algorithms. Second, we validate our
models a posteriori using the non-convex equations of motion
(EOM), and perform a case study showcasing the potential
of a torque vectoring w.r.t. a fixed power split and a brake-
balance setup. Finally, we perform a design study providing
insights on the influence of the front and rear motor sizing
on the achievable lap time.

Organization: The remainder of this paper is structured
as follows: Section II derives the vehicle dynamics and the
powertrain model, framing the time-optimal control problem
in a convex fashion. Section III presents the numerical results
obtained with our framework, together with a validation and
a design study. Finally, we draw the conclusions and present
future research avenues in Section IV.

II. METHODOLOGY

In this section, we present a convex optimization frame-
work to optimize the design and control inputs of the
electric vehicle powertrain. First, we define the optimization
objective and frame the optimal control problem in space
domain. Second, we derive the vehicle dynamics that account
for the grip limitations of the individual tyres. Third, we
identify convex models for all the powertrain components.
Finally, we summarize the optimization problem and discuss
our assumptions.
The powertrain topology shown in Fig. 2 consists of a battery
connected to four inverter-motor assemblies. A final drive
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Fig. 2. Systematic overview of the powertrain of the AWD battery electric
race car, consisting of a battery (BAT), four inverters (IN), four electric
machines (EM) and four final drive gears (FD) connected to the wheels
(W). The arrows indicate the power flows between the components.

connects each EM to its respective wheel. All power flows
excluding the losses, the mechanical brake power and the
auxiliary power are reversible when regenerative braking is
applied.

A. Objective

We define the time-optimal control problem, following the
same procedure as in [26] for a single race lap in spatial
domain, since the parameters used in the model are position-
dependent, and since this way the resulting optimal control
problem has a fixed-horizon. The objective is to minimize
the lap time T , i.e.,

min T = min

∫ S

0

dt

ds
(s)ds, (1)

where S is the length of the track and dt
ds (s) the lethargy,

which is the inverse of the velocity v(s) of the race car as
dt

ds
(s) =

1

v(s)
. (2)

Note that both dt
ds (s) and v(s) are optimization variables,

rendering (2) non-convex. By rearranging and relaxing (2)
we can obtain a geometric mean expression

dt

ds
(s) · v(s) ≥ 1, (3)

which can be rewritten as the second-order conic constraint

dt

ds
(s) · v0 + v(s) · 1

v0
≥
∥∥∥∥ 2

dt
ds

(s) · v0 − v(s) · 1
v0

∥∥∥∥
2

, (4)

where v0 = 1 m/s is a normalization term. Following from
the objective, it is optimal to minimize the lethargy. Hence,
the solver will converge to a solution where (4) holds with
equality [26]. Since the spatial derivative of energy is equal to
the force applied, we relate the existing power in our model
to force using

F (s) =
P (s)

v(s)
= P (s)

dt

ds
(s). (5)

B. Vehicle Dynamics

In this section the vehicle dynamics are derived in space
domain. We model the battery electric race car as a sin-
gle body using a two-track model for which we apply
the Newton-Euler equations of motion [31]. The car has
an elevated center of gravity position in order to include
longitudinal and lateral load transfers. Fig. 1 shows the forces
acting on the race car. The resulting equations of motion are



max(s) = FFR,x(s) cos(δFR(s))− FFR,y(s) sin(δFR(s))

+ FFL,x(s) cos(δFL(s))− FFL,y(s) sin(δFL(s))

+ FRR,x(s) + FRL,x(s)− Fa(s)−mg sin(θ(s))

(6)

may(s) = FFR,y(s) cos(δFR(s)) + FFR,x(s) sin(δFR(s))

+ FFL,y(s) cos(δFL(s)) + FFL,x(s) sin(δFL(s))

+ FRR,y(s) + FRL,y(s)

(7)

maz(s) = FFR,n(s) + FFL,n(s) + FRR,n(s) + FRL,n(s)

− Fl(s)−mg cos(θ(s))
(8)

Ixxφ̈(s) = (FFL,n(s)− FFR,n(s) + FRL,n(s)− FRR,n(s))
w

2
−may(s)hG

(9)

Iyyθ̈(s) = −(FFR,n(s) + FFL,n(s))lF + (FRR,n(s) + FRL,n(s))lR

− Fa(s)hP − Fl(s)lGP −max(s)hG

(10)

Izzψ̈(s) = (FFR,x(s) cos(δFR(s))− FFR,y(s) sin(δFR(s))

+ FRR,x(s)− FFL,x(s) cos(δFL(s))

+ FFL,y(s) sin(δFL(s))− FRL,x(s))
w

2
+ (FFR,y(s) cos(δFR(s)) + FFR,x(s) sin(δFR(s))

+ FFL,y(s) cos(δFL(s)) + FFL,x(s) sin(δFL(s)))lF

− (FRR,y(s) + FRL,y(s))lR,
(11)

where m is the mass of the vehicle, ax(s) is the longitudinal
acceleration, ay(s) is the lateral acceleration, az(s) is the
vertical acceleration, φ̈(s) is the roll angular acceleration,
θ̈(s) is the pitch angular acceleration, ψ̈(s) is the yaw
angular acceleration, Fi,x(s) is the longitudinal tyre force
with i ∈{FR, FL, RR, RL} (where FR, FL, RR and RL
denote the front right, front left, rear right and rear left wheel,
respectively), Fi,y(s) is the lateral tyre force, Fi,n(s) is the
normal tyre force, Fa(s) is the aerodynamic drag force, Fl(s)
is the aerodynamic lift force, δj(s) is the steering angle with
j ∈{FR, FL}, θ(s) is the vehicle pitch, which we assume to
be given, Ixx is the roll moment of inertia, Iyy is the pitch
moment of inertia, Izz is the yaw moment of inertia, lF is
the horizontal distance between the front axle and the center
of gravity, lR is the horizontal distance between the center
of gravity and the rear axle, w is the track width, lGP is
the horizontal distance between the center of gravity and the
center of pressure, hG is the height of the center of gravity
with reference to the ground and hP is the height of the
center of pressure with reference to the ground.
Unfortunately, trigonometric functions are non-convex by
nature. Even if we were to use the small angle approximation,
the tyre forces and the steering angles are both variables,
meaning that (11) will still be non-convex. Yet in high
level motorsport, δj(s) and the vehicle side slip angle β(s)
are rather small [32]. Therefore, we assume cos(δj(s)) =
1, sin(δj(s)) = 0, cos(β(s)) = 1 and sin(β(s)) = 0.
This means that the vehicle plane of symmetry aligns with
the tangential direction, resulting in the lateral acceleration
being equal to the normal acceleration of the vehicle when

cornering. Therefore we can express the lateral acceleration
as a function of kinetic energy as

may(s) =
2Ekin(s)

R(s)
, (12)

where R(s) is the road curvature of the track, which we
assume to be given, and Ekin(s) is the kinetic energy. We
connect the objective and the vehicle dynamics with the
convex relaxed constraint [26]

Ekin(s) ≥ 1

2
·m · v(s)2. (13)

Generally, in high level motorsport, the roll and pitch
motions have relatively small magnitudes due to the high
stiffness of the suspension. Therefore we set the roll and
pitch of the race car equal to zero. Furthermore, we consider
a yaw moment balance at each discretization point. Together
with the fact that we have no vehicle side slip angle, the
difference in kinetic energy is then only influenced by the
longitudinal acceleration

max(s) =
dEkin

ds
(s). (14)

Although the lateral tyre forces are dependent on their
respective tyre side slip angles αi(s) [33], we assume that the
tyres are able to provide the lateral force regardless of the
tyre side slip angle. Yet, we constrain the inner and outer
wheel of each axle to have the same side slip angle [21]
through

Fk,y,in(s)

Fk,z,in(s)
=
Fk,y,out(s)

Fk,z,out(s)
, (15)

where Fk,y,in(s) and Fk,y,out(s) represent the lateral force
generated by the inner and outer tire, respectively, and
Fk,z,in(s) and Fk,z,out(s) represent the normal force on the
inner and outer tire, respectively, with k ∈{F, R} (where
F and R imply the front and rear, respectively). Since this
constraint is non-convex, we calculate a discrete convex hull
with nch points [34] for the inner tire of both axles and
implement them as a set of linear constraints [35] through

Φk(s) = x>k ϑk(s), (16)
ϑk(s) ≥ 0, (17)

1>ϑk(s) = 1, (18)

Φk(s) = [Fk,y,out(s), Fk,z,out(s), Fk,z,in(s), Fk,y,in(s)]>,
(19)

where xk ∈ R4×nch contains nch points defining the convex
hull, ϑk(s) ∈ Rnch is a variable defining the location of
Φk(s) within the convex hull, and 1 is a vector of nch ones.
After incorporating the aforementioned assumptions and
substituting (14) and (12) in (11), we obtain the following
convex equations of motion:

dEkin

ds
(s) = FFR,x(s) + FFL,x(s) + FRR,x(s) + FRL,x(s)

− Fa(s)−mg sin(θ(s))
(20)

2Ekin(s)

R(s)
= FFR,y(s) + FFL,y(s) + FRR,y(s) + FRL,y(s) (21)



0 = FFR,n(s) + FFL,n(s) + FRR,n(s) + FRL,n(s)

− Fl(s)−mg cos(θ(s))
(22)

2Ekin(s)

R(s)
hG = (FFL,n(s)− FFR,n(s) + FRL,n(s)− FRR,n(s))

w

2
(23)

dEkin

ds
(s)hG = −(FFR,n(s) + FFL,n(s))lF+

(FRR,n(s) + FRL,n(s))lR − Fa(s)hP − Fl(s)lGP

(24)

0 = (FFR,x(s) + FRR,x(s)− FFL,x(s)− FRL,x(s))
w

2
+ (FFR,y(s) + FFL,y(s))lF

− (FRR,y(s) + FRL,y(s))lR.

(25)

The roll moment distribution parameter ζ splits the roll
moment induced by the elevated center of gravity between
the front and rear axle via

FFL,n(s)− FFR,n(s)

= ζ(FFL,n(s)− FFR,n(s) + FRL,n(s)− FRR,n(s)). (26)

The position of the center of gravity is dependent on the
mass of the electric motors. The distances lF, lR, lGP and
hG are connected to the CoG position and will change for
different EM masses. The shift in horizontal distance of the
center of gravity ∆dG is equal to

∆dG =
−l̂F ·mF,axle + l̂R ·mR,axle

m
, (27)

where mk,axle = 2(mk,em +mw), mk,em is the mass of the
EM with k ∈ {F, R} and mw is the mass of the wheel. The
notation (•̂) represents the respective distance without any
motors and wheels attached. The same approach is used to
find the center of gravity displacement in vertical direction
∆hG

∆hG =
−(ĥG − rw)(mF,axle +mR,axle)

m
. (28)

The new, corrected distances are then equal to
lF = l̂F +∆dG

lR = l̂R −∆dG
lGP = l̂GP +∆dG

hG = ĥG −∆hG.

(29)

The aerodynamic drag force is equal to

Fa(s) = ρa · cd ·Af ·
Ekin(s)

m
, (30)

where ρa is the density of air, cd is the drag coefficient and
Af is the frontal area of the race car. In a similar fashion,
we obtain the aerodynamic lift force as

Fl(s) = ρa · cl ·Af ·
Ekin(s)

m
, (31)

where cl is the lift coefficient. The longitudinal tyre force is
equal to the force provided by the electric motor Fi,m(s)
minus the rolling resistance Fi,r(s) and the brake force
Fi,brk(s),

Fi,x(s) = Fi,m(s)− Fi,r(s)− Fi,brk(s), (32)

where Fi,brk(s) ≤ Fi,brk,max with Fi,brk,max the maximum
total brake force per wheel. The rolling resistance of the tyre
is related to the normal force acting on the tyre via

Fi,r(s) = ci,r · Fi,n(s), (33)

where ci,r is the rolling resistance coefficient. The tyre forces
are bounded by the friction circles∥∥[Fi,x(s) Fi,y(s)

]∥∥
2
≤ µi · Fi,n(s), (34)

where µi is the tyre friction coefficient. Hereby, a friction
ellipse can be readily implemented by using a weighted norm
instead of the 2-norm. Finally, in order to simulate a free-
flow race lap we enforce identical velocities at the start and
end of the lap,

Ekin(0) = Ekin(S). (35)

C. Electric Motor and Inverter Assembly

In this section, we identify a convex, speed-dependent
power loss model for the electric motor and inverter assem-
blies. We follow the same procedure as reported in [30]. We
fit the power losses Pi,m,loss(s) as a function of mechanical
power and speed as

Pi,m,loss(s) = xi(s)
TQixi(s), (36)

where xi(s) =
[
1 ωi,m(s) Pi,m(s)

]>
with Pi,m(s) the

EM output power. Qi is a positive semi-definite matrix
obtained by using semi-definite programming solvers. We
can then define the electrical input power of the inverter
Pi,dc(s) by

Pi,m,loss(s) = Pi,dc(s)− Pi,m(s). (37)

After converting (37) to forces, substituting (36) in (37),
decomposing Qi = C>i Ci using the Cholesky factoriza-
tion [35] and defining the new variable zi(s) = Ci · yi(s)
where yi(s) = xi(s)/v(s), we end up with a convex relation
describing the power losses of each electric motor-inverter
assembly in the form of the second-order conic constraint

(Fi,dc(s)− Fi,m(s)) · 1

F0
+

dt

ds
(s) · v0 ≥∥∥∥∥ 2 · zi(s)

(Fi,dc(s)− Fi,m(s)) · 1
F0
− dt

ds
(s) · v0

∥∥∥∥
2

, (38)

where Fi,dc(s) is the force translation of the electrical
inverter input power and F0 = 1 N is a normalization term.
Inequality (38) will hold with equality when all available
energy is required to minimize the lap time [26]. The upper
and lower operating bounds of the EM can be categorized
into a maximum-power and a maximum-torque region. The
maximum power limit is given by

Pi,m(s) ∈
[
−Pi,max, Pi,max

]
, (39)

where Pi,max represents the maximum power that the EM
can deliver. The maximum torque limit is equal to

Pi,m(s) ∈
[
−ωi,m(s) · Ti,max, ωi,m(s) · Ti,max

]
, (40)



where ωi,m(s) is the motor shaft speed and Ti,max the max-
imum torque that the EM is able to provide. Transforming
these powers to forces results in

Fi,m(s) ∈
[
−Pi,max · dt

ds
(s), Pi,max · dt

ds
(s)
]
, (41)

and

Fi,m(s) ∈
[
− γi,fd·Ti,max

ri,w
,

γi,fd·Ti,max

ri,w

]
, (42)

for the power-limited and torque-limited regions, respec-
tively, where γi,fd is the final drive ratio and ri,w is the
wheel radius. In order to introduce different EM sizes, we
follow the same procedure as in [11] by scaling the maximum
torque and maximum power of the EM linearly, keeping the
rated speed constant. Therefore, we define the scaling factor
si,em as

si,em =
Ti,max

T̄i,max
, si,em =

Pi,max

P̄i,max
,

(43)

where T̄i,max is the maximum torque and P̄i,max is the maxi-
mum power of the original EM. By scaling the measurement
points of the EM efficiency map in the torque direction, we
obtain the scaled EM power losses. We scale the mass of the
EM in a similar fashion,

mi,em = m̄i,em · si,em, (44)

where m̄i,em is the original mass of the EM. Finally, the
angular velocity of the motor may not exceed its maximum
speed ωi,max, which is prevented by enforcing

γi,fd ≤ ωi,max · ri,w ·
dt

ds
(s). (45)

D. Battery

This section derives a convex model of the battery dy-
namics. Again, we follow the same procedure as reported in
[30]. The battery output power Pb(s) is equal to the sum of
all in-going inverter inputs and the constant auxiliary power
Paux:

Pb(s) = Paux +
∑
i

Pi,dc(s). (46)

Translating this constraint to forces leads to

Fb(s) = Paux ·
dt

ds
(s) +

∑
i

Fi,dc(s). (47)

Some racing competitions enforce a maximum outgoing
battery power Pb,max. We ensure that the maximum battery
output power limit will not be exceeded by including

Fb(s) ≤ Pb,max ·
dt

ds
(s). (48)

We model the internal battery dynamics by considering an
equivalent circuit of the battery [36]. Therefore, we multiply
Kirchhoff’s voltage law for the equivalent circuit with the
battery current to obtain the internal battery power Pi(s) as

Pi(s) = κ · Pi(s)
2 + Pb(s), (49)

where κ = 1
Psc

and Psc is the short circuit power. After we
relax, translate and rewrite (49) we end up with the second-
order conic constraint

(Fi(s)− Fb(s)) · 1

F0
+

dt

ds
(s) · v0 ≥∥∥∥∥∥ 2 ·
√
κ · Fi(s) ·

√
v0
F0

(Fi(s)− Fb(s)) · 1
F0
− dt

ds
(s) · v0

∥∥∥∥∥
2

. (50)

Again, inequality (50) will hold with equality when all
available battery energy is required to minimize the lap
time. Finally, we define the dynamics for the battery state
of energy Eb(s) during the lap using the change in energy
level ∆Eb(s) = Eb(s)− Eb(0) as

d

ds
∆Eb(s) = Fi(s), (51)

and set the bounds
∆Eb(0) = 0,

∆Eb(S) ≤ ∆Eb,max,
(52)

with ∆Eb,max the available battery energy for a single lap.

E. Optimization Problem

This section presents the time-optimal design and control
problem of the battery electric race car. Given a predefined
EM size, the CoG position and the total mass of the
vehicle can be obtained beforehand resulting from (27)-(29)
and (44). We formulate the time-optimal control and design
problem using the state variables x = (Ekin, ∆Eb), the
control variables u = (Fi,m, Fi,brk) and the design variable
p = γi,fd as follows:

Problem 1 (Minimum-lap-time Design and Control). The
minimum-lap-time design and control strategies are the so-
lution of

min

∫ S

0

dt
ds

(s) ds,

s.t. (4), (13), (15)− (26), (30)− (35), (38)− (42),
(45), (47), (48), (50)− (52).

Problem 1 is fully convex and can be solved with off-the-
shelf second-order conic programming algorithms delivering
a globally optimal solution.

F. Discussion

A few comments are in order. First, we neglect the inertial
forces due to rotating components, as the mass-equivalent
contribution of the inertia of the EMs’ rotors and the wheels
is negligible when compared to the car’s mass. Second, we
exclude temperature dependencies due to their non-convex
nature [29], and rather assume that the cooling system is able
to prevent the EM and battery from overheating during the
lap. Third, we assume a constant roll moment distribution,
and approximate similar front and rear side slip angles via a
convex hull. Whilst both assumptions are in line with current
practice, the latter implementation can slightly differ from
the original nonlinear constraint. Finally, for the sake of
simplicity and readability, we assume the race track to be
flat in roll-direction. Yet our model can be readily extended
to include track banking with minimal adjustments.



III. RESULTS

This section presents the numerical results obtained when
we apply our framework presented in Section II to optimize
the powertrain design and control inputs. First, we validate
the assumptions made in our model. Second, we discuss
the numerical results obtained with our framework on two
different powertrain configurations. Third, we show a case
study where we vary the front and rear motor sizes to
investigate their influence on the achievable lap time.
We discretize the continuous model using the Euler For-
ward method, applying a step size of ∆s = 1 m. We
parse the problem as a second-order conic program using
YALMIP [37] and solve it with MOSEK [38]. Overall, it
takes about 14 s to parse the problem and 30 s to solve it
using a computer with an Intel®Core™i7-4710MQ CPU and
8 GB of RAM.

A. Validation

To validate our framework, we leverage the non-convex
EOM to find the values required to check if our assumptions
hold. First, we feed the optimal lateral and normal tyre force
outputs from our convex model into the Magic Formula
[33] to find the side slip angle of each tyre αi. Second, we
obtain the vehicle side slip angle β and the required steering
angles for the front wheels δj using the kinematic relations at
each discretization point. Fig. 3 shows the resulting angles.
Third, we calculate the longitudinal and lateral accelerations
together with the yaw angular acceleration. Since the normal
acceleration of the race car is related to the lateral accelera-
tion via the vehicle side slip angle, we can obtain the velocity
by using the normal acceleration and the centrifugal force
active on the race car. Finally, using the vehicle side slip
angle, we decompose the velocity vector in its longitudinal
and lateral component. Fig. 4 shows the moment balance
in the yaw direction and the kinetic energy composition. We
observe that the residual yaw moment is small in comparison
to the moments active on the race car, indicating that the
yaw-moment balance is a valid assumption. Furthermore, the
influence of both the angular velocity and lateral velocity on
the kinetic energy is negligible, which confirms that kinetic
energy predominantly consists of longitudinal speed vx.

B. Numerical Results

In this section, we apply our framework to two powertrain
configurations: a race car equipped with Torque Vectoring
and Brake-by-Wire (TVBbW) and a fixed Power Split with
a fixed Brake Balance (fPSBB). For the fPSBB configuration
we set the brake balance to 0.6 and the power split to 0.5,
both with reference to the front wheels. We let the race car
drive on one lap of the endurance event hosted by Formula
Student Netherlands. We set the motor size si,em = 1, set
a maximum battery power output limit of Pb,max = 80 kW
and set a battery energy limit of ∆Eb,max = 0.8 MJ. Fig. 5
shows the optimal solution for both configurations. The
TVBbW setup is able to set a lap of 51.147 seconds while the
fPSBB is 2.349 seconds slower. This lap time difference can
be explained by examining the acceleration behavior of both
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configurations. When exiting a corner, the fPSBB is unable
to reach the acceleration levels that the TVBbW is able to
reach—see Fig. 6. The TVBbW configuration compromises
higher propulsive power at lower speeds and a lower top
speed by choosing a higher final drive ratio.Therefore the
TVBbW is operating longer at the maximum motor speed
compared to the fPSBB. Fig. 7 confirms this observation
by showing how much each configuration is operating at
their limits as a percentage over the whole lap, indicating
that the TVBbW configuration is more often limited by the
EM. Moreover, the fPSBB is grip limited 81% of the lap
while the TVBbW is only grip limited 61% of the lap. This
characteristic can also be seen in Fig. 8 which shows the
friction circles for each tyre. The front tyres are operating
at their limit during acceleration, whilst the rear tyres are
the limiting factor when braking. On straight sections,
the vertical load on the front wheels decreases in magnitude
compared to the rear wheels, due to the center of pressure
being located behind the center of gravity and the rearwards
load transfer under acceleration. The fPSBB is not able to
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Fig. 7. Percentage of the lap spent in operational limits for the TVBbW and
fPSBB configurations. Notably, operating at multiple limits simultaneously
is possible for the TVBbW configuraton.
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fully utilize the available grip at the rear wheels due to the
fixed power split ratio between front and rear EMs and is
therefore much more limited in its operation compared to the
TVBbW. Furthermore, the grip limitations during cornering
are clearly visible. The left tyres are using all the available
grip in right-hand corners while the the right tyres are at
their limit at left-hand corners. Torque vectoring has the main
benefit that all four wheels can be actuated independently,
allowing for a more strategic power distribution between
each EM and thus making optimal use of the available grip.
Moreover, the fPSBB is already nearly operating at its limits
during the lap at 92%. When reaching 100%, the lap time
will no longer improve, no matter the amount of available
battery energy.

C. Design Study

Our computationally efficient framework allows us to
perform extensive studies on different powertrain param-
eters to gain insight into their respective influences. As
an example, we check the influence of the front and rear
motor sizing on the minimum lap time. We vary the front
motor size as sF,em ∈ [0.3, 1.5] and the rear motor size as
sR,em ∈ [0.3, 1.5]. We conduct our study for the TVBbW
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Fig. 9. Achievable lap time difference relative to the fastest combination
Tmin defined as ∆T = T − Tmin for each combination of front and rear
motor size for the TVBbW configuration.

configuration and set a maximum battery power output of
Pb,max = 80 kW and a battery energy limit of ∆Eb,max =
0.8 MJ. Due to the fast solving times of our framework,
it takes less than two hours to obtain the results for this
exhaustive search consisting of 169 points. The resulting lap
times are shown in Fig. 9. The minimum lap time can be
improved by more than 2.5% when selecting different EM
sizes for the front and rear wheels. The results indicate that
the front motor size is less influential on lap time compared
to the rear motor size: It is more beneficial to have a larger
rear motor size due to the aforementioned center of pressure
position and rearwards load transfer under acceleration. In
contrast, the front tyres do not have enough grip available to
transfer the full EM power to the ground during acceleration,
hence the lower sensitivity. In conclusion, increasing the rear
motor size will lead to an improvement in lap time until
reaching the battery output power limit, whereby any further
increase in motor size would only lead to a higher mass, but
the same propulsive power, hence a slower lap time.

IV. CONCLUSION

This paper presented an efficient method to compute the
time-optimal powertrain design and control strategies for an
all-wheel drive (AWD) battery electric race car. In contrast
to existing convex frameworks, we explicitly captured the
vehicle dynamics and included grip limitations on each tyre
directly in the model. Our modeling simplifications were
validated showing that the impact of vehicle side slip and
steering angles on the yaw moment and kinetic energy is
marginal. Our numerical studies revealed that torque vector-
ing can significantly outperform fixed power split and brake
balance configurations due to its ability to independently
distribute the power to each wheel and effectively leverage
the grip available at each individual wheel. Moreover, when
studying the impact of motor sizes on lap time, we saw that
the rear motors have a significantly larger influence on the
achievable lap time in comparison to the front motors due
to the center of pressure position and the longitudinal load
transfer to the rear wheels under acceleration.

This work opens the field for the following extensions:
First, we would like to study more elaborate scaling methods
for the electric motors and battery. Second, we are interested
in accounting for the thermal dynamics of the powertrain
components and capture their impact on the achievable lap
time. Finally, we would like to investigate the impact of more
complex transmission technologies.
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