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Forwarding-Lyapunov design for the

stabilization of coupled ODEs and

exponentially stable PDEs

Swann Marx1, Daniele Astolfi2 and Vincent Andrieu2

Abstract—This paper is about the stabilization of a
cascade system composed by an infinite-dimensional sys-
tem, that we suppose to be exponentially stable, and an
ordinary differential equation (ODE), that we suppose to
be marginally stable. The system is controlled through the
infinite-dimensional system. Such a structure is particularly
useful when applying the internal model approach on
infinite-dimensional systems. Our strategy relies on the
forwarding method, which uses a Lyapunov functional and
a Sylvester equation to build a feedback-law. Under some
classical assumptions in the output regulation theory, we
prove that the closed-loop system is globally exponentially
stable.

I. INTRODUCTION

Many researchers devoted their attention in the last

decades to the stabilization of coupled systems composed

by the interconnection or the cascade of ODEs and

PDEs, see, e.g. [5], [14], [23]. In this article, we consider

a stabilization problem of cascade systems in which the

first subsystem is an infinite-dimensional system, and the

second one is an ODE. This type of interconnections may

appear, for instance, in two contexts: in output regulation

problems, see, e.g., [8], [9], [17], [18], [24], [26], or

when the actuator dynamics is modelled as a PDE, see,

e.g. [10]–[12].

In the context of output regulation, the typical internal

model approach consists in adding in the loop of the

controller an additional dynamics that is a copy (i.e. the

internal model) of the dynamics generating the distur-

bances to be rejected and/or the references to be tracked.

This external dynamics is usually denoted as exosystem.

A really well known example of the internal model

approach is the integral action controller for tracking

or rejection of constant signals, see, e.g. [3], [6], [24],

[27]. For more sophisticated exosystems represented, for

instance, by the combination of a finite number of linear

oscillators, there exist some results devoted to abstract
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systems, i.e., systems described by operators, see, for

instance, [17], [18]. These results are based mainly on

a frequency-domain approach, and the systems that this

theory targets are linear. We may also mention [9], where

the backstepping method is used in order to achieve some

output regulation objectives. In this paper, we propose an

alternative approach, based on the forwarding method.

The forwarding method is a nonlinear Lyapunov

method used for the stabilization of cascade systems,

see, e.g. [15]. It is based on the construction of a

Lyapunov function and of another function, which is

given by, in the linear case, the solution of a Sylvester

equation. To the best of authors’ knowledge, until now,

there exist few extensions of this method to the infinite-

dimensional case: [10] for the stabilization of systems

with input delays; [3], [24], where some PI controllers

are designed for hyperbolic systems and a Korteweg-de

Vries equation; [1], [14], where a stabilization problem

involving an infinite-dimensional system is considered.

It is worth noticing that our approach might be used

also in the context of finite-dimensional systems with an

actuator governed by an infinite-dimensional system, as

illustrated in [4] or [10].

Our contribution is therefore the following: under

some structural assumptions, by means of the forwarding

method, we design a feedback-law in order to stabilize

a cascade system composed by an ODE and an infinite-

dimensional system described by an abstract operator.

The control, which appears in the infinite-dimensional

system, is described with a bounded operator, which

corresponds to a distributed control in the PDE context.

The output, modeled with an unbounded operator, i.e.

the trace of the solution in the PDE case, enters the

ODE. The abstract operator is supposed to be expo-

nentially stable (or, alternatively, that has already been

stabilized) while the ODE is supposed to be dissipative.

The proposed design uses a linear partial-state feedback

law which uses only the state of the ODE, and obtained

via the solution of a Sylvester equation. We further are

able to deduce that the origin of the closed-loop system is

exponentially stable by using a strictification technique

presented in [21]. Finally, we obtain a condition on a

scalar gain allowing to achieve the stabilization of the
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cascade system.

We believe that our design may be, in some cases,

easier to apply than the design proposed in [17] as we

do not need the computation of the transfer function

for abstract operators. Furthermore, we also generalize

the construction in [17] as we allow the ODE to be

dissipative and not only conservative. We also extend the

class of abstract operator with respect to the technique

proposed in [9] based on the backstepping approach.

Finally, since the proof is based on the use of a Lyapunov

functional (and not on purely linear arguments), we

believe that the proposed result may be extended in the

future to some classes of nonlinear systems.

This rest of the paper is organized as follows. Sec-

tion II presents the mathematical context of this problem

and the main results. In Section III, proofs of our main

results are given. Section IV illustrates our results on

an example, namely a heat equation. Finally, Section V

we draw the conclusions and we gather some further

research lines to be followed.

Notation. Set R+ = [0,∞). For any n ∈ N, we denote

by | · | the Euclidean norm in R
n and, with a slight

abuse of notation, we keep the same notation for matrix

norm. Given two Hilbert spaces H1 and H2, the space

L(H1,H2) denotes the space of functions bounded from

H1 to H2, and L(H1) = L(H1,H1). Given a Hilbert

space H, IH denotes the identity operator. For Rn, this

identity operator is given by In.

II. MAIN RESULTS

A. Problem statement

Consider a Hilbert space H equipped with the norm

‖ · ‖H and the scalar product 〈·, ·〉H. We are interested

in the following cascade system:















d
dt
φ(t) = Aφ(t) + Bu(t),

d
dt
z(t) = Sz(t) + ΓCφ(t),

φ(0) = φ0, z(0) = z0,

(1)

where A : D(A) ⊂ H → H with D(A) densely defined

in H, B ∈ L(Rm,H), C ∈ L(D(A),Rp), S ∈ R
r×r,

and Γ ∈ R
r×p. Therefore, the control operator B is

supposed to be bounded, while the output operator might

be unbounded.

The objective of this work is to design a feedback

law for the stabilization of the origin of system (1). To

this end, we follow the so-called “forwarding approach”

introduced for finite dimensional nonlinear systems in

[15], and already successfully extended to other context

of cascade systems composed by one PDE and one

ODE, see, e.g., [24], [14]. To do so, the following set of

assumptions is stated.

Assumption 1. The operator A generates a strongly

continuous semigroup of contractions. Moreover, there

exist a positive value µ and a self-adjoint, positive

and coercive operator P ∈ L(H) such that, for every

φ ∈ D(A)

〈PAφ, φ〉H + 〈Pφ,Aφ〉H 6 −µ‖φ‖2H. (2)

Assumption 2. The pair (S,Γ) is controllable. More-

over there exists a symmetric positive definite matrix Q

such that QS + S⊤Q 6 0.

Assumption 3. The spectra of A and S are disjoint and

non-empty.

Following the forwarding paradigm [15], we ask the

φ-dynamics to be “open-loop exponentially stable”, see

Assumption 1, and the z-dynamics to be marginally

stable, see Assumption 2. It is also worth saying that

the coercivity assumption written in Assumption 1 on P
is due to the infinite-dimensional aspect of our problem.

Indeed, while such a property is naturally satisfied for

ODEs, it is no longer the case for infinite-dimensional

systems, as illustrated in [16]. This assumption is instru-

mental to show the well-posedness of the closed loop

system. Assumption 3 is needed to apply the forwarding

approach, since it ensures the existence of the feedback-

law. Note that when the matrix S has only eigenvalues

lying on the imaginary axes (in this case QS+S⊤Q = 0)

then it is trivially satisfied.

B. Control Design and Well-posedness

In order to develop the forwarding methodology for

the class of systems (1), we first introduce the operator

M : D(A) → R
r, defined as the solution of the

following Sylvester equation

SM−MA = −ΓC. (3)

Using Assumptions 1, 2 and 3, and invoking [20, Lemma

22], existence and uniqueness of the solution of the

previous equation is guaranteed. In the following result,

we extend the domain of the operator M from D(A)
to H. With a slight abuse of notation, in the rest of

the article, we denote such an extension as M. We also

show that M can be identified uniquely with a vector of

functions in H through the scalar product 〈·, ·〉H.

Lemma 1. The solution M to (3) can be extended to an

operator, still denoted by M, with domain H. Moreover,

for every φ ∈ H, M can be uniquely defined as follows:

Mφ =
[

〈M1, φ〉H . . . 〈Mr, φ〉H
]⊤

,

where Mi ∈ H, i ∈ {1, . . . , r}.

Proof. One can rewrite (3) as

M = ΓCA−1 + SMA−1.



Noting that the operator A−1 is in L(H, D(A)), one can

show that M can be extended as M : H → R
r. In the

sequel, we will make the abuse of notation M = M.

The operator M is therefore a continuous operator

since, for every φ ∈ H, one has

|Mφ| 6 ‖M‖L(H,Rr)‖φ‖H. (4)

Noticing that, for every φ ∈ H, Mφ ∈ R
r, one can

write Mφ :=
[

(Mφ)1 . . . (Mφ)r
]⊤

. Hence, each

operator Mi : φ ∈ H 7→ (Mφ)i ∈ R, i ∈ {1, . . . , r},

is a continuous linear form on H. Using the Riesz

representation theorem [22, Theorem 4.12.], the proof

concludes. ✷

Given the operator M defined in (3), we can now

design the feedback-law for the system (1). Furthermore,

in order to provide a feedback law easy to implement,

we look for an output-feedback design that uses only the

z variable but not φ. In particular, it is given by

u(t) := kHQz(t), (5)

where Q is given by Assumption 2, k is a positive

constant to be defined later on, and H , a matrix of

appropriate dimension, is defined as

H := B∗M∗. (6)

Denoting the state by w :=
[

z φ
]⊤

and the state space

by W := R
r×H, the closed-loop system therefore reads:

{

d
dt
w(t) = Fw(t),

w(0) = w0,
(7)

where the operator F : D(F) ⊂ W → W is defined as

F :=

[

A kBHQ

ΓC S

]

, (8)

and D(F) := D(A) × R
r, since the operator B is

bounded. We are now in position to state our main

results.

Theorem 1. [Well-posedness] Suppose Assumptions 1,

2 and 3 hold. Let us define k∗ as

k∗ := ρ max
s∈(0,1)

√

1− s

1 + s
s (9)

with

ρ :=
µ

‖P‖L(H)‖B‖L(Rm,H)‖M‖L(H,Rr)|H | . (10)

For every k ∈ (0, k∗) and for every initial condi-

tions (z0, φ0) ∈ W (resp. (z0, φ0) ∈ D(F)), there

exists a unique solution (z, w) ∈ C(R+;W) (resp.

(z0, φ0) ∈ C1(R+;D(F))) to (7).

Theorem 1 ensures the well posedness of the solutions

of the system (1) in closed-loop with the feedback law

(5), provided that the parameter k in the feedback law

(5) is selected small enough.

C. Sufficient condition for exponential stability

In order to show the stability of the origin of the

closed-loop system (7), the following extra assumption

is needed.

Assumption 4. The pair (S,HQ) is detectable1, with

Q given by Assumption 2 and H defined as in (6).

A detailed discussion about Assumption 4 is given in

the next section, after establishing the second main result

of this article.

Theorem 2. [Global exponential stability] Suppose As-

sumptions 1, 2, 3 and 4 hold. Then with k∗ defined in

(9), for every k ∈ (0, k∗) and for every initial conditions,

(z0, φ0) ∈ W , the equilibrium point 0 of (7) is globally

exponentially stable.

Theorem 2 states that the origin of the closed-loop

system (1), (5) is exponentially stable, provided the

detectability condition of Assumption 4 holds. The mo-

tivation to such an assumption is that such a condition is

sufficient to build a strict-Lyapunov function as shown

in its proof in Section III-C.

D. About Assumption 4

Assumption 4 can be directly checked provided that

one is able to solve the Sylvester equation (3), whose

solution is anyway needed in order to design the feed-

back law (5). Although such an observability condition

is directly related to the data of the problem (i.e. the

operators A,B, C and the matrices S,Γ) via the Sylvester

equation (3), one may ask whether alternative conditions

can be established. A partial answer is given in the case

in which the matrix S is skew-symmetric, i.e. when Q

in Assumption 2 coincides with the identity matrix. In

such a case, we have the following result.

Proposition 1. Suppose that S is a skew-symmetric

matrix and that the following holds

Ran

[

A− IHλ B
C 0

]

= H× R
p (11)

for any λ eigenvalue of S. Then, the pair (S,H) with

H defined in (6) is observable.

Proof. Pick ϕ an eigenvector of S and denote −λ its

corresponding eigenvalue. Recalling that H = B∗M∗,

we suppose that B∗M∗ϕ = 0 and look for a con-

tradiction. Since S is skew-symmetric, ϕ is also an

1In other words, there exists L such that the matrix (S−LHQ) is
Hurwitz.



eigenvector of S⊤, with its corresponding eigenvalue λ.

Then, according to (3), one has

ϕ⊤SM− ϕ⊤MA = −ϕ⊤ΓC,
that is

ϕ⊤M(λIH −A) + ϕ⊤ΓC = 0.

This implies that:

[

ϕ⊤M ϕ⊤Γ
]

[

λIH −A B
C 0

]

= 0 (12)

Due to the condition (11) one has that Γ⊤ϕ = 0, which

is in contradiction with the fact that the pair (S,Γ) is

controllable, see Assumption 2. This concludes the proof

of the proposition. ✷

The condition (11) is known also in output regulation

theory as the non-resonance condition. In the context of

finite-dimensional linear systems (i.e. when the operators

A,B, C are matrices), such a condition is also shown

to be necessary and sufficient for the controllability of

the cascade system (1) together with the controllability

of the pair (S,Γ), see [7]. Note that the condition (11)

implies also that m > p, i.e., the number of control

inputs u is larger or equal the the number of outputs

Cφ.

As a consequence, when S is a skew-symmetric

matrix, the Assumption 4 in Theorem 2 can be replaced

by the condition (11). We recover then the invertibility

condition in Theorem 5.2 and 5.3 of [17], or the control-

lability condition of Theorem 1 in [9] for the particular

case of parabolic partial integro-differential equations. In

this case, with respect to [17], the interest of the proof

of Theorem 2 is that we provide a Lyapunov functional

for the closed-loop system and a design of a feedback

which is not based on the computation of the transfer

function of the infinite-dimensional system (A,B, C), i.e.

the computation of C(λIH−A)−1B. With respect to [9],

we generalize the classes of PDEs represented by the

operator A, see, the example at the end given below in

Section IV or the special case of integral action control

in Korteweg-de Vries equation [3].

Finally, it is worth to highlight that in practice, ver-

ifying the condition (11) can be harder than verifying

the detectability condition of Assumption 4, see, for

instance, [9], [24] and also the example given below in

Section IV.

III. PROOFS OF THE MAIN RESULTS

A. A preliminary result

The proofs of our main results rely on Lyapunov ar-

guments. For this, we introduce the following Lyapunov

functional

V (z, φ) := 〈Pφ, φ〉H + p(z−Mφ)⊤Q(z−Mφ) (13)

where p > 0 is a positive constant to be defined later on.

Associated to this Lyapunov functional, one can define

a scalar product, defined as

〈w1, w2〉V := 〈Pφ1, φ2〉H+p(z1−Mφ1)
⊤Q(z2−Mφ2)

(14)

for any w1, w2 ∈ W . It is easy to verify that V (z, φ) =
‖w‖2V . Before providing the proof of our main results, let

us prove that the square root of this Lyapunov functional

(resp. this scalar product) is equivalent to the usual norm

(resp. the usual scalar product).

Lemma 2. The square root of V and 〈·, ·〉V are equiv-

alent to the usual norm and the usual scalar product in

R
r ×H, respectively.

Proof. Proving that
√
V is equivalent to the usual norm

in R
r ×H is sufficient to prove that 〈·, ·〉V is equivalent

to the usual scalar product.

First, note that, using the Cauchy-Schwarz inequality

V (z, φ) 6 ‖P‖L(H)‖φ‖2 + pq|z|2

+ pq‖M‖2
L(D(A),Rr)‖φ‖2H, (15)

where q := |Q|. Second, since P is coercive, there exists

α > 0 such that 〈Pφ, φ〉H > α‖φ‖2H. Note, moreover,

that one can show that the following inequality

|v1 − v2|2 > θ

(

1

2
|v1|2 − |v2|2

)

holds for every θ ∈ (0, 1), and for every v1, v2 ∈ R
r.

These properties together yield the following

V (z, φ) >α‖φ‖2H + θq
(

p|z|2 − p‖M‖L(D(A),Rr)‖φ‖2H
)

>(α− qpθ‖M‖L(D(A),Rr))‖φ‖H + qpθ|z|2.
(16)

Equations (15) and (16) with θ sufficiently small are

sufficient to prove that
√
V is equivalent to the usual

norm, completing the proof of this lemma. ✷

B. Proof of Theorem 1

This subsection is devoted to the prove Theorem 1.

Our strategy relies on semigroup arguments. In particu-

lar, to prove this well-posedness result, we will show

that F generates a strongly continuous semigroup of

contractions. Then, applying [19, Theorem 4.3], one

can deduce the statement of Theorem 1 invoking [19,

Theorems 1.3. & 1.4.]. Showing this needs to prove that

the operator F is dissipative and maximal.
a) Dissipativity of F : For any w ∈ D(F), one has

〈Fw,w〉V =〈P(Aφ+ kBHQz), φ〉H
+ 〈Pφ,Aφ+ kBHz〉H
+ 2p(z −Mφ)⊤Q(Sz + ΓCφ−MAφ)

− 2p(z −Mφ)⊤Q(kMBHQz).



Using the Sylvester equation (3), the Lyapunov inequal-

ity given in (2) and the fact that S satisfies Assumption 2,

the third term of the previous equation satisfy

2p(z −Mφ)⊤Q(Sz + ΓCφ−MAφ) =

p(z −Mφ)⊤(QS + S⊤Q)(z −Mφ) 6 0.

As a consequence, one obtains, for any w ∈ D(F),

〈Fw,w〉V
6 −µ‖φ‖2H + 2〈kPBHQz, φ〉H

− 2p(z −Mφ)⊤Q(kMBHQz)

6 −µ‖φ‖2H − 2pk|HQz|2

+ 2k〈PBHQz, φ〉H + 2pkz⊤QH⊤HMφ,

where, in the last line, we have used the definition of

H given in (6). Then, using the Young’s inequality, one

obtains, for every ν > 0

〈PBHQz, φ〉H 6

ν‖φ‖2H +
1

ν
‖P‖2

L(H)‖B‖2L(Rm,H)|HQz|2

and

2z⊤QH⊤HMφ 6

‖M‖2
L(H,Rr)|H |2‖φ‖2H + |HQz|2.

Combining all the equations together, one has, for all

w ∈ D(F)

〈Fw,w〉V 6 −
(

µ− pk‖M‖2
L(H,Rr)|H |2 − kν

)

‖φ‖2H

− k

(

p− 1

ν
‖P‖2

L(H)‖B‖2L(Rm,H)

)

|HQz|2. (17)

Then, given any ε ∈ (0, 1), select ν and p as

ν = µ
1− ε

k
, p =

1

ν
‖P‖2

L(H)‖B‖2L(Rm,H)(1 + ε)

Inequality (17) gives

〈Fw,w〉V 6 −µ

(

ε− 1 + ε

1− ε

k2

ρ2

)

‖φ‖2H.

− ε

1 + ε
kp|HQz|2. (18)

with ρ defined as in (10). Then, define

ε∗ = argmax
s∈(0,1)

√

s(1− s)

1 + s

and select ε = ε∗. By definition of k∗ given in the

statement of the theorem, we conclude, from inequality

(18), that for any k ∈ (0, k⋆), there exists positive

constants a, b > 0 such that the following inequality

〈Fw,w〉V 6 −a‖φ‖2H − b|Hz|2, (19)

holds for all w ∈ D(F), thus showing that F is

dissipative.

b) Maximality of F : Proving that F is maximal

consists in showing that, for a given λ > 0, one has

W = Ran(F − λIW ).

This reduces to proving that, for all w ∈ W , there exists

w̃ ∈ D(F) such that

Fw̃ − λw̃ = w,

which corresponds to the following problem: for all

(z, φ) ∈ W , there exists a unique (z̃, φ̃) ∈ D(F)
{

Aφ̃+ BHQz̃ − λφ̃ = φ,

Sz̃ + ΓCφ̃− λz̃ = z.
(20)

From the first line, using the fact that A generates a

strongly continuous semigroup of contractions which is

exponentially stable, one has

φ̃ = (A− λIH)−1(φ− BHQz̃),

which implies that, once one has a solution z̃ depending

only on φ and z, then one can deduce that there exists

a solution φ̃. The second line of (20) together with the

previous equation yields

(S − ΓC(A− λIH)−1BHQ−λIr)z̃ = z

− ΓC(A− λIH)−1φ,

that may be rewritten as

(Ir+(S − λIr)
−1ΓC(A− λIH)−1BHQ)z̃ =

(S − λIr)
−1(z − ΓC(A− λIH)−1φ)

It remains to show that the matrix Ir + (S −
λIr)

−1ΓC(A−λIH)−1BHQ is invertible, and our result

follows. To do so, it suffices to prove that there exists

λ > 0 such that |(S−λIr)
−1ΓC(A−λIH)−1BHQ| < 1.

We select now λ sufficiently large in order to prove

our result. Indeed, if λ > |S|, then |(λIr−S)−1| 6 1
λ−|S|

(see, e.g., [25, Lemma 2.2.6.]). Therefore,

|(λIr − S)−1| → 0 as λ → +∞.

Moreover, one has:

|ΓC(A− λIH)−1BHQ| 6
α1α2‖(A− λIH)−1‖L(H,D(A)),

where α1 := |Γ|‖C‖L(D(A),Rp) and α2 :=
‖B‖L(Rm,H)|HQ|.

Using [25, Corollary 2.3.3.], one can show that the

term ‖(A− λIH)−1‖L(H,D(A)) remains bounded, since

A generates a strongly continuous semigroup of contrac-

tions which is exponentially stable. Then, finally, one can

select λ large enough so that to satisfy

|(S − λIr)
−1ΓC(A− λIH)−1BHQ| < 1,

which achieves the proof.



Remark 1. As already noticed, there is a link between

the scalar product 〈·, ·〉V and the Lyapunov functional V .

It is also worth noticing that, as soon as one considers

strong solution, the time derivative of V along solutions

to (7) satisfies d
dt
V (w) = 〈Fw,w〉V , which shows that,

using (19), the following inequality

d

dt
V (z, φ) 6 −a‖φ‖2H − b|HQz|2, (21)

holds for all (z, φ) ∈ D(F). ◦

C. Proof of Theorem 2

In this proof, we will focus on strong solutions, i.e. for

initial conditions (z0, w0) in D(F). We can deduce the

exponential stability result for weak solutions by using

a density argument, as the one given in [13, Lemma 1].

Now, by looking at equation (21), we can immediately

note that the Lyapunov functional V defined in (13) is

not “strict”, in the sense that the right hand side of

the inequality is |HQz|, which is only a part of the

state. Indeed, in general, the rank of the matrix H is

strictly smaller than the dimension of the state z. Note

that an exception is the case in which S = 0 and the

dimensions of u and z coincide, as in the integral action

control [24]. In such a case, the Lyapunov function

V is sufficient to establish the result of Theorem 2.

As a consequence, in order to establish the exponential

stability of the closed-loop system, the purpose of this

section is to construct a strict Lyapunov function based

on the detectability properties of the pair (S,HQ) stated

in Assumption 4, by strictifying2 the Lyapunov function

V . In particular, since the pair (S,HQ) is detectable,

there exist a symmetric positive definite matrix Π and a

matrix L such that

Π(S − LHQ) + (S − LHQ)⊤Π 6 −2Ir. (22)

Then, consider the Lyapunov functional W defined as

W (z, φ) := V (z, φ) + cU(z, φ),

U(z, φ) := (z −Mφ)⊤Π(z −Mφ),
(23)

with V defined as in (13) and c > 0 being a small

coefficient to be selected. Note that following the com-

putations of Lemma 2, it is straightforward to show that

the Lyapunov function W defined in (23) is equivalent

to the usual norm and the usual scalar product in R
r×H

(this can be shown by using similar arguments to those

employed in Lemma 2).

2Such a technique is inspired by the use of observers to build strict
Lyapunov functions introduced in [21] and successfully applied also in
[3] in the context of a a Korteweg-de Vries equation. In our particular
context, it can be also obtained as a variation of the Lemma 1 in [2].

Then, we compute the time-derivative of U along

solutions to (7). Using the definition of M given by

(3), one obtains

d

dt
U(z, φ) =2(z −Mφ)⊤Π(S − LHQ)(z −Mφ)

− 2(z −Mφ)⊤Π(kMB − L)HQz

+ 2(z −Mφ)⊤ΠHQMφ.

Using the Young inequality and (4), the last two terms

can be bounded as follows

2(z −Mφ)⊤ΠHQMφ 6

2|ΠHQ|2‖M‖2
L(H,Rr)‖φ‖2H +

1

2
|z −Mφ|2

and

− 2(z −Mφ)⊤Π(kMB − L)HQz 6

2|Π(kMB − L)|2|HQz|2 + 1

2
|z −Mφ|2.

Therefore, using (22), we further obtain

d

dt
U(z, φ) 6− |z −Mφ|2 + ν1|φ|2 + ν2|HQz|2,

(24)

with ν1, ν2 defined as

ν1 = 2|ΠHQ|2‖M‖2
L(H,Rr),

ν2 = 2|Π(kMB − L)|2|HQz|2.

Combining (24) with (21), the time-derivative of W can

be finally computed as

d

dt
W (z, φ) 6 −(a− cν1)‖φ‖2H − (b − cν2)|HQz|2

− c|z −Mφ|2.

By selecting

c < min

{

a

ν1
,

b

ν2

}

,

we finally obtain

d

dt
W (z, φ) 6 −ε

(

‖φ‖2H + c|z −Mφ|2
)

(25)

for some ε > 0, showing the exponential stability of the

origin.

IV. AN ILLUSTRATION ON THE HEAT EQUATION

A. The system under consideration

We consider, as illustration, the case of a linear system

controlled via an actuator with dynamics described by a

heat equation [11]. In particular, for a positive integer r



and (φ0, z0) in L2(0, 1)×R
r, we consider the following

system






















φt(t, x) = φxx(t, x) + b(x)u(t),
(t, x) ∈ R+ × (0, 1),

zt(t) = Sz(t) + Γφ(t, ℓ), t ∈ R+,

φ(t, 0) = φ(t, 1) = 0, t ∈ R+,

(φ(0, x), z(0)) = (φ0(x), z0), x ∈ (0, 1).
(26)

where b is in L2(0, 1) and ℓ in (0, 1) and with S =
−S⊤ in R

r×r and Γ in R
r such that the pair (S,Γ) is

controlable.

This system can be written in the form (1) by setting

H := L2(0, 1) and

Aφ := φ′′, Bu := bu, Cφ := φ(ℓ), (27)

with D(A) := {φ ∈ H2(0, 1) | φ(0) = φ(1) = 0}. First

note that Assumption 1 is satisfied. Indeed, the operator

P is given by IH, and µ is given by π. Indeed, with

some integration by parts, it yields for every φ in D(A)

〈Aφ, φ〉H + 〈φ,Aφ〉H = −‖φ′‖2H. (28)

Using the Poincaré inequality, inequality (2) follows

with µ = π. Note also that the couple (S,Γ) satisfies

Assumption 2 with Q = Ir. Moreover, since S is skew

adjoint, its eigenvalues are on the imaginary axis, then

Assumption 3 is satisfied since A contains eigenvalues

at the left hand side of the imaginary axis.

B. Construction of M and the feedback law

To apply the control law (5)-(6), we look for an

operator M : L2(0, L) → R
r solution to the Sylvester

equation (3) which in our context becomes

Mφ′′ = SMφ+ Γφ(ℓ) , ∀φ ∈ D(A). (29)

Using Lemma 1, one can write M as follows:

Mφ =

∫ 1

0

M(x)φ(x)dx, (30)

where M : [0, 1] 7→ R
r is a continuous function defined

as

M(x) =











E1 exp(Fx)N0 , x ∈ (0, ℓ)

E1 exp(Fx)N0 + E1 exp(F (x− ℓ))G ,

x ∈ (ℓ, 1)
(31)

where (F,G,N0, E1) are matrices respectively in

R
2r×2r, R2r, R2r and R

2r defined as

F =

[

0 Ir
S 0

]

, G =

[

0
Γ

]

, E1 =
[

Ir 0
]

, (32)

and

N0 = −
([

E1

E1 exp(F )

])−1 [
0

−E1 exp(F (1 − ℓ))G

]

.

(33)

In this case, it can be shown that the operator given in

(30) satisfies (29). First of all, note that M(0) = 0 and

that with

[

E1

E1 exp(F )

]

N0+

[

0
−E1 exp(F (1 − ℓ))G

]

= 0 , (34)

it yields M(1) = 0.

Note also that for all φ in D(A), using M(0) = 0,

the fact that M is C2 in (0, ℓ) and by integration by part

twice,

∫ ℓ

0

M(x)φ′′(x)dx = S

∫ ℓ

0

M(x)φ′′(x)dx

+M(ℓ)φ′(ℓ)− E2 exp(Fℓ)N0φ(ℓ) . (35)

where E2 = E1F =
[

0 Ir
]

.

On the other hand, using M(1) = 0, the fact that M

is C2 in (ℓ, 1) and by integration by part twice,

∫ 1

ℓ

M(x)φ′′(x)dx =

S

∫ 1

ℓ

M(x)φ(x)dx + E2[exp(Fℓ)N0 +G]φ(ℓ)

−M(ℓ)φ′(ℓ) . (36)

Finally, since E2G = Γ, it yields

∫ 1

0

M(x)φ′′(x)dx = S

∫ 1

0

M(x)φ(x)dx + Γφ(ℓ) ,

which implies that (30) is satisfied.

Hence, Theorem 1 ensures that the system given in

(26) with the control law

u(t) = −kHz(t), H =

(
∫ 1

0

M(x)b(x)dx

)⊤

, (37)

is well-posed in W = (Rr×H) for all k in (0, k∗) where

k∗ can simply be computed as in (9).

C. Stabilization of the origin

Consider the case in which r = 2 and S,Γ are given

by

S :=

[

0 1
−1 0

]

, Γ :=
[

1 0
]

. (38)

Due to the particular structure of the matrix S, the pair

(S,H) is observable if and only if H 6= 0. Hence,

if H defined in (37) is non zero, Theorem 2 ensures

exponential stability of the origin of the system (26) with

the control law (37).



V. CONCLUSIONS

We have provided in this article a design method for

the exponential stabilization of an infinite-dimensional

system (supposed to be exponentially stable) coupled

with an ODE (supposed to be marginally stable). This

design is based on the forwarding method. The exponen-

tial stability has been proved thanks to a strictification

technique. As further research lines to be followed, let us

mention the case of unbounded control operators, which

will imply a more sophisticated analysis. We believe also

that this approach could be applied to nonlinear systems.
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