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Abstract— Since early 2020, the world has been dealing
with a raging pandemic outbreak: COVID-19. A year later,
vaccines have become accessible, but in limited quantities,
so that governments needed to devise a strategy to decide
which part of the population to prioritize when assigning
the available doses, and how to manage the interval between
doses for multi-dose vaccines. In this paper, we present an
optimization framework to address the dynamic double-dose
vaccine allocation problem whereby the available vaccine doses
must be administered to different age-groups to minimize
specific societal objectives. In particular, we first identify an
age-dependent Susceptible-Exposed-Infected-Recovered (SEIR)
epidemic model including an extension capturing partially
and fully vaccinated people, whereby we account for age-
dependent immunity and infectiousness levels together with
disease severity. Second, we leverage our model to frame the
dynamic age-dependent vaccine allocation problem for different
societal objectives, such as the minimization of infections or
fatalities, and solve it with nonlinear programming techniques.
Finally, we carry out a numerical case study with real-world
data from The Netherlands. Our results show how different
societal objectives can significantly alter the optimal vaccine
allocation strategy. For instance, we find that minimizing the
overall number of infections results in delaying second doses,
whilst to minimize fatalities it is important to fully vaccinate
the elderly first.

I. INTRODUCTION

Since the start of 2020, the world has been facing a
pandemic with devastating effects on society: As of Septem-
ber 2021, more than 225 million infections and 4.6 million
deaths have been directly attributed to the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) [1]. To
fight this pandemic, a large number of non-pharmaceutical
interventions (NPIs), e.g., stay-at-home orders and public
mask-wearing have been put in place to limit the spread of
the virus. Additionally, pharmaceutical interventions, such as
immunosuppressant drugs, have led to a reduced fatality-per-
infection rate compared to Spring 2020. While these methods
have shown to be essential in somewhat containing the spread
of the virus and limiting its impacts, vaccines seem to be the
only long-term solution [2].

As vaccines are becoming available, but in limited quan-
tities, governments need to decide which strategies to adopt
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Fig. 1: In this work we devise a framework to solve the dynamic vaccine allocation
problem. Importantly, this framework allows prioritizing certain age groups (based
on the desired objective) and between partially and fully vaccinating individuals. The
limited initial availability of vaccines adds an additional dimension to the problem.
Different strategies can have big impacts on the outcome (depicted on the right graph).

in terms of how to distribute the doses to limit the outbreak
and minimize societal damage. Crucially, whilst already
providing some level of immunity after one inoculation,
most of the approved vaccines must be administered mul-
tiple times. Therefore it is important to understand which
population groups should be vaccinated first and whether
the subsequent doses should be reserved and administered as
soon as possible (e.g., after three weeks) or given as a first
dose to another individual. Specifically, given a pre-defined
societal cost such as number of total infections or number of
casualties, when and to what extent should an age-group be
vaccinated in order to minimize such a cost? Assuming the
societal cost to be given (e.g., by a transdisciplinary panel of
experts), in this paper we devise a modeling and optimization
framework to solve the optimal dynamic vaccine allocation
problem with different age-groups that is based on a multi-
state Susceptible-Exposed-Infected-Recovered (SEIR) model
accounting for vaccinated people.

Related work: This work is related to two research areas:
the modeling of infectious diseases and vaccine allocation,
with a special focus on COVID-19. We proceed by briefly
discussing related work on modeling COVID-19. Following
this, we discuss the vaccine allocation problem, where we
focus on age-based prioritization, as susceptibility and dis-
ease severity have been shown to be very strongly correlated
to age for COVID-19 [3], [4], [5].

To account for factors that are specific to COVID-19, such
as pre- and asymptomatic spread and government interven-
tions, many extensions to the classical SEIR compartmental
model have been proposed. Crucially, very limited testing
capacity at the start of the pandemic required capturing both
diagnosed and not diagnosed individuals [6] and fine grained
models to predict superspreader events [7]. Early on in the
pandemic, many government-instituted taskforces devised
stochastic SEIR-extended models (e.g., [8]) to persuade
their respective governments to impose restrictive social-
distancing measures. These stochastic compartmental models
can capture infection dynamics at a very localized level,
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but are computationally intractable when implemented in an
optimization framework.

The majority of pre-COVID-19 studies on vaccine alloca-
tion focus on distributing a fixed number of vaccines over
a population to suppress an infectious disease, leveraging
either static optimization or simulations of pre-defined dis-
tribution strategies. We refer the reader to [9] for an overview.
Framing the problem as a static optimization problem allows
to obtain theoretical results [10] which demonstrate the
advantage of prioritizing a group-by-group approach for non-
mixing populations over proportional allocation. Nonethe-
less, due to the high infectiousness, the devastating effects
of COVID-19 on society, and the limited availability of
vaccines, it is essential to consider dynamic optimization to
reason about vaccine allocation over time and under (severe)
and varying supply constraints. Approaches which consider
vaccines to have been administered a priori (e.g., [11]) fail
to capture how vaccinated people impact the disease dynam-
ics during the vaccination campaign. Within dynamic vac-
cine allocation we equally distinguish between simulation-
based and dynamic optimization approaches. Simulation-
based approaches evaluate the effect of different pre-defined
prioritization strategies. For example, the authors of [12]
simulate five age-based prioritization strategies for different
levels of total vaccine supply (demonstrating the need to
prioritize vaccinating the elderly to minimize mortality).
However, simulation-based approaches are limited to pre-
defined strategies, and hence do not enable to fully opti-
mize the allocation strategies. Conversely, existing dynamic
optimization-based approaches rely on linearized models
and convex optimization [13], or nonlinear optimization
techniques, such as coordinate descent [14] and genetic
algorithms [15] to find a local optimum. Yet they are limited
to single-dose vaccinations that are immediately effective,
whilst multi-dose vaccines have not been studied in depth
yet. In this context, the authors [16] show the importance
that delaying second doses can have, but only consider pre-
defined strategies that always prioritize old-to-young when
new vaccines become available. Hence, it is important to
capture both the requirement of having multiple vaccine
doses to be fully vaccinated and not limit the optimization
space by enforcing pre-defined prioritization schemes.

In summary, prior work is limited to either evaluating pre-
defined strategies, failing to capture the effect that delaying
second doses can have, or considering objectives beyond
minimizing mortality, years of life lost (YLL) and infec-
tions, such as hospitalization levels and intensive care (IC)
pressure. Additionally, many of these works use models that
fail to capture the actual disease dynamics, by considering
models parameterized using early pandemic data and do not
consider the dynamic evolution of the pandemic over time.

Statement of Contributions: In this work, we present
an optimization framework for dynamic age-based vaccine
allocation. Specifically, we devise an age-stratified extended-
SEIR model including vaccinated people (SEIR-V2) that
explicitly accounts for variable dosing intervals for multi-
dose vaccinations, vaccine hesitancy, and limited vaccine

availability. The presented framework enables optimizing for
(read: minimizing) a wide variety of objectives, including
cumulative outcomes and daily IC and hospital occupancy.
We demonstrate the utility of the framework by i) fitting
the model to real-world data describing the evolution of the
pandemic in The Netherlands over a 1 year period, and ii)
with the fitted model, we compare outcomes based on dif-
ferent objectives. We focus on two case studies: optimizing
for minimizing infections and minimizing fatalities, thereby
comparing the different strategies obtained.

Disclaimer: The objective of this paper is to provide
insights to policymakers and practitioners through a numer-
ical framework by framing the optimal vaccine allocation
problem and solving it for a range of objectives. Our work
does not offer a recommendation on how to prioritize vaccine
allocation nor provide any political statement. As in any
research paper, our results should be interpreted accounting
for the underlying assumptions and the available model
accuracy.

Organization: The remainder of this paper is structured
as follows. Section II introduces the standard SEIR epidemi-
ological model and extends it to an age-stratified SEIR-V2
model, before leveraging this model to frame the optimal
dynamic vaccine allocation problem. We identify the model’s
parameters for The Netherlands in Section III and use the
identified model to solve the optimal allocation problem for
different objectives in Section IV. We draw the conclusions
and discuss future work in Section V.

II. METHODOLOGY

In this section, we first devise an age-stratified SEIR model
capturing two-dose vaccinations in Section II-A, and then
leverage it to frame the optimal dynamic vaccine allocation
problem in Section II-B. We conclude with a discussion of
our approach in Section II-C.

A. Compartmental Models

Considering a population whereby s(t) represents the share
of susceptible individuals, e(t) the share of the population
that is exposed, but not yet infectious, i(t) the share that
is currently infected, and r(t) the share that has recovered
(including severe outcomes), the SEIR model [17] is as
follows:

d
dt

s(t) =−β s(t)i(t) (1a)

d
dt

e(t) = β s(t)i(t)− γee(t) (1b)

d
dt

i(t) = γee(t)− γii(t) (1c)

d
dt

r(t) = γii(t), (1d)

with β the infection rate, 1/γe is the latent period, γi the
recovery rate (1/γi is the average infectious period). As s(t),
i(t), e(t), and r(t) represent shares of the population, we have
s(t)+ e(t)+ i(t)+ r(t) = 1, with s(t), e(t), i(t), r(t) ∈ [0,1].
As a side note, the widely reported base reproduction rate
R0 = β

γi
and the actual reproduction rate R(t) = R0s(t) are



calculated based on the parameters of the SEIR model. We
would like to highlight that the SEIR model, although it only
captures the high-level disease dynamics, involves a cross-
term that can result in a highly nonlinear behavior. Finally,
we do not consider vital dynamics (birth and death) as they
are much slower than the dynamics of the epidemic.

Whilst this model is useful to gain an understanding of the
spread of infectious diseases and for performing theoretical
analyses, e.g., [10], it is typically extended for use in the
forecasting and simulation of an infectious disease. In our
work, we address some key shortcomings of the SEIR model
by proposing the following extensions:

1) We consider an age-stratified model to capture both
non-homogeneous spread (e.g., a 20-year-old is more
likely to interact with a 25-year-old than an 80-year-
old) and to allow allocating the vaccines at unequal
rates to different age groups. Hereby, the contact matrix
c indicates the level of direct interactions within and
between groups to drive the transmission dynamics in
the model.

2) We consider hospitalizations and fatalities as a subset
of the recovered individuals to take severe outcomes
and hospital occupancy into account.

3) We scale the transmission rate by a time-varying factor
θ(t) ∈ [0,1] to reflect the effect of NPIs and other
transmission-limiting effects such as human behavior
(e.g., pandemic fatigue) and seasonality. Specifically,
we consider a piecewise constant θ(t). Notably, to
avoid overfitting, e.g., by fitting to a new θ(t) every
day, we split the domains based on changes in policy
measures.

4) We incorporate single and fully vaccinated equivalents
of the susceptible, exposed, infected, and recovered
states. Our approach to modeling vaccinated indi-
viduals, i.e., reducing the probability that susceptible
individuals will be infected, is commonly referred to
as a leaky vaccine model.

Combined, the aforementioned extensions allow us to de-
fine a population where sk

i (t), ek
i (t), iki (t), and rk

i (t) define
the share of susceptible, exposed, infected, and recovered
individuals for each vaccination status k = {�,v1,v2}, i.e.,
not vaccinated, single dose, fully vaccinated, and each age
group i. Furthermore, we define the inputs uv1

i (t) and uv2
i (t)

as the share of individuals (proportional to the entire popu-
lation) in group i that get their first or second dose at time
t. The SEIR-V2 model is as follows (where we drop time-
dependency for the sake of readability):

d
dt

si =−βisi−uv1
i

si

si + ri
(2a)

d
dt

ek
i =(1−η

k
s,i)βisk

i − γeek
i (2b)

d
dt

iki =γeek
i − γiiki (2c)

d
dt

ri =γiiki −uv1
i

ri

si + ri
(2d)

d
dt

sv1
i =− (1−η

v1
s,i )βis

v1
i +uv1

i
si

si + ri

−uv2
i

sv1
i

sv1
i + rv1

i
(2e)

d
dt

sv2
i =− (1−η

v2
s,i )βis

v2
i +uv2

i
sv1

i

sv1
i + rv1

i
(2f)

d
dt

rv1
i =γii

v1
i +uv1

i
ri

si + ri
−uv2

i
rv1

i

sv1
i + rv1

i
(2g)

d
dt

rv2
i =γii

v2
i +uv2

i
rv1

i

sv1
i + rv1

i
, (2h)

for all groups i and k ∈ {�,v1,v2}. The age-
dependent time-varying infection rate is βi(t) =

θ(t)ζi ∑
j

(
ci, j ∑

k

(
1−ηk

inf, j

)
ikj

)
, where ζi is the probability

of a successful transmission given contact with an infectious
individual and the contact matrix ci, j captures the number
of contacts of an individual of group i with one of group j.
We account for the vaccine’s effectiveness in reducing
susceptibility ηs,i and infectiousness ηinf,i. The combined
state is given by x ∈ R4·3·Ngroups , with Ngroups the number of
age-groups. As for (1), we have ∑

i
xi(t) = 1 and xi(t) ∈ [0,1]

for all t.

B. Optimal Control Problem

We can now embed the aforementioned model—Eq. (2)—
in a constrained optimization problem. We minimize a total
cost J that can represent different objectives, such as total
number of fatalities or maximum hospital occupancy. We
proceed by discussing the constraints we impose, followed
by the definition of the full optimization problem.

First and foremost, we consider a time-varying bound on
the overall vaccine supply and enforce positivity constraints
on the inputs:

∑
i

uv1
i (t)+uv2

i (t)≤ umax(t)

uv1
i (t),uv2

i (t)≥ 0 ∀ i, t.
(3)

Next, we introduce a bound on the minimum and maximum
delay between first and second doses. A minimum delay D
is often strictly recommended by the vaccine manufacturer,
whilst exceeding a maximum delay D between the first and
second dose might adversely impact immunity due to a loss
of immunological memory:

uv2
i (t)≤V v1

i (t−D)+V v2
i (t−D)−V v2

i (t)

uv2
i (t)≥V v1

i (t−D)+V v2
i (t−D)−V v2

i (t),
(4)

with V k
i = sk

i + ek
i + iki + rk

i .
Lastly, we consider that a share of people ξi ∈ [0,1] does

not get the vaccine for each age group i, both voluntarily
and/or due to medical restrictions:

∑
t

uv1
i (t)≤ (1−ξi)

Ni

Ntot
∀ i, t, (5)

with Ni denoting the population of group i and Ntot = ∑
i

Ni

the total population. With this model in place, we have all



the ingredients to present the optimal control problem, where
u(t) = [uv1(t),uv2(t)]> ∈ R2Ngroups are the input variables:

minimize
u

J

subject to (2), (3), (4), (5).
(6)

C. Discussion

A few comments are in order. First, we do not consider the
waning efficacy of the vaccine, nor the possibility of losing
immunity from prior infection over time, and we assume
immediate immunity after each dose. Yet our framework can
be readily extended to account for such phenomena as soon
as sufficient data are available. Second, we do not explicitly
model different variants of the virus. However, these are
indirectly reflected through the value of the contact reduction
parameter θ(t). Third, we do not explicitly capture risk
groups, e.g., immunodepressed people or essential healthcare
workers, and assume they represent a non-significant share
of each age category. However, whilst the former group
can be directly considered as part of the elderly popula-
tion, both groups can be readily included via additional
variables. Lastly, the solution found with our framework is
not guaranteed to be globally optimal due to the inherently
non-convex nature of our model—see Eq. (2). This issue is
present in even the simplest compartmental model, as the
rate of newly infected people is a bilinear function of the
currently susceptible and infected populations—see Eq. (1)—
and cannot be completely overcome. Against this backdrop,
we can use different warm-starting points to empirically
assess the quality of the obtained local optima [18, Chpt. 1].

III. FITTING TO REAL-WORLD DATA

In this section, we first describe the data that we use to
identify our model parameters. We then elaborate on which
parameters, see Eq. (2), are considered fixed, whilst detailing
the bounds for the parameters to be fitted.

As mentioned in the related works in Section I, stochastic
compartmental models can capture the disease dynamics
better, both in accounting for uncertainty and individual-
level spread. However, as we argued before, these models
are computationally intractable for use in an optimization
framework. Instead, we use the deterministic model, Eq. (2),
to fit to a stochastic model developed by the Dutch National
Institute for Public Health and the Environment (RIVM) [19].
Specifically, we fit the number of infectious people at a
given point in time in our model to the estimated prevalence
from [19]. By doing so, we avoid the need to consider a more
complicated model that captures non-detected infections and
distinguishes asymptomatic and symptomatic individuals.
While being more accurate, the RIVM model, unlike Eq. (2),
only captures the overall prevalence. To fit the respective
age groups to the prevalence data, due to the age-segmented
prevalence data not being open-sourced, we assume that the
share of positive tests per age group is proportional to the
share of infectious people per age group.

In addition to prevalence data, we capture the impact of
vaccinations to the disease dynamics in The Netherlands by

TABLE I: Summary of parameter values (if fixed) and bounds for use in the fitting
procedure, including references. The fitted model is then implemented directly for
the optimal vaccine allocation problem. To avoid overfitting, we limit the piecewise-
constant domains for the contact reduction and keep the contact matrices constant
(which were obtained from diaries).

Param. Description Age-
dependent

Value / Bound Ref.

γe Latent rate No γe ∈ [0.15,0.4] [22]
γi Infectious rate No γi ∈ [0.15,0.4] [22]
ζi Relative susceptibility to

infection
Yes {ui ≥ u j if i> j} ∧

{ui ∈ [0,1] ∀ i}
[3]

ci, j # of contacts of ind. of
group i with one of group

j

Yes Country-specific
contact matrix

[23],
[24]

η1
s,i 1st-dose eff. in reducing

susceptibility
Yes 0.5 [25]

η2
s,i 2nd-dose eff. in reducing

susceptibility
Yes 0.9 [25]

η1
inf,i 1st-dose eff. in reducing

infectiousness
Yes 0.2 [25]

η2
inf,i 2nd-dose eff. in reducing

infectiousness
Yes 0.2 [25]

θ(t) Contact reduction No θ(t) ∈ [0,1] ∀ t
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Fig. 2: Comparison of the overall prevalence of the high-fidelity stochastic RIVM
model (with 95% bounds) (blue), compared to the fit of our deterministic model
(orange). We observe that our model captures the principal dynamics of the disease
spread, notably capturing changes in behavior (due to government policy changes) and
the effect of the vaccinations (the last 6 months).

considering the number of people vaccinated by the Dutch
government per age group [20] as an input to the model.

To fit our model, Eq. (2), to the daily reported vacci-
nations, case data, and estimated prevalence we discretize
Eq. (2) using Euler Forward with a sampling period of 1
day. We fit the model over the period of one year, from
July 2020 to June 2021. Given the high uncertainty of the
disease dynamics and the low availability of tests during the
first wave in Spring 2020, we initialize our model after the
end of the first wave, and set the initial value of recovered
individuals at the start to be 5%, in line with estimates from
the RIVM [19]. Moreover, we fix the initial value of the
number of infected individuals to be equal to the estimated
prevalence from [21], and consider the number of exposed
individuals to be half of that number. The susceptible share
sums the model to 1, and all vaccinated states have an initial
value of 0.

The bounds and/or values of parameters in Eq. (2) are
provided in Table I. The bounds of the parameters are based
on previous literature studies, as referenced in Table I. We
fix the contact matrix and the vaccine efficacy rates to
avoid overfitting. The contact matrix is obtained from the
European POLYMOD survey, which used population-based
contact diaries to measure contacts in Western-European
countries [23], which has since been projected to other
countries [24]. Whilst it is somewhat limiting to fix the



TABLE II: Relative difference between the outcome stemming from a particular
strategy (rows) and the achievable minimum obtained optimizing for that particular
objective (columns). The results demonstrate that the local optima found for each
strategy perform best on the metric for which they optimize, dominating the other
objectives. Additionally, it demonstrates that optimizing for minimizing cumulative
hospitalizations and fatalities is very similar, and mostly in line with the strategy of
The Netherlands. All strategies outperform the baseline of proportional allocation and
the allocation strategy in The Netherlands.

J Outcome ∆hosptot ∆fatalitiestot ∆infectionstot ∆hospmax

min hosptot 0% +25 % +14% +5%

min fatalitiestot +6% 0% +42% +13%

min infectionstot +11% +84% 0% +26%

min hospmax +2% +25% +15% 0%

Baseline2 +19% +91% +17% +37%

The Netherlands3 +8% +34% +28% +17%

vaccine efficacy rates, given that different groups received
doses at different values of θ(t), i.e., under different rules on
contact reduction, fitting the vaccine efficacy rates can result
in overfitting. Finally, the contact reduction parameter θ(t)
describes the fraction of normal contacts that occur. It is con-
sidered piecewise constant and we assume they are correlated
with the stringency of governmental restrictions. Specifically,
we fix the change-points at dates of a large change in the
severity of the measures imposed by the government based
on a composite index that quantifies government restrictions
across countries [26]. Fig. 2 shows that the proposed model
can clearly capture the dynamic behavior of the pandemic.

IV. OPTIMIZING VACCINE ALLOCATION

The optimization problem (6) described in Section II-B is
highly nonlinear. We discretize Eq. (6) in time with Euler
forward, parse the resulting static optimization problem with
CasADi [27] and solve it with IPOPT [28]. Thereby, in
an attempt to benchmark the quality of the solution found,
we use multiple initializations. We provide an open-source
implementation of our approach1.

A. Optimizing the Vaccine Rollout for Different Objectives

As was done in The Netherlands, the vaccination campaign
starts in early January 2021. For the first 6 months, we
fix the maximum vaccine supply to the number of vaccine
doses administered in The Netherlands [20], and consider
an additional 2-month period in which a constant supply
of vaccines was available. During this summer period, we
consider less restrictive measures, as was implemented by
The Netherlands. Table II reports the relative outcomes on
different metrics for each optimized strategy. We also com-
pare these results with the vaccine rollout in The Netherlands
and a proportional allocation baseline in which second doses
are given as per the manufacturers’ recommendations (3
weeks). Fig. 3 and 4 show strategies and pandemic evolution
when minimizing total infections and fatalities, respectively.

1https://gitlab.tue.nl/20200365/covid-vaccine-allocation
2Considering a proportional allocation with a dosing interval of 3 weeks.
3Compared until the end of the data fitting period, June 30th.

B. Discussion

As can be seen from Fig. 3 and 4, different objectives
(minimize infections and fatalities, respectively) can lead
to significantly different allocation strategies. Fig. 3 shows
that minimizing for total infections results in prioritizing
partially vaccinating the large majority of the population
before administering second doses. Within this prioritization,
groups with high contact rates (young working age and
student groups) and those with higher susceptibility (80+
year olds) are prioritized. As we assume that a partially
vaccinated individual sees a reduction in susceptibility that
is more than half the reduction in susceptibility from full
vaccination (see Table I), prioritizing partial vaccinations
makes intuitive sense. However, due to the prioritization of
partially vaccinating a large proportion of the population,
a moderate amount of partially vaccinated individuals still
get infected, as can be seen in the bottom two subfigures
of Fig. 3. In contrast to this strategy, minimizing the total
number of fatalities results in prioritizing fully vaccinating
the elderly populations (old-to-young), as shown in Fig. 4.
Once the 60+ categories have been vaccinated, priority is
shifted to partially vaccinating the younger age groups, as
their fatality rates are comparable (and very low). Compared
to minimizing for the total number of infections, this strat-
egy ensures that almost no partially vaccinated people are
infected. In both Fig. 3 and 4, we can appreciate the fact
that after July the pandemic dies out, as herd immunity
is reached. From this point onward, the vaccine allocation
strategy has little effect on cumulative outcomes, resulting
in strategies that combine various groups at the same time
instance. This is also due to the fact that we are assuming
immunity to be immediate and not to wane, and that vaccine
hesitancy is implemented for the youngest category only, to
model the unavailability of vaccines for children younger
than 12 in the time-frame under consideration, whilst we
assume that the whole population is willing to be vaccinated.

To characterize the results on a quantitative level, Ta-
ble II compares the outcomes of the different optimized
strategies on the cumulative fatalities and infections, and
the cumulative and maximum hospital occupancy with the
achievable minimum obtained when optimizing for that
particular objective. Thereby, we also include a baseline
comparison in which the vaccine is distributed equally over
the full population2 and to the vaccination rollout that
occurred in The Netherlands3. The baseline strategy performs
significantly worse than the optimized strategies in each
metric, highlighting the importance of optimizing the vaccine
administration process. In contrast, the approach chosen
by The Netherlands strikes a trade-off between minimizing
fatalities and infections, and is solely dominated by both the
minimum-hospitalization strategies (cumulative and maxi-
mum). Hereby, it should be noted that The Netherlands chose
to prioritize vaccinating a proportion of essential healthcare
workers during the early phase of the rollout, which we
did not account for in our results. Finally, Table II shows
that each optimized strategy performs best on the metric for

https://gitlab.tue.nl/20200365/covid-vaccine-allocation
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that have either (both) more overall contacts or (and) higher relative susceptibility. A
moderate number of partially vaccinated people get infected.

0.0

0.5

1.0

1.5

2.0

2.5

N
u
m
b
er

of
d
os
es

×105 Vaccine prioritization per group

12-19 1st

20-29 1st

30-49 1st

50-59 1st

60-69 1st

70-79 1st

80+ 1st

12-19 2nd

20-29 2nd

30-49 2nd

50-59 2nd

60-69 2nd

70-79 2nd

80+ 2nd

0.0

0.5

1.0

1.5

2.0

P
re
va
le
n
ce

(#
)

×105 Daily prevalence and fatalities

Not vaccinated

Partially vaccinated

Fully vaccinated

2021−02 2021−03 2021−04 2021−05 2021−06 2021−07 2021−08 2021−09
Date

0.0

0.2

0.4

0.6

0.8

1.0

S
h
ar
e
of

p
op
u
la
ti
on

Disease progress

E

I

Rv2 ← R

Rv1 ← R

R

S

Sv1

Rv1 ← Iv1
Rv2 ← Iv1

Sv2

Rv2 ← Iv2

0

20

40

60

F
at
al
it
ie
s
(#

)

Fig. 4: Minimizing fatalities: Vaccine allocation (top, black solid line separating
the shots), evolution of the number of people infected (middle), and overall disease
dynamics evolution (bottom) when optimizing for minimizing total fatalities. The top
figure shows the optimal strategy results in fully vaccinating groups that have high
mortality rates, before proceeding with delaying second doses for younger age-groups,
prioritizing suppressing the spread. Very few partially vaccinated people get infected.

which they optimize, hence dominating the other strategies.
Whilst not providing global optimality guarantees, this result
clearly indicates that the found local optima are promising.

V. CONCLUSION

This paper investigated the vaccine allocation problem
when fighting a pandemic outbreak that evolves dynami-
cally within an age-stratified population. To this end, we
devised a model and an optimization framework to com-
pute and characterize the optimal allocation strategies that
minimize predefined societal objectives. Specifically, we in-
stantiated a finite-horizon optimal control problem based on a
computationally-tractable epidemiological model, which we
designed to account for partially- and fully-vaccinated people
belonging to different age-groups, and which we fitted to
realistically represent the COVID-19 prevalence data in The
Netherlands. Since compartmental epidemiological models
are inherently non-convex, we solved the optimal control
problem using nonlinear programming to a local optimum.
Our framework revealed that different societal objectives can
lead to significantly different allocation strategies and total
outcomes: The prioritization strategy found for minimizing
the total number of infections demonstrated the necessity
of explicitly modeling multi-dose vaccines in our SEIR-V2

model, as it entails vaccinating the whole population with
one dose first. In contrast, we showed that to minimize
fatalities, the oldest part of the population must be fully
vaccinated first. Finally, we also observed that the found
local optimum for each optimized strategy dominates the
other optimized strategies and baselines on the metric for
which it optimizes. Our framework can be used by policy-
makers to optimize, evaluate and compare different allocation
strategies. Nonetheless, policymakers should be aware of
its limitations: First, with this paper, we did not aim to
address complex social and ethical considerations that can
be socially disruptive, but rather focused on quantifiable
scientific results. Second, our conclusions are subject to a
number of modeling assumptions that must be weighed in
when interpreting the results.

Our work opens the field for the following extensions:
First, we plan to address the computational complexity of the
large-scale nonlinear optimization problem using sequential
convex programming. Second, it would be useful to account
for the uncertainty in the future evolution of the pandemic.
Finally, we want to study the interplay between policy
measures, vaccinations, and people’s behavior.
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