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Max-plus polyhedra-based state characterization for uMPL systems*

Guilherme Espindola-Winck1, Laurent Hardouin1 and Mehdi Lhommeau1

Abstract— This paper presents a mathematical tool for
stochastic filter design based on reach sets for general Uncertain
Max-Plus Linear (uMPL) systems. The reach sets are defined as
the computation of the set of all states that can be reached from
a known previous state vector (forward) and from an available
source of measurement (backward). The existing approaches
in [13, 10] have exponential complexity, which is an important
drawback in higher-dimensional systems. In this work, we
propose a max-plus polyhedra-based procedure with complexity
that is in practice polynomially-bounded.

I. INTRODUCTION

Discrete Event Dynamic Systems (DEDS) are systems
whose dynamics are event-driven, i.e. the state evolution
depends entirely on the occurrence of asynchronous discrete
events over time. Manufacturing systems, telecommunication
networks, transportation networks, are example of DEDS [4].
To describe the behaviour of these systems the ordinary or
partial differential equations are not suitable, hence more
relevant theoretical setting are considered, among them the
following can be cited: languages and automata, Markov
chain and Petri nets, the reader is invited to consult [11]
for an overview.

Among the DEDS, a particular class involving synchro-
nization and delay phenomena has been the subject of a
dedicated algebraic development, generally called max-plus
linear algebra. This class of DEDS can be represented
graphically, depicted by Timed Event Graphs (TEG). A
TEG is a timed Petri net in which each place admits only
one upstream transition and one downstream transition. In
analogy to classical linear system theory, the Max-Plus
Linear (MPL) systems arise to characterize the behaviour
of systems governed by the occurrence of those phenomena.

The knowledge of the system states is a key point in
control design and fault detection. The filtering problem
consists in the estimation of these states, subject or not
to noisy dynamics and measurements. For this reason, the
development of methods for observing/estimating the system
states are of great interest. In [21] a dynamic observer
for MPL systems is proposed, in [17, 15] a Luenberger-
inspired observer is developed. In both cases, uncertainties
w.r.t. the model parameters are considered, however, the
probabilistic aspects are not taken into account. Though,
these probabilistic aspects are of great interest in the filtering
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problems where the model parameters are influenced by
random processes [22, 9].

In this work, although the probabilistic aspects of the
uncertainties are not considered, we are interested in systems
where the uncertain parameters can vary over a known
interval. Formally, we are interested in the Uncertain Max-
Plus Linear (uMPL) systems, where at each event step, the
entries of the system matrices can take an arbitrary value
within a real interval.

In previous works [13, 10], reach sets are introduced as
the sets of all states that can be reached from a known
previous state vector (forward) and from an available source
of measurement (backward), in a procedure that resembles
the two-fold bayesian filtering scheme. The latter has a
more efficient performance, however both approaches have
exponential complexity.

As already remarked in [10], the filter design can take
advantage of the reach sets calculations. Indeed, these sets
can be applied to compute and represent the support of the
posterior probability density function (p.d.f) of the states of
the uMPL system and a solution to the estimation problem
can be obtained using Monte Carlo method called Impor-
tance Sampling.
In this paper, we make the following contributions:

i We propose a max-plus polyhedra-based state charac-
terization with a probabilistic consistency guarantee for
uMPL systems.

ii The proposed calculation procedure, based on the
resolution of a two-sided max-plus equation, drasti-
cally reduces the calculation time compared to other
approaches [13, 10].

This paper is organized as follows. In Section II we present
some background on MPL systems and interval analysis.
Section III introduces previous results concerning reach sets
and presents the main contribution of this work as the
solution of a two-sided max-plus equation. In Section IV,
some simulations are given in order to compare the execution
time of the proposed approach with the one in [10]. Finally,
Section V concludes the work and give hints about the
filtering design with the aid of reach sets.

II. MATHEMATICAL BACKGROUND

A. Algebraic framework

Define ε = −∞, e = 0 and the max-plus semiring Rmax =
R ∪ {−∞} endowed with two internal operations: sum (⊕)
and product (⊗) are defined as x ⊕ y = max{x, y} and
x ⊗ y = x + y for any x, y ∈ Rmax. Moreover, ε is the
absorbing element, i.e. for any a ∈ Rmax, ε⊗a = a⊗ε = ε.



The ⊕ and ⊗ operations can be extended to matrices as
follows: if A,B ∈ Rn×p

max and C ∈ Rp×q
max, then (A⊕B)ij =

aij ⊕ bij and (A⊗ C)ij =
⊕p

k=1 aik ⊗ ckj . As in classical
algebra, the operator ⊗ will be usually omitted in expressions
for the sake of readability.

In this algebraic structure, operation ⊕ induces a partial
order relation

a � b ⇐⇒ a = a⊕ b. (1)

It coincides with the usual order ≥ on R ∪ {−∞}.
For a more exhaustive presentation, the reader is invited

to refer to [4, 18].

B. Interval arithmetic in Rn
max

Interval arithmetic is presented in [23]. An interval in
Rmax is defined as [x] = [x, x] = {x ∈ Rmax : x � x � x}.

The max-plus operations can be, therefore, extended to
intervals as follows [5, 16, 20, 19]:

[x]⊕ [y] = {x⊕y : x ∈ [x], y ∈ [y]} = [x⊕y, x⊕y] , (2)

[x]⊗ [y] = {x⊗y : x ∈ [x], y ∈ [y]} = [x⊗y, x⊗y] . (3)

The intersection of the intervals [x] = [x, x] and [y] =
[y, y] can be defined as:

[x] ∩ [y] = [max{x, y},min{x, y}], (4)

If [x] ∩ [y] 6= ∅ then the union of [x] and [y] is:

[x] ∪ [y] = [min{x, y},max{x, y}], (5)

otherwise the union cannot be represented as a single inter-
val, but by a collection of intervals.

The intersection and union operations of two interval
vectors can be computed as the element-wise operation of
the corresponding entries.

The ⊕ and ⊗ are extended to interval matrices as follows:
if [A], [B] and [C] are, respectively, (n × p), (n × p) and
(p × q)-dimensional interval matrices, then ([A] ⊕ [B])ij =
[aij ]⊕ [bij ] and ([A]⊗ [C])ij =

⊕p
k=1([aik]⊗ [ckj ]).

If we consider the max-plus equation [z] = [C] ⊗ x,
with, [z] an q-dimensional interval vector, [C] an (q × n)-
dimensional interval matrix and x an n-dimensional vector,
then we can write the i-th component of [z] as follows:

[z]i =

[
n⊕

j=1

cij ⊗ xj ,
n⊕

j=1

cij ⊗ xj

]
, for all i ∈ {1, . . . , q}. (6)

C. MPL Systems
A general MPL model that describes the TEGs class is

defined as:

x̃(k) =

M⊕
l=0

Ãlx̃(k − l)⊕
N⊕
l=0

B̃lũ(k − l), (7a)

z̃(k) = C̃x̃(k), (7b)

where x̃ ∈ Rn
max, Ãl (l = 0, . . . ,M) ∈ Rn×n

max , ũ ∈ Rp
max,

B̃l (l = 0, . . . , N) ∈ Rn×p
max , z̃ ∈ Rq

max and C̃ ∈ Rq×n
max .

After some modifications1, it is possible to obtain the
following explicit form:

x(k) = A0x(k)⊕A1x(k − 1)⊕B0u(k), (8a)
z(k) = Cx(k). (8b)

1Each place of the TEG is assumed to be with initially one or zero token
since it is sufficient to add extra places, i.e. to increase n in a suitable way.

In practice, the token-free matrix A0 is assumed to be
written in strictly lower triangular form (aij0 = ε for all i ≤ j)
since the corresponding subgraph of A0 is without circuit,
i.e. without frozen transitions. Thus,

xi(k) =

i−1⊕
j=1

aij0 xj(k)⊕ yi, for all i ∈ {1, . . . , n}, (9)

where y = A1x(k − 1)⊕B0u(k).
The matrix entries of the equations above are considered to

be bounded noisy, i.e. it is assumed that at each event k these
entries2 can take an arbitrary value within a real interval.
Hence, it is possible to model uMPL systems as defined
in [13, 10] from Eq.(8) considering that A0

.
= A0(k) ∈

[A0, A0], A1
.
= A1(k) ∈ [A1, A1], B0

.
= B0(k) ∈ [B0, B0]

and C
.
= C(k) ∈ [C,C] are matrices of independent

random variables with finite support and whose entries are
mutually independent3. For instance, matrices A0 and A0 are
respectively the lower and upper bounds of [A0], such that
aij0 ∈ [aij0 , a

ij
0 ]. The same reasoning is applied to the lower

and upper bounds of [A1], [B0] and [C].

D. Residuation
The max-plus inequality Ax � y with matrix A ∈ Rn×p

max
and vectors x ∈ Rp

max and y ∈ Rn
max admits a greatest

solution in terms of the completion of Rmax, i.e. the set
Rmax∪{+∞} (see [4]). This solution is given by X̂ = A◦\y
such that AX̂ � y. Below each entry of X̂ is computed with
the convention −∞+∞ = +∞:

X̂i =
n

min
k=1
{aki ◦\yk}, for all i ∈ {1, . . . , p}, (10)

where aki◦\yk is the greatest solution of the inequality aki⊗
x � yk. It is worth to mention that an equivalent calculation
of X̂ can be obtained thanks to the fact that A◦\y = −At�y
with (•)t being the matrix transposition operator and with �
being the matrix multiplication of −At by y but by replacing
the usual ⊕ with min.

E. The two-sided equation Ez = Fz in Rn+1
max

In this section we recall some notions we shall use in the
following (for more details see [2, 3, 7, 8]).

Definition 1: A max-plus polyhedron P of Rn
max is the

intersection of finitely many inequality constraints of form:
atx⊕ b � ctx⊕ d, where a, c,x ∈ Rn

max and b, c ∈ Rmax.
In the max-plus semiring, a system of constraints repre-

sented by inequalities can also be represented by equations
with the same expressiveness (see Eq.(1)). Therefore, the
constraints in this work are represented by equations and
max-plus polyhedra can also be defined as the intersection
of finitely many equality constraints.

The equation Ax ⊕ b = Cx ⊕ d with A,C ∈ Rs×n
max and

b,d ∈ Rs
max is considered to be non-homogeneous and to

2For the sake of brevity, we drop k everywhere whenever it is clear the
recursive relation.

3This assumption of statistical independence between the matrix entries
means that the minimum task duration or transportation time are independent
of each other. This assumption is reasonable for practical problems, e.g.,
in the field of transport systems, a failure of one train does not affect the
potential efficiency of the others, even if they are blocked due to precedence
constraint.



properly obtain a solution in x it must be associated to the
homogeneous equation Ez = Fz where E = (A b), F =
(C d) and z = (xt, e)t with solution in z for the first n
coordinates and zn+1 = e.

The solutions of Ez = Fz in Rn+1
max are obtained using

existing algorithms:
i the elimination method of double exponential complex-

ity [7],
ii implementation by induction on s of the the elimina-

tion method in the Max-Plus toolbox [12] of Scilab
and ScicosLab of complexity O(c4nsn) (refined in
[2]),

iii the double description method of complexity
O(c2ns

2n) [3].
The term cn is related to the maximal number of solutions
of the s equations represented by Ez = Fz in Rn+1

max , and
its calculation falls back on a combinatorial problem that is
hard to be determined beforehand. In worst-case scenario,
cn is exponential (see [1] for more details). Nevertheless, it
is observed, in practice, that cn appears to be polynomially-
bounded for the solution of the two-sided max-plus equations
that will be used in this work, i.e. the maximal number of
solutions remains polynomial in n. Future work could focus
on the mathematical proof of this claim.

Definition 2: Given a collection of vectors V = {vi}ki=1,
we define span(V ) = {k ∈ N,vi ∈ V, λi ∈ Rmax :⊕k

i=1 λiv
i} as the set of all possible combinations of vectors

vi.
Definition 3: The convex hull of V = {vi}ki=1 is denoted

as hull(V ) = {k ∈ N,vi ∈ V,
⊕k

i=1 λi = e :
⊕k

i=1 λiv
i},

with no positivity constraints on λi.
Definition 4: Given span(G) ⊆ Rn

max and a vector v ∈
Rn
max, we say that v is redundant or linearly dependent on

span(G) if v ∈ span(G).
In [8], it is proven that if v = G(G◦\v) then v is redundant

on span(G). However, we will rather use [6] to compute

k⋃
i=1

arg
nG

min
j=1
{−gij + vj} = N , (11)

such that if N = {1, . . . , nG} then v ∈ span(G). Addition-
ally, this test is twice faster than checking if v = G(G◦\v).

Let P =
⋂s

i=1{z ∈ Rn+1
max : Eiz = Fiz} where Ei and

Fi are respectively the i-th row of E and F . The solution
of Ez = Fz in Rn+1

max is defined as the minimal system of
generators represented by G = span(G) where the columns
of G satisfy Ez = Fz, i.e. G = {g ∈ G : Eg = Fg}
is the minimal generating set that belongs to the max-plus
polyhedron P , precisely G ⊆ P is called the inner region
of P .

Lemma 1: If the last row of G ∈ RnG×k
max that determines

span(G) ⊆ RnG
max is (e, . . . , e) then span(G) = hull(G).

Proof: For any v ∈ span(G) we first check if vnG
=

e, if it is not the case then we ⊗-multiply v by a non-ε
scalar. After this phase, we have the following that holds:⊕k

i=1 λig
i
nG

= e ⇒
⊕k

i=1 λie = e which is the span of G

constrained to
⊕k

i=1 λi = e. Hence, span(G) = hull(G).

III. REACH SETS COMPUTATION USING TWO-SIDED
MAX-PLUS EQUATIONS

This section presents the computation of the intersection
of the direct image of a previous state vector x(0) and the
inverse image of a measurement z w.r.t. the uMPL system
derived from Eq.(9) and Eq.(8b) where y = A1x(0)⊕B0u
will simply be represented by y = A1x(0) without loss of
generality4.

A. The direct image of x(0) - forward reach set
Let Eq.(9) be an uMPL system. If the point x(0) is given,

then xi ∈ [xi] for all i ∈ {1, . . . , n} where:

[xi] =

i−1⊕
j=1

[aij0 ][xj ]⊕ [yi], (12)

and [y] = [A1]x(0).
From Eq.(6) we compute the direct image of x(0) as

follows5:
I[A0],[A1]{x(0)} =

=
n⋂

i=1




xi �

i−1⊕
j=1

aij0 xj ⊕ yi︸ ︷︷ ︸
Xi


∩


xi �

i−1⊕
j=1

aij0 xj ⊕ yi︸ ︷︷ ︸
Xi



 ,

(13)

where [yi] = [
⊕n

j=1 a
ij
1 ⊗ xj(0),

⊕n
j=1 a

ij
1 ⊗ xj(0)]. There-

fore,

I[A0],[A1]{x(0)} = {x � X} ∩
{
x � X

}
, (14)

x ∈ I[A0],[A1]{x(0)} ⇐⇒ X � x � X,

an n-dimensional interval vector.
Proposition 1: Let D be a max-plus polyhedron. The

following properties are equivalent:
i) span(D) ⊆ D , where span(D) is given by the solu-

tion set of the following two-sided max-plus equation:(
In En×1

En×n X

)(
x

e

)
=

(
In X

In X

)(
x

e

)
, (15)

(representing 2n single equations) where I and E
are the identity matrix (square matrix with e on the
main diagonal and ε elsewhere) and the zero matrix
(rectangular matrix whose entries are ε) respectively.
In addition, the pair (X,X) is calculated beforehand
by Eq.(14),

ii) D is the smallest max-plus polyhedron such that
I[A0],[A1]{x(0)} ⊆ D .

Proof: For each i ∈ {1, . . . , n}, the Eq.(14) is depicted,
using the partial order induced by ⊕ (see Eq.(1)), as follows:{

xi � Xi ⇐⇒ xi = xi ⊕Xi,

xi � Xi ⇐⇒ Xi = xi ⊕Xi,

4The equation y = A1x(0)⊕B0u can be transformed in y =Mx′(0)
by considering M = (A1B0) and x′(0) = (xt(0) ut)t of appropriate
dimensions and does not change the nature of the calculation.

5For brevity, the sets {x ∈ Rn
max : xj ./ constant} with ./ ∈ {�,�}

can rather be represented in short notation by {xj ./ constant}.



which corresponds to

(ε, . . . , e, . . . , ε)x⊕ (ε) = (ε, . . . , e, . . . , ε)x⊕ (Xi), (16)

(ε, . . . , ε)x⊕ (Xi) = (ε, . . . , e, . . . , ε)x⊕ (Xi). (17)

Hence, it is straightforward to see that Eq.(15) is the vertical
concatenation of Eq.(16) and Eq.(17) for all i ∈ {1, . . . , n}.

The solution of Eq.(14) is simply defined by its bounds
[X,X], i.e. a hyperrectangle which is a non-empty compact
convex subset of Rn

max and also of Rn. A hyperrectangle
can be seen as a subset S ⊆ Rn×m

max , where m = 2n

represents its corners/vertices, and according to the Max-
Plus Minkowski Theorem [14, Theorem 3.2] every element
s ∈ [X,X] ⇔ s ∈ S, is therefore the convex hull of n + 1
generators d̃. Furthermore, Eq.(15) and Eq.(14) are similar,
then (d̃t, e)t ∈ hull(D) = span(D) (see Lemma 1) where
D ∈ R(n+1)×(n+1)

max is given by the following clause form:

D =



X1 X1 X1 . . . X1

X2 X2 X2 . . . X2

...
...

... . . .
...

Xn Xn Xn . . . Xn

e e e . . . e


. (18)

Example 1: Let [x] = ([0, 2], [1, 3])t. Thus, if x ∈ [x] then

(xt, e)t ∈ span(D) with D =

0 2 0

1 1 3

e e e

calculated thanks to

Eq.(18). This is consistent ∀x ∈ [x], as it is shown in Figure
1.

[x]

•
D1:2,3

•
D1:2,1

•
D1:2,2

−1 0 1 2 3
0

1

2

3

4

x1

x
2

Fig. 1. [x] and span(D) of Example 1.

B. The inverse image of z - backward reach set

The computation of the inverse image of a given mea-
surement, depicted by vector z w.r.t. Eq.(8b), was properly
discussed in [10] and it is defined as the solution in x of the
following problem:

I−1
[C]{z} = {x ∈ Rn

max :∃C ∈ [C] : Cx = z} , (19)

x ∈ I−1
[C]{z} ⇐⇒ Cx � z � Cx.

Therefore, we recall the solution in x obtained in [10] and
we invite the reader to refer to this work for more details6.
Let

I−1
[C]{z} = L ∩ U, (20)

6The max-plus mapping is generally residuated but not dually residuated,
i.e. given z, there is a unique greatest x given by Eq.(10) such that Cx � z,
but not a unique least x such that Cx � z. Hence, the task of finding x in
Cx � z � Cx is not as straightforward as the direct image computation.

where

L =

q⋂
i=1

Li, Li =
{
zi � (Cx)i

}
, U = {x � C ◦\z} , (21)

and
Li ≡

n⋃
j=1

{xj � cij ◦\zi}. (22)

Thus L ∩ U = (
⋂q

i=1 Li) ∩ U =
⋂q

i=1 Li ∩ U and then

I−1
[C]{z} =

q⋂
i=1

(
n⋃

j=1

{xj � cij ◦\zi} ∩ {x � C ◦\z}

)
, (23)

is a set of cardinality bounded by nq

In the following, we will show that it is possible to reinter-
pret the previous results with the objectives of improving the
computation times and representing I−1[C]{z} as the span of a
single matrix rather than a set with exponential cardinality.

Lemma 2: The following two-sided max-plus equation
directly encodes Li of Eq.(22) with the same expressiveness:

(ci1, . . . , cin)x⊕ (zi) = (ci1, . . . , cin)x⊕ (ε). (24)

Proof: The proof is straightforward by considering the
partial order induced by ⊕ (see Eq.(1)):

zi � (Cx)i ⇔ (Cx)i ⊕ zi = (Cx)i,

⇔ (ci1, . . . , cin)x⊕ (zi) = (ci1, . . . , cin)x⊕ (ε).

Proposition 2: Let H be a max-plus polyhedron. The
following properties are equivalent:

i span(H) ⊆H , where span(H) is given by the solu-
tion set of the following two-sided max-plus equation:(

C z

En×n X
U

)(
x

e

)
=

(
C Eq×1

In X
U

) (
x

e

)
, (25)

(representing q + n single equations) where X
U

=
C◦\z,

ii H is the smallest max-plus polyhedron such that
I−1[C]{z} ⊆H .

Proof: The proof is a direct consequence of Lemma
2 with the intersections along i ∈ {1, . . . , q} as presented
in Eq.(24) and along j ∈ {1, . . . , n} as presented in Eq.(17)
but by replacing Xj by X

U

j . Summing-up, the inverse image
is seen as a vertical concatenation of q + n constraints, as
presented in Subsection II-E.

Eq.(25) is proper to be solved using any algorithm of
Subsection II-E.

Example 2: Let z = (5, 4)t and [C] =

(
[1, 4] [2, 3]

[1, 2] [e, 4]

)
. Thus,

if x ∈ I−1[C]{z} (see Eq.(19)) then (xt, e)t ∈ span(H)

with H =

ε 3 1 ε 2

3 ε 0 2 ε

e e e e e

calculated thanks to Eq.(25)

with


4 3 5

2 4 4

ε ε 3

ε ε 3


(
x

e

)
=


4 3 ε

2 4 ε

e ε 3

ε e 3


(
x

e

)
. This is consistent

∀x ∈ I−1[C]{z}, as it is shown in Figure 2.



I−1[C]{z}

}
H1:2,1

}
H1:2,2

•
H1:2,3

}
H1:2,4

}
H1:2,5

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

x1

x
2

Fig. 2. I−1
[C]
{z} and span(H) of Example 2.

C. Merging the direct and inverse images
Let χ be the set that merges information obtained from

Eq.(14) and Eq.(19), i.e. a set that considers the a priori
information computed thanks to the dynamic equation over
x(0) and the a posteriori information obtained thanks to the
observation equation over x, as follows:

χ = I[A0],[A1]{x(0)} ∩ I
−1
[C]{z}, (26)

= {x � X} ∩
{
x � X

}
∩ L ∩

{
x � X

U
}
,

= L ∩ {x � X} ∩
{
x � min{X,XU}

}
.

Proposition 3: Let S be a max-plus polyhedron. The
following properties are equivalent:

i span(S) ⊆ S , where span(S) is given by the solution
set of the following two-sided max-plus equation: In En×1

En×n X
′

C z

(x
e

)
=

In X

In X
′

C Eq×1

(x
e

)
, (27)

(representing 2n+ q single equations) with the neces-
sary calculations of X and X

′
= min{X,XU} in a

previous step,
ii S is the smallest max-plus polyhedron such that χ ⊆

S .
Proof: The proof is straightforward, mixing Proposi-

tions 1 and 2 and does not require further details.
Eq.(27) is proper to be solved using any algorithm of

Subsection II-E.
Example 3: Consider the uMPL system given below:

x = Ax(0), A ∈
(
[1, 3] [e, 4]

[2, 4] 2.5

)
, (28a)

z = Cx, C ∈
(
0.5 [e, 1]

)
, (28b)

with x(0) = (e, e)t, x′ = (3.3, 3.3)t, z = (0.5 0.5)x′ = 3.8.
From [10], the solution of χ = IA∈[A]{x(0)}∩I−1C∈[C]{z} is
given by the union of pairwise disjoint hyperrectangles (in-
terval vectors with strictness sign) as shown in the following:

χ = hyper1 ∪ hyper2, (29)
= {x1 = 3.3, 2.5 � x2 � 3.8}
∪ {1 � x1 < 3.3, 2.8 � x2 � 3.8}.

Alternatively, solving χ can be done by considering
Eq.(27) as follows:

e ε ε

ε e ε

ε ε 3.3

ε ε 3.8

0.5 1 3.8


(
x

e

)
=



e ε 1

ε e 2.5

e ε 3.3

ε e 3.8

0.5 1 ε


(
x

e

)
, (30)

such that its solution is given by span(S) where

S =

 1 3.3 1

3.8 2.5 2.8

e e e

 . (31)

Clearly, checking if the unknown target x′ belongs to χ
is easily done either using Eq.(11) with S and (x′t, e)t, i.e.
if (x′t, e)t ∈ span(S), or if x ∈ hyperi for any i ∈ {1, 2}.

The results using both approaches are shown in Figure 3.

hyper1

hyper2

•
S1:2,1

• S1:2,2

•
S1:2,3

0 1 2 3 4
2

3

4

5

x1

x
2

Fig. 3. χ as a union of 2 hyperrectangles and as the span of 3 generators
of Example 3.

IV. NUMERICAL SIMULATIONS

In this section we aim to compare the time and memory
consumption of the herein proposed method to compute
the set χ given in Eq.(26) and the one proposed in [10]
with overall complexity that amounts to O(qnq+1) in the
worst-case scenario and with data-storage of at most nq

hyperrectangles.
For the sake of simplicity and without loss of generality,

we therefore drop the matrix A0 in Eq.(14) which makes the
direct image to be only related to [y].

For simulation purposes, we define each bound of each
entry of the interval matrix [A1] to be respectively: a
pseudorandom value aij1 drawn from the standard uniform
distribution on the range between 0 and 10 and aij1 =
aij1 +∆ij with ∆ij drawn from the same range. The definition
of the bounds of [C] follows the same procedure with the
same ranges. Let the vector x(0) be equal to e, the vector
x is obtained from the ⊗-multiplication between a random
matrix A1 ∈ [A1] and the vector x(0) and the measurement
z is obtained from the ⊗-multiplication between a random
matrix C ∈ [C] and the vector x.

The Table I shows the results for different values of n
and q. The simulation scenario is defined with the mean
values of time (execution time7 T (s) in the solution of
Eq.(27) using [12] and T ′(s) using the codes available in
[10]) and memory (number of generators Ngen and number
of hyperrectangles Nhyper

8) consumption of 102 simulations
for each pair (n, q).

7The simulations were done running ScicosLab-4.4.2 on a Dell
Precision 5530 - 2.6 GHz Intel(R) Core(TM) i7 processor.

8Each hyperrectangle is represented by two matrices of dimension (n×2)
each, one for the upper and lower bounds and the other for the strictness
sign of these bounds. Hence, each hyperrectangle needs 4 units of storage
in n.



n q T (s) T ′(s) Ngen 4Nhyper

2 1 0.0035 0.0170 3.3737 5.8180
3 2 0.0036 0.044 5.9393 12.4444
4 3 0.0053 0.1887 11.6969 31.4340
5 4 0.0171 1.2358 19.9393 67.4744
6 5 0.2064 5.7839 36.6969 179.0300
7 5 1.3217 12.3333 58.1616 268.3232

TABLE I
COMPARISON OF TIME AND MEMORY CONSUMPTION.

V. CONCLUSIONS
This paper presents a faster way, if compared to [10], to

compute the intersection of the forward and backward reach
sets for general uMPL systems that is defined as the solution
of a two-sided max-plus equation taking into account the
a priori and a posteriori information that are available.
In future work, we aim to develop an analytic solution
of Eq.(27) using a similar procedure to that developed
in Eq.(18) in order to avoid the use of a computational
procedure. Stochastic filter design can take advantage of this
characterization of the dynamic evolution in a recursive way
using either the approach presented in [10, Section IV] or the
tools developed in [22] with initial interval vector defined as
the smallest envelope that enclosures χ.
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