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Informativity for centralized design of distributed controllers for networked

systems

Jaap Eising Jorge Cortés

Abstract— Recent work in data-driven control has led to
methods that find stabilizing controllers directly from mea-
surements of an unknown system. However, for multi-agent
systems we are often interested in finding controllers that take
their distributed nature into account. For instance, the full state
might not be available for feedback at every agent. In order to
deal with such information, we consider the problem of finding
a feedback controller with a given block structure based on
measured data. Moreover, we provide an algorithm that, if it
converges, leads to a maximally sparse controller.

I. INTRODUCTION

In this paper, we consider the problem of finding dis-

tributed controllers on the basis of measurements of an

unknown system. Such data-driven control problems have

garnered a lot of attention recently, both from the view-

points of control theory and learning. A particularly recent

development is based on the works by Willems et al. in

[1] and Markovsky and Rapisarda in [2]. These works have

shifted the focus from the two-step approach of system

identification combined with model based control towards

designing controllers directly from the data.

To be precise, we are interested in finding controllers for

multi-agent systems in the situation where the state matrix

is completely unknown. To compensate for this lack of

knowledge, we assume that we have access to measurements

of the input and the corresponding state collected over a finite

time window. In this paper, we take the viewpoint of the

informativity framework, introduced in [3]. This means that

we find a controller for the measured system by finding a

controller that works for the entire set of systems consistent

with the data. In contrast to [3], we do not assume that the

measurements are exact, but assume that the noise on this

time window satisfies bounds of the form considered in the

recent paper [4]. Among the results of [4] are conditions

that are necessary and sufficient for the problem of finding a

stabilizing controller. These conditions are given in the form

of the feasibility of linear matrix inequalities (LMI’s), and

therefore it is straightforward to check whether they hold.

However, the controllers found by the aforementioned

methods are not necessarily distributed. That is, each agent

might require knowledge of the state of each other agent in

order to stabilize the system. As this might be undesirable

or even impossible, we develop results that take into account

the networked structure of the system. For this, we focus
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on two different types of problems. First we consider the

problem of designing distributed controllers according to

a given communication graph. That is, controllers such

that agent number i only requires state measurements from

specific other agents. In essence, this requires us to find

state feedback matrices with a given block structure. After

this, we move to the problem of finding controllers with

maximal sparsity. Here we assume that the aforementioned

communication graph is also available for design, and want

to find a controller that guarantees the control objective, yet

uses as little communication as possible.

Our contributions are the following:

1) We formulate necessary and sufficient conditions, in the

form of linear matrix inequalities in terms of the data,

under which the measured system admits a quadrati-

cally stabilizing controller. These differ from previously

known results in the fact that we assume B is known.

2) Under certain specific assumptions, we show that the

existence of such a controller with a given block struc-

ture can be checked using linear matrix inequalities.

3) We state an algorithm consisting of a repeated convex

programming problem. If this algorithm converges, we

show that it finds a controller with maximal sparsity.

Proofs are omitted for space reasons and will appear else-

where.

Literature overview

As mentioned above, data-driven control has garnered a

lot of attention recently. Given that it is impossible to give a

complete overview of the field, we refer to the survey paper

[5] and the references therein. Some additional work that

needs to be highlighted combines data-driven control and

networks. Specifically, the paper [6] resolves a number of

data-driven problems regarding complex networks. In [7],

the output synchronization problem is resolved for leader-

follower multi-agent systems. Virtual reference feedback

tuning and H∞ are the topics of [8] and [9] respectively.

Lastly, [10] provides conditions on noiseless data for specific

analysis problems.

Of course, data-driven control is not only relevant in

a context of networked systems. Many results from more

general settings can also be applied to networks. Some such

more recent developments regard the design of different

types of controllers. Specifically, we note the work on data-

driven predictive control [11]–[13], optimal control [14],

[15], optimization-based control [16], and the behavior-based

methods of system level synthesis [17] and input-output

parametrizations [18].
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Apart from data-driven methods, we should also mention

the work on model-based design of distributed or decentral-

ized controllers. First, we note the survey papers [19], [20]

and the book [21] and the references therein. A particularly

useful method for resolving distributed design problems is

provided in the work on quadratic invariance [22]–[24].

More specifically, finding controllers that are as sparse as

possible, while still guaranteeing certain design goals, is also

a topic of significant interest. For this topic, a good overview

can be found in [25]. Special mention is made of the paper

[26], which, like this paper employs LMI’s and [27] which

deals with an efficient method for resolving these problems.

An important ingredient of most methods noted above is the

idea of reweighted ℓ1 minimization of Candes et al. [28]

(see also [29]). Specific applications of sparse controllers

can be found within the field of power networks [30], [31]

and security [32].

Organization

The paper is organized as follows. We start with a problem

formulation in Section II. After this, we introduce the for-

malities regarding informativity in Section III. In particular,

that section focuses on the quadratic stabilizability problem,

and provides conditions for finding a centralized controller

for each. In Section IV we consider the problem of finding a

controller corresponding to a specific communication graph,

which we resolve for two special cases. We develop an

algorithm for finding a controller that is as sparse as possible

in Section V. After this, Section VI illustrates the proposed

algorithm using a simulation example. Lastly, we end the

paper with conclusions.

II. PROBLEM FORMULATION

Suppose we have a heterogeneous networked system given

by r agents of the form:

xi(t+ 1) =

r
∑

j=1

Aijxj(t) +Biui(t) + wi(t). (1)

Denote the state and input dimensions of agent i by ni and

mi. We can represent the entire system by

x(t+ 1) = Asx(t) +Bu(t) + w(t), (2)

where

x(t) =







x1(t)
...

xr(t)






, u(t) =







u1(t)
...

ur(t)






, w(t) =







w1(t)
...

wr(t)






,

and

As =







A11 · · · A1r

...
. . .

...

Ar1 · · · Arr






, B =







B1 0
. . .

0 Br






.

We assume that the input matrix B is known, but that As is

unknown. In lieu of this, we assume that we have access

to data, consisting of a finite time window of input and

state measurements. Based on these data we are interested

in finding distributed controllers. In order to formalize this

notion, we introduce some additional notation.

Suppose that we have a state-feedback controller K that

guarantees some control objective for the system (As, B).
We can partition K in the same fashion as As and B, and

obtain

K =







K11 · · · K1r

...
...

Kr1 · · · Krr






,

with Kij ∈ R
pi×nj . Note that, if we close the loop, we get

u(t) = Kx(t). In other words, for each agent i we have that

ui(t) =

r
∑

j=1

Kijxj(t).

An essential observation is the following: If Kij = 0,

then agent i does not require knowledge of the state of

agent j in order to compute the feedback. As such, we can

guarantee the absence of such dependencies by imposing that

certain blocks Kij are equal to zero. A number of interesting

problems now arise.

First of all, there is the problem of centralized control,

that is controller that stabilizes the system based on measured

data. For this problem we make use the informativity frame-

work of [3]. This means that we make the observation that

we can only guarantee that a controller attains the objective

for the true system, if it does so for all systems that could

have generated the data.

Following the standard centralized problem, we consider a

number of variants. For the problem of control with a given

communication graph we suppose that the controller is

allowed a given communication graph, that is, for each agent

i, a set of ‘neighboring’ agentsNi are available for feedback.

In line with the previous discussion, this is equivalent to

finding a controller K such that certain blocks Kij are zero.

Alternatively, we might be tasked with controlling the

system as efficiently as possible in a number of ways. The

problem of data-driven control with minimal actuation

consists of finding a controller with the least number of

nonzero block-rows. This means that the controller acts on

the minimal number of agents. Similarly, we can consider

data-driven control with minimal observation. By finding

a controller with the least number of nonzero block-columns,

the controller is required to measure the state of the least

number of agents.

Lastly, we look at minimizing the number of nonzero

blocks in K . We refer to this problem as data-driven control

with maximal sparsity.

III. PRELIMINARIES ON INFORMATIVITY

Before we return to the question of distributed con-

troller design, we first formulate results regarding the non-

distributed case. In this section, we use the rather general

noise model that was introduced in [4]. Note that the results

presented here differ from those in the latter paper due to

the fact that we assume B is known.



Suppose that we collect data from system (2) in the form

of state and input trajectories x(t) and u(t). We capture these

measurements in the matrices:

X :=
[

x(0) · · · x(T )
]

,

U− :=
[

u(0) · · · u(T − 1)
]

,

and subsequently write

X+ :=
[

x(1) · · · x(T )
]

,

X− :=
[

x(0) · · · x(T − 1)
]

.

We assume that the noise w is unknown, that is, the samples

of w(0), w(1), . . . , w(T −1) are not measured. However, we

do assume that the noise samples collected in the matrix

W− :=
[

w(0) w(1) · · · w(T − 1)
]

satisfy a given noise model. Let

Φ :=

[

Φ11 Φ12

Φ⊤
12 Φ22

]

be such that Φ11 = Φ⊤
11 ∈ R

n×n, Φ12 ∈ R
n×T and Φ22 =

Φ⊤
22 ∈ R

T×T and Φ22 < 0. We now assume that the noise

satisfies
[

I

W⊤
−

]⊤ [

Φ11 Φ12

Φ⊤
12 Φ22

] [

I

W⊤
−

]

> 0. (3)

Remark III.1 (Special cases of the noise model). Note that

this noise model encompasses, among others, energy bounds

of the form W−W
⊤
− 6 Q, where Q ∈ R

n×n. For a further

discussion on the special cases of this noise model, we refer

to [4]. �

Clearly, the true state matrix As satisfies

W− = X+ −AsX− −BU−,

where W− satisfies (3). As such, it is clear that we can define

the set of all state-matrices compatible with the data as

Σ = {A ∈ R
n |W− = X+ −AX− − BU− satisfies (3)}.

Let N ∈ R
2n×2n be given by:

N :=

[

I X+ −BU−

0 −X−

]

Φ

[

I X+ −BU−

0 −X−

]⊤

. (4)

Then it is straightforward to show that A ∈ Σ if and only if

[

I

A⊤

]⊤

N

[

I

A⊤

]

> 0. (5)

As noted, we are interested in determining properties on

the true system, based on the measurements (U−, X) as

described above. Note that we can only conclude that the

true system (As, B) has a given property if (A,B) has

that property for all A ∈ Σ. This observation leads to the

following definition.

Definition III.2. Let B be given. We say that the data

(U−, X) are informative for quadratic stabilization if there

exists a feedback gain K and a matrix P > 0 such that for

each A ∈ Σ:

(A+BK)P (A+BK)⊤ < P. (6)

Note that informativity for quadratic stabilization not only

requires all systems in Σ to admit the same feedback gain K .

We also require all systems in Σ to admit the same Lyapunov

function P . In particular a shared Lyapunov function is given

by V (x) = x⊤P−1x.

We can equivalently write (6) in the form of:

[

I

A⊤

]⊤ [

P −BKPK⊤B⊤ −BKP

−PK⊤B⊤ −P

] [

I

A⊤

]

> 0. (7)

This means that characterizing informativity for quadratic

stabilization is equivalent to characterizing when the

quadratic matrix inequality (5) implies (7).

Theorem III.3 (LMI conditions for stabilization). The data

(U−, X) are informative for quadratic stabilization if and

only if there exist matrices P > 0, L and scalars α > 0, β >

0 such that




P − βI 0 BL

0 0 P

L⊤B⊤ P P



− α

[

N 0
0 0

]

> 0, (8)

where N is as defined in (4), holds. Moreover, in this case

the gain K := LP−1 stabilizes all systems in Σ.

IV. CONTROL WITH A GIVEN SPARSITY STRUCTURE

Having resolved the centralized control problems, we

move our attention to distributed controllers. For this, we

introduce some notation.

Let p ∈ N
k and q ∈ N

ℓ such that m =
∑k

i=1 pi and n =
∑ℓ

j=1 qj . Given M ∈ R
m×n we can partition it according

to the vectors p and q by

M =







M11 · · · M1ℓ

...
...

Mk1 · · · Mkℓ






, (9)

with Mij ∈ R
pi×qj .

We call σ ∈ {0, 1}k×ℓ a block sparsity structure, and

define the space of matrices corresponding to σ by:

Mσ
p,q := {M ∈ R

m×n |Mij = 0 if σij = 0}.

As such, it is clear that the problem of control with a given

sparsity structure is a special case of the following.

Problem 1 (Control with a given sparsity structure). Given

vectors p ∈ N
k, q ∈ N

ℓ such that m =
∑k

i=1 pi and

n =
∑ℓ

j=1 qj , and block sparsity structure σ ∈ {0, 1}k×ℓ.

Provide necessary and sufficient conditions for the data

(U−, X) to be informative for quadratic stabilization with

feedback gain K ∈Mσ
p,q.

Remark IV.1 (Block partitions and network systems). Recall

the problem formulation of Section II. There we decompose

K according to the state and input dimensions of the specific

subsystems. Clearly, this corresponds to the choice of r =



k = ℓ, and the partition pi = mi and qi = ni for each i. As

such, finding a controller with a given communication graph

is a special case of Problem 1. However, it is important to

stress that for Problem 1, this is not required. An interesting

alternative case we consider is the case where r = k and

pi = mi for each i, but where ℓ = 1. In terms of networked

systems, this corresponds to actuating only the agents i for

which σi1 = 1. Similarly, we can look at k = 1, which,

in terms of the set-up of Section II, would correspond to

measuring only agent i for σ1i = 1. �

Recall that in Theorem III.3 we formulate conditions for

quadratic stabilization in the form of LMI (8) in the variables

P > 0, L, α > 0 and β > 0. If (8) is feasible, we can find

a suitable feedback gain by taking K = LP−1. However,

note that the latter is not linear in the variables. This means

that testing feasibility of the subspace constraint LP−1 ∈
Mσ

p,q together with the LMI (8) is no longer linear. However,

certain special cases can be resolved in an efficient manner.

First of all, it is straightforward to show that L and K =
LP−1 have exactly the same (non-)zero rows, regardless of

P . As such, we have the following result.

Corollary IV.2 (Control with given block-rows). Suppose

that ℓ = 1. The data (U−, X) are informative for quadratic

stabilization with feedback gain K ∈ Mσ
p,q if and only if

there exists P > 0, L ∈ Mσ
p,q, α > 0 and β > 0 such that

(8), where N is defined as in (4), holds.

Let σ̄ := Iℓ ∈ {0, 1}ℓ×ℓ. Note that if P ∈ Mσ̄
q,q , then P

is a block diagonal n × n matrix. Moreover, if the matrix

P ∈Mσ̄
q,q is (block) diagonal, then so is P−1. Furthermore,

it is straightforward to prove that if this is the case, then

L ∈Mσ
p,q if and only if K = LP−1 ∈ Mσ

p,q.

Remark IV.3 (Block diagonal P and networks). Consider

the case of networked systems, that is, ℓ = r and qi = ni.

Then, the assumption that P is block diagonal corresponds

to the case where

x⊤P−1x =

r
∑

i=1

x⊤
i P

−1
ii xi.

That is, the Lyapunov function is decoupled. �

As such, we can resolve Problem 1 efficiently under the

additional assumption that P is block diagonal.

Corollary IV.4 (Control with diagonal Lyapunov function).

The data (U−, X) are informative for quadratic stabilization

with feedback gain K ∈ Mσ
p,q and Lyapunov matrix 0 <

P ∈ Mσ̄
q,q if and only if there exists 0 < P ∈ Mσ̄

q,q, L ∈
Mσ

p,q, α > 0 and β > 0 such that (8), where N is defined

as in (4), holds.

V. SPARSE CONTROL

After considering finding controllers with a given block

structure, we now move to the problem of finding controllers

that are as sparse as possible.

Let p ∈ N
k and q ∈ N

ℓ and let M be a matrix that is

partitioned as in (9). We define the block cardinality of a

matrix M , denoted bcardp,q(M) as the number of non-zero

blocks in M . Let φ : R→ R be the function defined by:

φ(x) :=

{

0 x = 0,

1 x 6= 0.

Note that the number of nonzero elements of σ ∈ {0, 1}k×ℓ

is equal to
∑k

i=1

∑ℓ

j=1 σij . As such, we have the following

equivalent statements

bcardp,q(M)= min
σ s.t. M∈Mσ

p,q

k
∑

i=1

ℓ
∑

j=1

σij=
k
∑

i=1

ℓ
∑

j=1

φ(‖Mij‖F ),

where ‖ · ‖F denotes the Frobenius norm.

In the case where pi = qj = 1 for all i and j, the block

cardinality is equal to the number of non-zero elements in

M . This is often referred to as the ℓ0-pseudo norm or simply

the cardinality of M . It should be stressed, however, that the

(block) cardinality is not a norm, nor a convex function.

This leads us to the following general problem.

Problem 2 (Control with maximal sparsity). Given vectors

p ∈ N
k, q ∈ N

ℓ such that m =
∑k

i=1 pi and n =
∑ℓ

j=1 qj
and data (U−, X) that are informative for quadratic stabi-

lization, resolve the following problem:

minimize bcardp,q(K),

subject to ∃P > 0 s.t. (6) ∀A ∈ Σ.
(10)

Remark V.1 (Interpretation in terms of networked systems).

It follows immediately from the reasoning in Remark IV.1

that this can be used for the problems of control with minimal

actuation/observation and control with maximal sparsity. �

Note that in Problem 2 the objective function is not a

convex function of K , and the constraint set is linear in P

and KP , but not necessarily in K . As such, the problem

above is not a convex problem. This means that the problem

can not be resolved by many standard methods.

An approach that can work for networked systems with a

relatively low number of agents is a simple exhaustive search.

In cases where we can efficiently solve Problem 1, we can

simply test feasibility for different block sparsity patterns σ

with increasing number of nonzero elements. This method

is guaranteed to provide the correct answer, but scales in a

combinatorial way with kℓ.

As a first step towards resolving the minimization prob-

lem (10), we formulate the following corollary of Theo-

rem III.3.

Corollary V.2 (Equivalent formulation of control with max-

imal sparsity). Resolving (10) in Problem 2 is equivalent to:

minimize bcardp,q(LP
−1),

subject to P > 0, ∃α > 0, β > 0. s.t. (8).
(11)

In the following we take an approach based on the

method of reweighted ℓ1 minimization, as introduced in [28].

As such, we propose a strategy consisting of repeating a

weighted optimization problem and updating the weights, as

shown in Algorithm 1.



Algorithm 1 Reweighted optimization

1: Inputs: Vectors p ∈ N
k, q ∈ N

ℓ with m =
∑k

i=1 pi and

n =
∑ℓ

j=1 qj , matrix N as in (4).

2: Outputs: {(Lt̂, Pt̂)}
t
t̂=0

for some t > 1.

3: Initialize: Set t = 0 and find L0 and P0 > 0 for which

there exist α > 0 and β > 0 such that (8) holds

4: while (Lt−1, Pt−1) 6= (Lt, Pt) do

5: for i = 1, . . . k, j = 1, . . . , ℓ do

6: Update the weights by:

7: if (LtP
−1
t )ij 6= 0 then

8: Let wij(t) :=
1

‖(LtP
−1
t )ij‖F

9: else

10: Let wij(t) :=∞
11: end if

12: end for

13: Set ft(L) :=
k
∑

i=1

ℓ
∑

j=1

wij(t)‖(LP
−1
t )ij‖F

14: Update the estimates by solving:

(Lt+1, Pt+1) := argmin
(L,P )

ft(L),

subject to P > 0, ∃α > 0, β > 0 s.t. (8)

(12)

15: Update t← t+ 1
16: end while

Note that the objective function of the optimization prob-

lem (12) is not dependent on P , but on Pt. As such, it

is straightforward to show that the objective function is a

convex function of L. Furthermore, the constraint set is given

by an LMI, making it straightforward to resolve (12).

Theorem V.3 (If reweighted optimization converges, its out-

put solves the stabilization problem with maximal sparsity).

Given vectors p ∈ N
k, q ∈ N

ℓ such that m =
∑k

i=1 pi
and n =

∑ℓ

j=1 qj . Suppose that the data (U−, X) are in-

formative for quadratic stabilization. Then, we can initialize

Algorithm 1. Moreover, if (Lt−1, Pt−1) = (Lt, Pt), and we

denote L := Lt and P := Pt then LP−1 is the minimizer

of (10).

It is important to realize that Theorem V.3 only gives

sufficient conditions for resolving Problem 2, since we

have not formulated conditions under which the algorithm

converges.
VI. SIMULATIONS

Let the true system be given by 3 agents, where ni = 2,

mi = 1 and Bi =

[

1
0

]

for each i 6 3. Assume that the true

state matrix is given by:

As =
3

5

















1 0 1 0 0 0
1 1 1 1 0 0
0 0 0 0 1 0
0 0 0 0 1 1
1 0 0 0 1 0
1 1 0 0 1 1

















, and B =

















1 0 0
0 0 0
0 1 0
0 0 0
0 0 1
0 0 0

















.

We generate measurements using Matlab, by choosing an

initial condition x(0), inputs u(t) and noise w(t) randomly

for t = 0, . . . 9, such that W−W
⊤
− 6 1

20I . The precise

measurements can be found in (13).

We use Yalmip [33] with Mosek as a solver in combination

with Theorem III.3 to resolve the informativity problem. The

solver returns P > 0, L, α > 0 and β > 0 such that LMI (8)

holds. As such, the data are informative for quadratic stabi-

lization. In addition this results in the stabilizing feedback

gain K1 = LP−1 for all A ∈ Σ, given by:
[

−0.071335 0.53919 −0.36814 0.23887 −0.72051 −0.74332
0.088392 0.091179 −0.38196 −0.37764 −0.64738 −0.060889
−0.076069 0.54351 0.11392 0.10647 −1.2478 −0.66924

]

It can be easily verified that this gain indeed stabilizes the

true system. However, since K is a full matrix we see that

in order to compute the input ui, we require for each j =
1, . . . , r the state xj . That is, the controller is not sparse. As

such, we move our attention to Problem 2, the problem of

control with maximal sparsity. Note that we are not in the

situation Corollary IV.2 or Corollary IV.4. As such, we have

no efficient way of resolving Problem 1. This prevents us

from performing an exhaustive search for a maximally sparse

controller. In addition, note that finding a feedback gain with,

for example, less than or equal to 4 nonzero blocks would

require us to check up to 255 different sparsity patterns. In

line with Section V, we implement Algorithm 1 numerically.

This requires making a number of straightforward changes

regarding machine precision to the pseudo code. Again, we

apply Yalmip with the solver Mosek. After 21 iterations, the

algorithm has stabilized up to the required precision. The

corresponding feedback gain, denoted K21, is found as:
[

0 0 0 0 0 0
0 0 −0.19134 −0.048629 0 0

−0.94584 −0.052014 −0.11946 0.073348 −0.98268 −0.14899

]

As such, we have obtained a feedback gain with just 4

nonzero blocks that stabilizes all systems in Σ.

VII. CONCLUSIONS

We have considered data-driven distributed and sparse

control. In particular, we started with defining and resolving

informativity problems regarding centralized stabilization.

As such, we formulated conditions under which a controller

guarantees stabilization for all systems compatible with given

measurements. After this, we have considered the same

problem while restricting the allowed controllers to those

corresponding to a given communication graph. For two

specific cases, it was shown that efficient solutions are

possible. Lastly we formulated an algorithm whose steps

can be calculated efficiently. If this algorithm converges, it

results in the most sparse stabilizing controller for all systems

compatible with the data. Future work will investigate the

synthesis of stabilizing controllers with a given sparsity

structure (cf. Problem 1) for the general case, the applica-

tion of efficient solution methods to the stabilization with

maximal sparsity (cf. Problem 2), establishing convergence

of Algorithm 1. A last problem of interest is the case where

a block structure of the state matrix is known, in addition



X =















0.75274 1.2276 1.5028 1.4546 2.2505 3.2402 4.0554 4.8123 5.0687 5.8844 7.3989

0.48475 1.6001 2.0504 3.067 5.4602 8.2031 11.736 16.6432 22.2254 28.3431 36.5077

0.62701 0.28679 0.56613 1.9483 1.9467 2.3218 3.3144 3.4338 3.7058 5.0454 5.0957

0.80199 0.30132 0.99168 2.6294 4.0138 5.7936 8.6326 12.1519 16.2375 21.5731 27.317

0.11059 0.60892 1.6934 1.9273 2.9284 3.9676 4.7534 5.4348 6.8431 7.5784 8.6763

0.39059 1.0436 2.6886 4.7617 6.7268 10.4199 15.4993 21.6268 29.1105 37.9496 47.8538















U− =





0.39914 0.59328 0.21324 0.20845 0.72101 0.71757 0.39015 0.12077 0.61899 0.8402

0.22042 0.20061 0.93207 0.79012 0.56395 0.93289 0.58158 0.4449 0.9393 0.54806

0.090819 0.59133 0.0087293 0.89861 0.85981 0.42837 0.14863 0.69451 0.43057 0.59851





W− =10
−4















0.56402 0.85894 0.078075 0.30536 0.81527 0.68118 0.19788 0.30939 0.66536 0.8844

0.21199 0.93952 0.38109 0.63732 0.34066 0.82892 0.067992 0.74664 0.63701 0.16617

0.020618 0.17608 0.26612 0.25169 0.81665 0.99683 0.21282 0.0048493 0.20266 0.57528

0.61413 0.1923 0.19338 0.42205 0.42013 0.11501 0.24711 0.46404 0.91496 0.25192

0.10097 0.13537 0.88955 0.63512 0.39169 0.35093 0.91207 0.34179 0.69204 0.14824

0.35514 0.51728 0.61431 0.50191 0.33043 0.84755 0.31911 0.24342 0.93888 0.53028















(13)

to one for the controller. Employing such knowledge of

the network structure of the system Being able to use this

knowledge, might lead to stronger results.
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