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Abstract

Advanced Driver Assistance Systems (ADAS) are already an important contributor to
safety in conventional vehicles and thus in road traffic. This is obviously necessary, as
in Austria in 2020, almost 99% of all accidents with personal injury were presumably
caused by misconduct of involved persons or impairments [1]. Furthermore, country
roads seem to be a safety-relevant environment, as they account for more than 50% of
the fatalities in road traffic in Austria.

In order to increase the contribution of ADAS and therefore the safety in road
traffic, ADAS are developed further with the goal of becoming more “intelligent”
and gaining abilities like perception and assessment of road traffic situations as
well as planning and execution of the further actions. One important fact in this
process is the correct and precise prediction of the driving behavior of other traffic
participants. While on highways and in cities, it is primarily the surrounding traffic
that influences the behavior of vehicles, on country roads it is often necessary for a
driver to adapt the driving behavior to the road topology, making it challenging for
behavior prediction. Therefore, the aim of this work is to build a prediction model
that uses the characteristics of the road to estimate the future range where vehicles
will be located on country roads.

For this purpose, different motion prediction types are introduced, whereby Bayesian
Networks are chosen as the prediction model type for the present thesis. Subsequently,
the Bayesian Network is created and adapted to the present task and, in contrast
to other works, extended with known attributes of the road topology, in order to
consider them for the prediction of the driving behavior. To train the Bayesian
nets and to validate the prediction concept, real world data is used and analysed
regarding its topological attributes. Subsequently, the influence of the particular
topological attributes on the quality of the prediction models is determined. For the
validation, two performance measures concerning the accuracy and conservativeness
are introduced, in order to assess the results of the prediction and to compare different
approaches with each other. It is shown that especially the consideration of the
curvature in combination with the sign of the slope has a positive influence on the
prediction results.

In a next step, the influence of the identification strategy on the prediction results is
observed, where for the identification a measure for the “richness” of a training data
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set is introduced. It becomes apparent, that the “richness” and also the volume of the
identification dataset influences the quality of the prediction models.

Finally, the Bayesian network model is used for an Adaptive Cruise Controller (ACC)
in simulation, in order to predict the behavior of the preceding vehicle. The ACC is
formulated as an optimal control problem and solved within a MPC framework, while
the validation is based on a measure for the fuel economy and driving comfort. The
result was, that the prediction with the Bayesian net improves the fuel economy and
driving comfort in comparison to other prediction methods, which are based only on
first principles.



Kurzfassung

Fahrerassistenzsysteme leisten schon heute einen wichtigen Beitrag zur Sicherheit
im Straßenverkehr. Dies ist offensichtlich auch notwendig, da in Österreich im Jahr
2020 fast 99% aller Unfälle mit Personenschaden durch mutmaßliches Fehlverhalten
der beteiligten Personen oder durch Beeinträchtigungen wie Alkohol oder Müdigkeit
verursacht wurden [1]. Darüber hinaus scheinen Landstraßen ein sicherheitsrelevantes
Umfeld zu sein, da jährlich mehr als 50% der Todesfälle im Straßenverkehr in Österreich
auf Landstraßen entfallen.

Um den Einfluss von Fahrerassistenzsystemen und damit die Sicherheit im Straßen-
verkehr zu erhöhen, werden Fahrerassistenzsysteme mit dem Ziel weiterentwickelt,
“intelligenter” zu werden. Das bedeutet, dass sie Anwendungen wie die Wahrnehmung
und Bewertung von Situationen im Straßenverkehr und die Planung und Entscheidung
des weiteren Vorgehens abdecken sollen. Ein wichtiger Faktor ist dabei die richtige
und präzise Vorhersage des Fahrverhaltens anderer Verkehrsteilnehmer. Während
auf Autobahnen und in Städten vor allem der Umgebungsverkehr das Verhalten der
Fahrzeuge beeinflusst, ist es auf Landstraßen oft notwendig, dass ein Fahrer sein
Fahrverhalten an die topologischen Eigenschaften der Strecke anpasst, was die Ver-
haltensprognose zu einer Herausforderung macht. Ziel dieser Arbeit ist es daher, ein
Prädiktionsmodell zu entwickeln, das die topologischen Eigenschaften der Straße nutzt,
um den zukünftigen Bereich abzuschätzen, in dem sich Fahrzeuge auf Landstraßen
befinden werden.

Zu diesem Zweck werden verschiedene Ansätze zur Prädiktion vorgestellt, wobei
Bayes’sche Netze für die weitere Verwendung in der vorliegenden Arbeit gewählt wer-
den. Im Gegensatz zu anderen Arbeiten werden die Bayes’schen Netze um bekannte
Attribute der Straßentopologie erweitert, um diese bei der Vorhersage des Fahrverhal-
tens zu berücksichtigen. Zum Training der Bayes’schen Netze und zur Validierung des
Prädiktionskonzepts werden reale Daten verwendet und hinsichtlich ihrer topologischen
Eigenschaften analysiert. Anschließend wird der Einfluss der einzelnen topologischen
Attribute auf die Qualität der Prädiktionsmodelle bestimmt. Für die Validierung wer-
den zwei Leistungsmaße hinsichtlich der Genauigkeit und Konservativität eingeführt,
um die Ergebnisse der Vorhersage zu bewerten und verschiedene Ansätze miteinander
zu vergleichen. Es zeigt sich, dass insbesondere die Berücksichtigung der Straßenkrüm-
mung in Kombination mit dem Vorzeichen der Steigung einen positiven Einfluss auf
die Prädiktionsergebnisse hat.
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Im nächsten Schritt wird der Einfluss der Identifikationsstrategie auf die Prädiktion-
sergebnisse betrachtet, wobei für die Identifikation ein Maß für die “Reichhaltigkeit”
eines Trainingsdatensatzes eingeführt wird. Es zeigt sich, dass die “Reichhaltigkeit” als
auch der Umfang des Identifikationsdatensatzes die Qualität der Prädiktionsmodelle
beeinflusst.

Schließlich wird ein ausgewähltes Bayes’sches Netzwerk in Simulation für einen Ab-
standsregeltempomat (ACC) verwendet, um das Verhalten des vorausfahrenden
Fahrzeugs vorherzusagen. Der ACC wird als optimal-control Problem formuliert
und im Rahmen eines MPC gelöst, während die Validierung auf einem Maß für den
Kraftstoffverbrauch und Fahrkomfort basiert. Es zeigt sich bei der Prädiktion mit
dem Bayes’schen Netz eine Verbesserung des Kraftstoffverbrauchs und Fahrkomforts
im Vergleich zu anderen Prädiktionsmethoden, die keine topologischen Eigenschaften
berücksichtigen.
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Chapter 1

Introduction

This chapter will give introductory information about the background and motivation
of this work. Furthermore, the topic of motion prediction will be discussed, in order
to give an overview of possible approaches, existing works and relations to the current
work. Finally, the structure of the thesis is shortly described.

1.1 Background

In the past decades, the trend to more “intelligent” vehicles evolved to the goal of
developing autonomously or self-driving cars. This goal was partly achieved by some
car manufacturers, but it will still need time until these cars will be integrated in
regular traffic due to remaining technological and legal challenges. These include
finding the optimal sensing modality for localization, mapping and perception, accuracy
and efficiency lacking algorithms and the need for proper online assessment, as it was
shown in [2]. Besides the technological issues, there are also ethical and especially
legal concerns, e.g., when it comes to accidents, whereby one main advantage of self
driving cars actually could be the reduction of accidents. In Austria in 2020, almost
99% of all accidents with personal injury were presumably caused by misconduct of
involved persons or impairments, as it can be seen in Table 1.1. The main contributors
to this figure are carelessness or distraction, failure to give way, non-adapted speed
and lack of safe distance.

In order to address this issue and to support the driver in conventional non-self-driving
cars, Advanced Driver Assistance Systems (ADAS) are deployed. Certain ADAS
have been utilized since decades and already belong to the standard equipment of
conventional vehicles. These are, for example:

• Anti-lock Braking System (ABS)

• Traction Control System (TCS)

• Electronic Stability Control (ESC)

• Emergency Brake Assist, Limited-slip differential etc.

1
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Table 1.1: Overview of the presumed main causes of accidents in Austria in 2020 (from [1])

Presumed main causes of accidents Total
Misconduct by persons involved 90,6%
thereof Non-adapted speed 16,1%

Failure to give way (also to pedestri-
ans), disregarding red lights

25,0%

Overtaking 2,8%
Carelessness / distraction 28,4%
Misbehaviour of pedestrians 2,5%
Lack of safe distance 10,9%
Disregarding bans and prohibitions
(e.g., driving against one-way system,
bans on turning)

4,9%

Impairments 8,4%
thereof Alcohol, drugs or medication 6,3%

Fatigue 0,9%
Health impairments 1,2%

Vehicle-specific causes 1,1%
Technical defect, inadequate load se-
curing

1,1%

Total 100,0%

Other newly developed ADAS support the driver and take over more and more tasks
in order to increase the safety, raise the driving comfort or lower the fuel consumption:

• Adaptive Cruise Control (ACC)

• Lane Keep or Lane Change Assistance (LKA)

• Autonomous Emergency Braking (AEB)

• etc.

These ADAS have different core functions like localization and mapping, perception, as-
sessment, planning and decision making, vehicle control, and human-machine interface
[2]. One of the most important tasks for planning and decision making is to estimate
the location of other road users in future situations as accurately as possible, without
being too conservative. The question is always, which factors influence a human
driver and subsequently, which actions are set by the driver to cope with those factors.
This of course depends highly on the respective type of environment. Additionally,
not only influence factors in the observable area, but also limited observability may
play a role. Perception limitations [3] pose a problem for ADAS systems [4] and are
especially due to safety reasons subconsciously considered by human drivers [5]. These
limitations can be overcome through vehicle-to-everything (V2X) communication
[6] which, however, cannot yet be assumed to be realistically available in the near
future [7]. Many prediction approaches are based on reachable sets [8, 9, 10], while
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probabilistic methods which reduce conservativeness are also well known [11, 12].
Other authors combine first principles with possible maneuvers in the environment
[13, 14] to improve prediction performance. A general overview of different motion
prediction types will be given in Section 1.2.

Compared to urban areas or highways, the road topology seems to play a significant
role for drivers on country roads, which are – as they account for 54.7 % of the
fatalities in road traffic in Austria [1] – a very relevant environment. In Figure 1.1 the
development over time of the fatalities in road traffic in Austria can be seen broken
down by the road type between 2011 and 2020. It is obvious that country roads
accounted for at least the half of all fatalities each year.

Year

F
at

al
iti

es

Country roads
Urban area
Highways
Others

Figure 1.1: Temporal development of fatalities in road traffic in Austria broken down by road
type (data from [1]).

When driving along a country road, the topology of the surroundings, such as the
curvature of the road, the slope, and also the visible range, is – in most cases –
subconsciously incorporated into the driving decision of human drivers to remain in
a safe state [5]. The question arises, if it is possible to determine the significance of
the respective influence factors and if this knowledge can be used to create a realistic
prediction model.
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1.2 Overview of motion prediction types

This section is mainly based on the research and findings of Lefèvre et al. in [15].

In order to assess particular situations in traffic regarding the ego-vehicle’s risk of
being endangered by an accident, mathematical models are needed, which are able to
predict how these situation will evolve in future. These models can be classified in
three groups with an increasing level of abstraction:

1. Physics-based motion models:
These models represent the simplest way of modelling, as only physical laws are
considered for the motion prediction.

2. Maneuver-based motion models:
These models additionally include the estimated driver intention in order to
determine the future maneuver of the vehicle.

3. Interaction-aware motion models:
In this case the inter-dependencies between vehicles’ maneuvers are considered
to estimate the future motion.

In the following, these three groups or types of motion prediction will be discussed
more detailed.

1.2.1 Physics-based motion models

Physics-based motion models (also known as first principles) predict the evolution of
physical states of a vehicle like position and velocity based on particular inputs, e.g.,
acceleration or steering angle. Due to the mostly known underlying physical laws and
therefore more or less complex modelling, these models are widely used for trajectory
prediction and collision risk estimation in the context of road safety. The complexity
of these models depends on the underlying problem and how fine and real-life-similar
the representation of the vehicle has to be.

The modelling of the evolution of the physical states of a vehicle can be classified in
two types:

1. Dynamic models:
For these types of models the vehicle and its behavior are described by the use
of Newton’s laws or respectively Langrange’s equations, in order to consider the
different forces that affect the motion. These forces can, e.g., be the lateral and
longitudinal tire force or the air resistance. As the behavior of car-like vehicles is
based on complex coherences from the driver to the street, dynamic models can
get very complex, dependent on the existing task and parameters which have
to be considered. Usually, more complex models are needed for control tasks,
while for trajectory prediction simpler models are used. For example, in [16]
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such a “simple” dynamic model of a vehicle can be found, which is also directly
compared to a kinematic vehicle model for the same task:

ẍ = ψ̇ẏ + ax (1.1)

ÿ = −ψ̇ẋ+ 2
m

(Fc,f cos δf + Fc,r) (1.2)

ψ̈ = 2
Iz

(lfFc,f − lrFc,r) (1.3)

Ẋ = ẋ cosψ − ẏ sinψ (1.4)
Ẏ = ẋ sinψ + ẏ cosψ (1.5)

In this case, ẋ and ẏ denote the longitudinal and lateral velocities in the body
frame, and Ẋ and Ẏ the respective velocities in the inertial frame. ψ̇ denotes
the yaw rate, m and Iz denote the vehicle’s mass and yaw inertia, Fc;f and Fc,r
denote the lateral tire forces at the front and rear wheels in coordinate frames
aligned with the wheels. lf and lr represent the distance from the center of the
mass of the vehicle to the front and rear axles. ax and δf are the inputs of the
model, and represent the acceleration in longitudinal direction and the steering
angle.

2. Kinematic models:
Kinematic models are far more popular for trajectory prediction than dynamic
models, as they describe the motion based on the mathematical relationships
between the physical parameters of the motion like position, velocity and accel-
eration. Hence, kinematic models do not consider forces which affect the motion
or complex dependencies inside the vehicle. Therefore, kinematic models are
also better suited for trajectory prediction involving more traffic participants,
like in ITS (Intelligent Transportation Systems), as no internal parameters of
other participants are needed, as it would be necessary for dynamic evolution
models. The simplest kinematic models are the Constant Velocity (CV) and
Constant Acceleration (CA) models, which both assume, that the motion is
straight and the velocity respectively the acceleration remain constant until the
next time step. This might sound quite trivial, but it is sufficient for many cases.
A more complex but still simple model can be found, e.g., in [17]:

ẋ(t) = v(t) cos (θ(t)) (1.6)
ẏ(t) = v(t) sin (θ(t)) (1.7)
v̇(t) = a(t) (1.8)

θ̇(t) = v(t)
Da

tan (δ(t)) (1.9)

with a visualization of the quite common single-track or “bicycle” representation
of a vehicle, as depicted in Figure 1.2.

The next question is now, how the trajectory prediction is performed and mainly how
uncertainties are handled. Therefore, three different approaches were given in [15]:
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Figure 1.2: Representation of a car as a two-wheeled vehicle with the corresponding attributes
for the kinematic model (from [17])

1. Single trajectory simulation:
In this approach, it is assumed that the current state is perfectly known and the
dynamic or kinematic evolution model is a perfect representation of the motion
of the vehicle. The future trajectory is therefore predicted by simply applying
the evolution model to the current state of the vehicle. On the one hand, this
approach is quite straightforward and computationally efficient, but on the other
hand, uncertainties on the current state or the shortcomings of the evolution
model can not be considered. Therefore, such approaches are not reliable for
long term predictions.

2. Gaussian noise simulation:
The states of a vehicle like position and velocity can be measured with sensors,
whereby these measurements appear to be noisy, which is an uncertainty as the
state can not be determined exactly. This uncertainty can be modelled by a
normal distribution, whereby the current state can be estimated with Kalman
Filters. Firstly, the evolution model is applied to the current estimated state
x(t), resulting in a predicted state x̂(t + 1) which is distributed normally. In
the second step the sensor measurements at time t+ 1 are combined with the
predicted state, resulting in an estimated state x(t + 1). By repeating the
prediction in a certain state, one can obtain a mean trajectory with associated
uncertainty at each future time step, as done in [18].

The problem with these approaches is, that modelling the uncertainties with an
unimodal normal distribution is insufficient to represent the different possible
maneuvers. One solution are Switching Kalman Filters, which use mixtures of
Gaussians to represent the uncertainty.
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3. Monte Carlo simulation:
Monte Carlo methods provide tools to approximate the distribution on the
predicted states, when no assumption can be made about the Gaussianity of
the uncertainties. Thereby, one randomly samples from the input variables of
the evolution model in order to generate potential future trajectories starting
from the current state. This results in a set of possible future trajectories, which
do not all have to be feasible in real-life regarding the road topology or the
feasibility of a maneuver. To take this into account, unfeasible trajectories
can be removed or penalized with weights, or the physical limitations could be
considered in the evolution model.

As stated so far, physics-based motion models are only based on low level properties
of the motion like dynamic or kinematic attributes. Therefore, they are unable to
anticipate any change in motion caused by a particular maneuver or by external
factors like the change of the driver intention based on the road topology. This is the
reason why this type of models is limited to short-term prediction and is not suitable
for the present work.

1.2.2 Maneuver-based motion models

Maneuver-based motion models represent the motion of a vehicle on a road network as
a series of consecutively executed maneuvers. These maneuvers can be, for example,
stop, go straight, turn left, lane change left etc., and are assumed to be executed
independently of other vehicles. The prediction of the future motion of a vehicle is
therefore based on the early recognition of the maneuver which the driver is intending
to perform. If the maneuver is identified, it is assumed that the future motion of
the vehicle will match the maneuver. In order to recognize the intended maneuver
properly, two different approaches are given in [15]:

1. Prototype trajectories:
This approach is based on the idea, that the road network is a structured environ-
ment and therefore all possible trajectories can be clustered in groups, whereby
every group represents a typical motion pattern or maneuver. These motion
patterns are learned from previously observed data, where several trajectories of
a motion pattern are agglomerated to one prototype trajectory for this particular
maneuver. This can be done in various ways, e.g., with a stochastic represen-
tation meaning the mean trajectory and a standard deviation, with several
prototype trajectories out of the training data or with Gaussian processes. These
appeared to be well-suited for the representation of motion patterns (as seen
in [19]) because of their robustness to noise and to variabilities in the velocity
due to varying traffic conditions, with the disadvantage of a high computational
complexity.

After learning of the motion patterns, the prediction is based on finding the
motion pattern which is the most similar to the partial trajectory executed
by the vehicle so far. The similarity between the partial trajectory and the
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motion patterns can be measured with the probability that the trajectory
corresponds to a Gaussian Process, with the Euclidian distance between points
of the trajectories, the Longest Common Subsequence etc. After the matching
of the partial trajectory with the motion pattern, the simplest way to predict
the future motion is to use the prototype trajectory of the motion pattern.
Another possibility is to use a mixture of motion patterns and to combine them
by weighing in terms of probability, or to pick a weighted subset of probable
trajectories.

The main disadvantage of this approach is the adaption of the prototype trajec-
tories to different road layouts, as each motion model is trained for one specific
intersection geometry and topology. Therefore, they can only be reused at
intersections with a similar layout as the training intersection.

2. Maneuver recognition and execution:
The main difference and advantage of this approach is, that the maneuver
intention of the driver is estimated based on higher-level characteristics instead
of matching a partial trajectory with a prototype trajectory, which makes it easier
to generalize the learnt model to different layouts. Among these characteristics
are, for example, the physical state of the vehicle, information about the road
network or the driver behavior. These characteristics can then be used in heuristic
approaches, discriminative learning algorithms like Multi-Layer Perceptrons,
Logistic Regression or Support Vector machines, or in Hidden Markov Models
[20] in order to determine what maneuvers are likely to be performed in the near
future.

After recognizing the maneuver, the future trajectory is predicted, so that it
matches the identified maneuver. This can be done by deriving the input controls
for the corresponding maneuver and applying it to a kinematic motion model,
which leads to a deterministic future trajectory. The drawback of this approach
is, that uncertainties on the current state or the maneuver can not be considered.
A solution to this problem are Gaussian Processes or Rapidly-exploring Random
Trees (RRT) [21].

The main limitation of maneuver-based motion models is the assumption that vehicle’s
motion is independent of the other traffic participants. In practice, the maneuvers of
one vehicle necessarily affect the maneuvers of other vehicles. These inter-dependencies
are particularly strong at road intersections, where priority rules force vehicles to take
into account the maneuvers performed by the other vehicles.

1.2.3 Interaction-aware motion models

Interaction-aware motion models take up the drawback of maneuver-based motion
models and represent vehicles as maneuvering entities which interact with each other.
This leads to a better interpretation of the motion, a better understanding of situations
in road traffic and a more reliable evaluation of the risk. These models are mainly
based on prototype trajectories and Dynamic Bayesian Networks:
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1. Trajectory prototypes:
This approach is already known from maneuver-based motion models. Just like
in this type of motion prediction, the inter-vehicle dependencies can not be
considered during the training phase as the resulting number of motion patterns
would quickly become intractable. The difference here is, that mutual influences
can be taken into account when matching the partial trajectory with a motion
pattern. The background is the assumption, that drivers have a strong tendency
to avoid collisions when they can. Therefore, pairs of trajectories which lead
to an unavoidable collision are penalized in the matching process, whereby safe
trajectories are always considered more likely than hazardous ones. This is an
elegant workaround, but still the mutual influences can not be modelled directly.

2. Dynamic Bayesian Networks:
Most interaction-aware motion models are based on Dynamic Bayesian Networks.
Other similar approaches are (Coupled) Hidden Markov Models [22], which are
especially used for modelling of pairwise dependencies between multiple moving
entities. These are usually made asymmetric, which means that it is assumed
that the surrounding traffic affects the vehicle of interest, but not vice versa,
which reduces the computational complexity significantly.

Interaction-aware motion models are the most comprehensive models proposed so
far in literature. They allow longer-term predictions and are more reliable as they
consider inter-vehicle dependencies. One fact, which is to be improved in future, is
the computational complexity and real-time risk assessability.

1.3 Structure and aim of this work

In various works, Bayesian networks have been used to predict the behavior of
surrounding vehicles in different traffic scenarios to improve fuel economy, driving
comfort and safety [23, 24, 25] and also for overtaking [26], but the focus lays mostly
on the vehicles, and topological factors of the environment are hardly considered.

This work aims to overcome this gap by exploiting the property of Bayesian networks
to map the effect of variables on a predicted quantity in a targeted manner. Since
these networks enable to map the effect of individual variables on a predicted variable,
they are also used in this work, utilizing the toolbox from [27]. Different topological
influence factors on country roads are discussed and their significance on driving
behavior is studied by incorporating them in Bayesian network-based prediction
models, which additionally rely on first principles. Subsequently, a combined model is
applied on a simple ADAS in comparison with other prediction methods to investigate
the advantages of considering topological factors for prediction.

The rest of the work is structured as follows:
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• In a first step, the underlying environment is discussed in Chapter 2. Furthermore,
a general introduction to Bayesian networks is given, in order to explain the
deployment for this thesis, and to declare the applied prediction concept.

• Chapter 3 gives an overview of the collection and analysis of the data, which
was used for identification and validation.

• In Chapter 4, the influence of particular topological attributes on the quality of
the prediction is observed. Therefore, two performance measures are introduced.

• The influence of different identification strategies on the quality of the prediction
is observed in Chapter 5.

• The prediction approach is subsequently implemented on an ACC system in
Chapter 6, in order to compare its performance with other approaches.

A majority of the concepts in this thesis can also be found in [28], which was created
in the course of the master thesis.



Chapter 2

Conception and conditions of the
prediction

In this chapter, as a first basic step, the representation of the environment will be
discussed. In a next step, several basic concepts, attributes and examples of Bayesian
networks will be covered, which are relevant for the present work. Finally, the concrete
concept for the prediction will be explained.

2.1 Representation of the environment

The prediction within this work is done based on topological influences like curvature
or road grade and first principles like position and velocity. Therefore, in contrast
to other works regarding behaviour prediction, the modelling of the ego-vehicle or
potential obstacle vehicles is not considered. In order to describe the topological
conditions, a local street-aligned coordinate system (XR, YR, ZR) is used, where the
curvature of the primary lane c(j′) = 1/r(j′) as well as the road grade α(j′) are
assumed to be given for each longitudinal position s(j′) along the route, with j′

indicating an arbitrary spatial index. This results in a representation where the
whole route can be expressed using consecutive arcs with a well-defined radius of the
centre-line, see Figure 2.1. If, at an arbitrary time t(k′), a vehicle moves along the lane
with s(j′) ≤ s(k′) ≤ s(j′ + 1), the arbitrary spatial attribute x(k′) of the enclosing
segment is assumed to hold for the respective time instant x(k′) ≈ x(j′) which is a
realistic assumption for small ∆s(j′).

The representation of the road is done with common values of conventional country
roads with a assumed width of wroad = 6 m and margins of ml = mr = 1 m. The
margins ml and mr represent possible obstacles for the sight of an observer in a
position s(j′), like walls, houses or bushes as depicted in green in Figure 2.1. Of
course, this depends strongly on the type of the country road, i.e. the margin would
be significantly higher when driving through lowlands without any trees or agriculture.
In this work, the route, on which the used datasets base, runs mainly through forests
and so the margin of 1 m is a good representation of the circumstances of the real
driver. With these 2 parameters, street width and margin, it is possible to estimate

11
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Figure 2.1: Coordinate representation as arc coordinates for the longitudinal position s(j′)
with all respective characteristics of the road.

the visible distance svis(j′) for each spatial position s(j′) along the route. The visible
distance svis(j′) is a representation of the maximum possible distance or area, which
a real driver can overlook in a position s(j′), and so it is one of the main influences
on drivers in real traffic situations, which is also taught in driver license classes. In
the German-speaking world the visible distance describes the “Fahren auf Sicht”.

The estimation of the visible distance was first introduced in [29] and expanded by
adding a consideration of the road grade in [5]. The idea of the estimation is to
transform the Cartesian space to an ego-centered angular space, where the visible
distance can be obtained by a constrained optimization, which is explained in more
detail in Section 3.1.

2.2 Probabilistic Prediction with Bayesian Networks

The present work is based on a probabilistic prediction approach using Bayesian
networks which contain random variables connected by conditional probabilities, as
visualized in Figure 2.4. Using these networks, the parameters – i.e., the mean
ŝµ(k′+n) and standard deviation ŝσ(k′+n) – of a distribution function are estimated
for an arbitrary time instant k′ + n, as it can be seen in Figure 2.6. This distribution
is then used to compute hard deterministic limits of the position range of a vehicle
(ŝlb(p)(k′ + n) for the lower bound of the possible position and ŝub(p)(k′ + n) for the
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respective upper bound), which can be directly used in a controller. In the following
two sub-chapters, Bayesian Networks will be discussed in general and it will be
exemplified how they are applied and adjusted for the present problem.

2.2.1 General Introduction to Bayesian Networks

Before discussing Bayesian networks, several basic definitions of the probability theory
are given in the following.

Random Variable

A Random Variable X is a variable with a fixed (finite or infinite) set of possible
values V al(X) – the so called domain – which represents some aspect of the system’s
world. Different types of random variables are:

• Boolean variables: V al(X) = {false, true} or {0, 1}

• Discrete (categorical) variables: have a finite domain of symbolic values.
Example: Season with V al(Season) = {spring, summer, fall, winter}

• Continuous (real-valued) variables: V al(X) ∈ R

Event

An Event is a fixed assignment of values to some or all of the variables in the system’s
world. An Atomic Event is an event where all random variables in the system’s world
have a specific value assigned.

Joint and Marginal Distribution

In a world defined by a set of random variables X , the probability distribution over
all atomic events possible over X is called Full Joint Distribution over X . It assigns
probabilities to all possible value combinations of the set X . Marginal Distributions
assign probabilities to all value combinations of a selected subset X ⊂ X .

Conditional probability

Describes the probability P (α | β) that some (unobservable) event α is true when
another observed event β is given.
Example: α describes if a patient has the corona virus and β describes if the patient
has fever. Then P (α | β) describes the probability that the patient has corona if it is
known that he has fever.

Bayesian networks

Bayesian networks are directed acyclic graphs with so called nodes and edges. The
nodes stand for random variables, which are connected by edges representing condi-
tional probability distributions.
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• Directed: Every edge has a direction from a starting node Xi to a ending node
Xj . This direction indicates that the starting node has an influence on the ending
node, which is described by the conditional dependency resp. the connecting
edge. In this case the starting node Xi is called a Parent of the ending node Xj ,
resp. Xj is a Child of Xi

• Acyclic: In a Bayesian net, in every path the starting node is always different to
the ending node. Therefore no circles can occur in the graph, which is of vital
importance to the factorization of the joint probability of a collection of nodes.

• Graph: Bayesian networks belong to the group of graphical models. Nodes are
usually depicted as circles and edges are depicted as arrows.

All those concepts and the application of Bayesian nets will be clear in the following
concrete example and the corresponding explanations, which are from [30].

The situation is the following, that a company wants to hire a recent college graduate.
The goal is to hire intelligent persons, but it is not possible to measure or test
intelligence directly. Instead, the company asks the applicants to supply the results of
their SAT test (Scholastic Assessment Test), and their grade in some relevant course
at the university, which could be more or less difficult. Furthermore, the student
brings a recommendation letter of the professor of this course. According to this
introduction, there are 5 random variables:

• Intelligence I ∈ {low, high} or {i0, i1}

• SAT-Score S ∈ {low, high} or {s0, s1}

• Grade G ∈ {A,B,C} or {g1, g2, g3}

• Difficulty of the course D ∈ {low, high} or {d0, d1}

• Recommendation letter L ∈ {bad, good} or {l0, l1}

These variables can be arranged to a Bayesian net as it is depicted in Figure 2.2.
There we can see the causal dependencies from the introduction, where the difficulty
and the intelligence affect the grade, the intelligence affects the SAT and the grade
affects the recommendation letter. Of course these are not deterministic relationships,
as there are uncertainties from real-life like having a bad day and therefore performing
bad at the SAT, or other factors which influence the grade beside the difficulty and
intelligence. These uncertainties can be modelled with probabilities, which are shown
in the small tables in Figure 2.2. We distinguish two types of probabilities:

• Unconditional probabilities: associated with variables without parents
Example: P (i1) = 0.3 . . . the probability that a random student is highly
intelligent is 30%

• Conditional probabilities: for variables that depend on parent variables
Example: P (s0 | i1) = 0.2 . . . the probability that an intelligent student gets a
low SAT score is 20%
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Figure 2.2: Bayesian network for the example from [30]

Each row in each of the tables is a (conditional) probability distribution CPD. With
the help of these CPDs, different types of reasoning patterns in this network are
possible:

1. Causal Reasoning or Prediction:
Is a type of reasoning from causes to effects (or downwards) in the network.
Example: We want to find out, how likely it is that a random student gets a
good recommendation letter. We find out that the student is not so intelligent
and therefore the probability of a strong recommendation goes down:

P (l1 | i0) ≈ 0.389

Next we find out that the attended course was easy that year, which makes the
probability go up again, because an easy class raises the probability for a good
grade and a good grade raises the probability for a good recommendation letter:

P (l1 | i0, d0) ≈ 0.513

2. Evidential Reasoning or Explanation:
Is the counterpart to Causal Reasoning and describes the reasoning from effects
(observations) to possible causes (upwards) in the network
Example: The probability that a random student is intelligent is directly given
by the model:

P (i1) = 0.3
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If we now find out that this student got a C (g3) in his class, the probability
that the student is intelligent goes down significantly:

P (i1 | g3) ≈ 0.079

Furthermore, the probability that the course is difficult goes up to from:

P (d1) = 0.4 to P (d1 | g3) ≈ 0.63

3. Intercausal Reasoning or Explaining Away:
This type of reasoning describes, that one causal factor between two variables
Xi and Xj gives information about another casual factor between Xi and Xk.
Example: The aforementioned student has a bad grade, but submits the SAT
score which is surprisingly high (s1). This raises the probability for intelligence,
as it is more likely that an intelligent student gets a bad grade than that an
intelligent student has a bad SAT score.

P (i1 | g3, s1) ≈ 0.578 > P (i1 | g3) ≈ 0.079

Furthermore, the probability for difficulty of the class rises:

P (d1 | g3, s1) ≈ 0.76 > P (d1 | g3) ≈ 0.63

A poor grade is a possible indicator of a difficult class, but could also be due
to low intelligence. But when we learn that the student is (probably) highly
intelligent, then probably the course must really have been difficult.

Special characteristics of Bayesian networks

• Conditional independencies:
In a Bayesian network, every variable is conditionally independent of all it
non-descendants, given its parents

(Xi ⊥ NonDesc(Xi) | Pa(Xi)) for all Xi ∈ X

This means in our example, if the grade is given, the letter can be determined
without any other information. So, L is conditionally independent of D, I, S.

• Factorised Probability Distribution:
Each node in the network is associated with a set of conditional probability
distributions (Xi | Pa(Xi)) (the tables in Figure 2.2). The full joint distribution
over all variables can be represented as a product of all local CPDs:

P (X1, . . . , Xn) =
n∏
i=1

P (Xi | Pa(Xi))
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One instance from the example:

P (d0, i0, g2, s0, l1) = P (d0) ·P (i0) ·P (g2 | d0, i0) ·P (s0 | i0) ·P (l1 | g2) = 0.09576

So, the probability of a random student being less intelligent, the course being
easy, the student achieving a B grade in this course and a low SAT score, and
still receiving a good recommendation letter from the professor is 9.58%.

• Compactness of the representation:
Consider a set X = {X1, . . . , XN} of N boolean random variables in an arbitrary
(not Bayesian) network. The full joint distribution P (X1, . . . , XN ) over X has
2N entries resp. different atomic events. To specify these, 2N − 1 independent
parameters are required and therefore the representation of the full joint distri-
bution is infeasible for reasonably large N .
But, if we consider a sparsely connected Bayesian network with the same amount
of variables N , where sparsely connected means that each variable has at most
k << N parents, the complexity becomes exponentially reduced from O(2N )
to O(N) for a fixed k << N . In our example, we would theoretically need
2 · 2 · 3 · 2 · 2 = 48 independent parameters, but due to the sparse connectivity
(2 << 5) we only need 15 independent parameters.

• Linear Gaussian Networks:
In our considerations so far, we assumed that all variables in a model are discrete
with a finite domain V al(X), which allowed us to represent the conditional prob-
ability distributions P (X | Pa(X)) in the form of a table. The problem with this
assumption is that many systems involve continuous aspects and measurements
that are best modelled by real-valued variables, like position and velocity in our
case.
This problem can be solved with parametrisable density functions, whereby the
parameters of a distribution P (X | Y ) are a function of the specific value y. As
a consequence, it is not necessary to explicitly represent an infinite number of
distributions P (X | y). A special and very common case are linear gaussian
networks, where all distributions in the net are modelled as Gaussians N (µi;σ2

i ).
For our case, we will also use Gaussian distributions, although we have mea-
surements of the position and velocity. One could now easily say, that the next
longitudinal position has to be s(j′ + 1) = s(j) + v(j) ·∆t, which is true for
a theoretic case. But in real life there are uncertainties and other influences
(some of which we will consider), which affect the motion of the vehicle. This
uncertainties are modelled with Gaussian distributions where the mean value,
e.g., could be s(j) + v(j) ·∆t.

• Dynamic Bayesian networks:
These are Bayesian networks, which don’t relate fundamentally different variables
like intelligence and grade, but relate variables over adjacent time steps.

For the prediction of driving behavior Dynamic Bayesian Networks are used, as it is
standing to reason that the future position and velocity are dependent on the actual or
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preceding position and velocity. One example can be found in [26], where the behavior
of the surrounding vehicles was predicted with the Dynamic Bayesian Network in
Figure 2.3. In this case the future velocity and lateral displacement were predicted
based on the respective preceding values and an indicator signal.

Figure 2.3: Bayesian network from [26] for prediction of future velocity vx,i and lateral
displacement yi. (IK . . . Indicator signal)

2.2.2 Inclusion of topological attributes and limitations

In Figure 2.3 and in previous works like [24, 26, 23] it can be seen, that mainly first
principles are utilized as variables in the Bayesian network, in order to predict ones
driving behavior. But thinking about experiences of real driving situations on country
roads, one can imagine that there are a plenty of influences which affect the driver.
Some of these influences are topological and hence only dependent on the actual
position s(j′) of the road, like the curvature or the slope. In this work, we want to
incorporate those topological influences in a Bayesian network, so as to achieve a more
realistic prediction of the driving behavior. This results in a structure of the Bayesian
network, which can be seen in Figure 2.4.

In the lower part of Figure 2.4, a trivial Dynamic Bayesian network can be seen, where
the future velocity and longitudinal position (blue circles) are dependent on their
preceding values, just as in Figure 2.3. Additional to this basic structure, in the upper
part of the figure the incorporation of the topological influences is depicted. The yellow
square with the label Σ stands for the additional interchangeable information which is
used. Throughout this work we will construct several experiments and combinations of
additional topological variables and informations, in order to determine their influence
on the prediction.
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Figure 2.4: Basic structure of the Bayesian network for prediction, where the additionally
used information (Σ) is interchangeable. Predicted values are displayed in blue and marked
with a hat.

The topological attributes, which will be used in this thesis, are:

svis . . . Visible distance

c . . . Curvature

c̄vis . . . Maximum curvature within the visible distance

|α| . . . Absolute value of the slope

sign(α) . . . Sign of the slope

As the presence of a potential preceding vehicle was not recorded in the data, the
neglect of such – especially in terms of visible distance svis(k′) – poses a limitation.
On the other hand, it somehow also robustifies our method, as this knowledge cannot
be expected to be given for all surrounding vehicles in reality.

If this circumstance had been considered and the prediction models had been identified
only for vehicles without preceding vehicles – or with the actual visible distance –
a more accurate prediction performance than that achieved in this work could be
expected.
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2.3 Concept of deterministic limits

Normal distributions are assumed within this work, which is theoretically to be
considered as a limitation, since they feature infinite expansion, which is unrealistic
for most physical quantities. However, in practice this is not relevant here, since we
deduce deterministic limits from the parameters of the distribution. This approach is
depicted in Figure 2.5:

ŝµ(k� + n)

ŝub(p)(k
� + n)

ŝµ(k� + 1)

ŝlb(p)(k
� + 1) ŝub(p)(k

� + 1)

ŝlb(p)(k
� + n)

s(k�)

s(k� + 1)

s(k� + n)

pdf(ŝ(k� + 1))

pdf(ŝ(k� + n))

...

2ŝσ(k� + n)

2ŝσ(k� + 1)

Figure 2.5: Concept of the prediction for n steps in the future with the respective parameters
of the predicted distribution (ŝµ(·), ŝσ(·)) as well as predicted lower and upper boundary
(ŝlb(p)(·), ŝub(p)(·)) and actual value s(·).

Assuming the prediction of the parameters of a normal distribution at an arbitrary
temporal time instant k′ + n – with ŝµ(k′ + n) as the spatial mean and ŝσ(k′ + n) as
the spatial standard deviation – the lower and upper spatial border ŝlb(p)(k′ + n) and
ŝub(p)(k′ + n) which enclose the value with a probability p can be derived using the
z-factor zpf related to the respective probability-level.

ŝlb(p)(k′ + n) = ŝµ(k′ + n)− zpf · ŝσ(k′ + n) (2.1)

ŝub(p)(k′ + n) = ŝµ(k′ + n) + zpf · ŝσ(k′ + n) (2.2)

This way, the results of the prediction can be directly converted to a deterministic
spatial interval based on which error-level (1− p) one is willing to accept.

All previously discussed concepts can be seen jointly in Figure 2.6. The prediction is
done based on first principles – previous position and velocities – and on topological
attributes of the road like curvature, slope and visible distance of the driver. With
the above explained approach we can predict a deterministic possible range of the
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longitudinal position of the vehicle, with the lower bound ŝlb(p) and upper bound
ŝub(p).

r(k�) = 1/c(k�)

a(k�) v(k�)

s(k�)

ŝlb(p)(k
� + n)

ŝub(p)(k
� + n)

svis(k
�)

XR

YR

Figure 2.6: Concept of the prediction method including topological influence factors. It is
assumed that the visible distance is limited only by the environment and not by a potential
preceding vehicle.

2.4 Implementation in Matlab

For the computationally quite complex process of training a Bayesian Network,
sampling from the net and validating the model, basically the Bayesian Net Toolbox
for Matlab by Murphy et al. [27] was used. This toolbox supports many kinds of nodes
(probability distributions), exact and approximate inference, parameter and structure
learning, and static and dynamic models. In order to increase the usability, the toolbox
was extended at the institute in the last years, resulting in a small number of needed
functions. The use of these functions will be explained shortly in the following for a
model which incorporates all topological attributes, in order to give an overview of
the implementation.

2.4.1 Identification
1 %% Define net structure
2 % Define all variables in the Bayesian net
3 variables(1) = bayes.defineVariable( 's', 's', 0, @gaussian_CPD);
4 variables(2) = bayes.defineVariable( 'v', 'v', 0, @gaussian_CPD);
5 variables(3) = bayes.defineVariable( 'vis', 'vis', 0, @gaussian_CPD);
6 variables(4) = bayes.defineVariable( 'curv', 'curv', 0, @gaussian_CPD);
7 variables(5) = bayes.defineVariable( 'viscurv', 'viscurv', 0, @gaussian_CPD);
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8 variables(6) = bayes.defineVariable( 'Aalpha', 'Aalpha', 0, @gaussian_CPD);
9 variables(7) = bayes.defineVariable( 'Salpha', 'Salpha', 2, @tabular_CPD);

10
11 % Define all outputs and their dependencies
12 outputs(1) = bayes.defineOutput( 's( k) ', {'s( k -1) ', 'v( k -1) '}, nPH);
13 outputs(2) = bayes.defineOutput( 'v( k) ', {'v( k -1) ', 'v( k -2) ', 'vis(0) ','curv(0) '

,'viscurv(0) ','Aalpha(0) ','Salpha(0) '}, nPH);
14 structure = bayes.defineNetStructure(variables, outputs);

Listing 2.1: Defining the structure of the Bayesian Network

In Listing 2.1 it can be seen, how the structure of the Bayesian network can be
defined. First, with the function defineVariable one is able to include a variable to
the network and define its name and its assumed conditional probability distribution.
In this case, all variables are assumed to be distributed normally, except the sign
of the slope, which can only adopt 2 values. The function defineOutput creates the
connections within the net, as the name and the dependencies of the output variables
are defined. Furthermore, the prediction horizon nPH is to define. After defining
the variables and outputs, the structure of the Bayesian net is to define with the
function defineNetStructure. For the concrete case of PΣ, this leads to the Bayesian
net in Figure 2.7, generated with a plot function of the toolbox. As it can be seen, a
prediction horizon of 20 is chosen, which corresponds to a time span of 10 seconds.

1 %% Train model
2 % Segmentize training data
3 lenSegment = bayes.getSegmentLength(structure.nodes);
4 segments = bayes.segmentizeDatasets(data, lenSegment);
5 % Train
6 model = bayes.trainModel(structure, segments);

Listing 2.2: Defining the structure of the Bayesian Network

Listing 2.2 shows the process of training the Bayesian net. First the training data
is segmented with the function segmentizeDatasets into segments with the length of
the prediction horizon. Afterwards, these segments are used to train the net with
trainModel, which returns the trained Bayesian net model.

2.4.2 Validation

The model can be sampled with the function getSamples, as it can be seen in Listing 2.3.
The result are NSamp predicted positions and velocities over the prediction horizon,
which can be converted into a mean course position respectively velocity and a standard
deviation.

This is done for every data point in the validation dataset, resulting in a 1×nPH = 1×20
predicted vector for every validation data point. Afterwards, the performance measures
from Section 4.2 are calculated for every prediction step.

1 %% Sample model
2 input = bayes.getInput(model, val_input, val_ind);
3 samples = bayes.getSamples(models. m{iExp}, input, NSamp);

Listing 2.3: Defining the structure of the Bayesian Network
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Figure 2.7: Structure of the Bayesian net for PΣ





Chapter 3

Collection and analysis of data

In this chapter, the origin and the methodology of the data collection will be discussed.
Furthermore, the given data will be analyzed mainly visually through histograms,
in order to get an insight into the data, which will be used for identification and
validation in the following chapters.

3.1 Data Collection and Processing

To develop and especially also to validate the performance of prediction methods, data
is required. In this case, the data is limited to trajectories of a measurement vehicle
without information concerning the surrounding traffic. Although the surrounding
traffic is not the main focus in this work, this poses a limitation as the influence of
other vehicles cannot be modelled, leading to an unknown bias of the measurements.

3.1.1 Data Collection

The measurements were taken using a BMW F31 equipped with different sensors,
of which the DGPS-sensor is relevant for the current work. This sensor measures
the current position of the vehicle with the help of the DPGS (Differential Global
Positioning Service), which is a improved version of the well-known GPS, whereby the
measured position is corrected with the help of fixed ground-based reference stations
that have a fixed known position.

On a country road (L1501 between Linz and Altenberg, AT) various drives were
performed to measure trajectories of the vehicle. The initial purpose of these test
drives was to create models for eco-driving control [31]. The drivers were not aware
that their behavior would be analyzed also in terms of safety, leading to non-biased
and natural behavior. In total, 39 drives were performed. For the current work, the
datasets were truncated to 5 km, in order to have a uniform route length for all drives
and to cut off the starting and ending part of the route, which are more similar to
urban traffic than to country roads. The resulting truncated route is portrayed in
Figure 3.1.

25



26 3 Collection and analysis of data

Figure 3.1: Route (Altenberger Straße - L1501 [32]) with a total length of 5 km where the
test drives were performed. The green diamond represents the start in upward direction, while
the blue box displays the end of the route – and vice versa.

3.1.2 Data Processing

Additional to the measurement of the trajectories of the test vehicle, topological
attributes of the route in Figure 3.1 were determined. Those are

• slope α:
The slope can be determined by taking 2 consecutive measurements and applying
the trigonometric laws:

tanα = ∆ZR
∆XR

2 + ∆YR 2 or sinα = ∆ZR
∆XR

2 + ∆YR 2 + ∆ZR 2

• curvature c:
The determination of the curvature is based on the assumption, that the whole
route can be expressed using consecutive arcs with a well-defined radius of the
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center-line, see Figure 2.1. The curvature is then calculated as the reciprocal
value of the radius.

• visible distance svis: In Figure 3.2, the concept of the estimation of the visible
distance is depicted, which was first introduced in [29] and expanded by adding
a consideration of the road grade in [5].

δ′

s(knv)

Pmaxfl

fr

fc

A B δ

d

δ′

fl

fr

cmin(fl)

cmax(fr)fc

Figure 3.2: Concept of the estimation of the visible distance svis (from [29])
A . . . representation in Cartesian space, B . . . transformed representation in angular space

The idea of the estimation of the visible distance is to transform the Cartesian
representation of the road (Figure 3.2-A) and its lanes and margins to an
angular representation (Figure 3.2-B), which is defined by the relative angle
to the longitudinal axis of the vehicle and the distance to the vehicle. For the
estimation, the left road margin fl and right road margin fr are transformed
to the angular space (darkgreen functions), as well as the center of the right
lane (red function). In this new representation, the determination of the first
non-visible position or index knv is possible by simply evaluating

knv = arg min
k
k (3.1)

s.t. cmax(fr(k)) ≥ fc(k) | cmin(fl(k)) ≤ fc(k) (3.2)

This means, that the determination of the visible distance is simplified to the
determination of a cumulated minimum cmin(fl), cumulated maximum cmax(fr)
and the intersection of the center of the right lane fc with cmin(fl) or cmax(fr).
In (Figure 3.2-B), the visible distance is depicted in blue at the point where
fc is lower than cmax(fr) and so the constraints of the above stated problem
is fulfilled. If the car in the figure would be some meters behind its depicted
position, the transformed right lane fc would first reach the cumulated minimum
cmin(fl), and so the visible distance would be much lower.

As the visible distance is not only dependent on the curvature of the road, and
so the left and right margins of the road, but also on the height profile of the
road, this concept was extended in [5]. The expansion with the height profile is
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quite similar to the above explained concept, with the difference that the visible
distance is only dependent on the height profile of the road itself. The first
non-visible index is then the one after the cumulated maximum of the height
profile.

The resulting estimated visible distance is then the minimum of the two separately
estimated visible distances.

3.2 Data Analysis

After collecting and processing the necessary data, the data needs to be analysed, so
that it can be used properly for identification and validation of the prediction models.

3.2.1 Analysis concerning the topological attributes

In order to get an imagination of their distribution along the route, the magnitudes
of the three topological attributes slope α, curvature c and visible distance svis are
plotted along the route in Figure 3.3. Green coloring stands for a small slope, a
low curvature or a high visible distance, while red coloring stands for the opposite.
Furthermore, it is to say, that for this depiction only the “upward” direction was
considered. It can be seen that the slope is relatively high along the whole route, with
only few road segments with no or negative slope, which stands for downhill segments.
The curvature along the whole route is mainly low, as the green coloring suggests.
But, there are some exceptions where the curvature is relatively high, mainly at the
last third of the road, where even a almost 180-degree-curve occurs. As explained
above, the visible distance is mainly determined by the slope or height profile and
the curvature of the road. This fact reflects also in Figure 3.3-C. In segments where
the curvature and the slope are low, the visible distance is relatively high, while it
becomes relatively low if at least one of the two topological attributes is high.

Within the dataset, both the route and also the vehicles show a wide range in terms of
the single attributes, which are visualized in Figure 3.4, where in the upper plots (A,
C, E, G) both directions are shown separately, with “upwards” meaning starting from
the green diamond towards the blue box in Figure 3.1. In the lower plots (B, D, F, H)
the data is shown for both directions combined. It can be seen, that the velocity has
an approximate form of a normal distribution with a mean of about 18 m/s ≈ 65 km/h.
Furthermore, an interesting fact is that the velocity distributions for both directions
are almost the same, which was not to expect, as the downwards direction consists
mainly of downhill segments, where one could tend to drive at slightly higher velocities.
The distribution of the visible distance has a range of 300 metres and its mean at
approximately 100 metres, which shows that rather lower visible distances occur along
the route. As mentioned above, the curvature along the route is mainly low, which is
confirmed in Figure 3.4-F. The mean of the combined distribution of the curvature is
almost exactly at 0 m−1, but the full range of the occuring curvatures accounts for
about 0.04 m−1. For a better imagination of this figure, the curvature of the curved
sides of a standardized running track is about 0.025 m−1. In contrast to the curvature,
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Figure 3.3: Heatmaps of the topological attributes, A) slope α, B) curvature c, C) visible
distance svis

the slope is distributed around a mean of about 0.7 rad, which can be converted to
the specification of slope used in road traffic of approximately 8.9%.

The wide ranges of the single attributes are also illustrated in Figure 3.5, where the
slope, the curvature and the visible distance are plotted in relation to the driven
velocity. There are no significant correlations to see, as the driven velocity is not
affected by the 3 attributes separately, but by all 3 at the same time. Nevertheless,
some intuitive expectations can also be found in these 2D-plots. For example, there
are no data points at very low visible distances and high velocities. Furthermore,
the higher the curvature, the lower was the driven velocity. The slope is very wide
distributed in relation to the velocity, the only behavior that can be observed is that
the range of the driven velocity is smaller in segments with no or very low slope.
The majority of the data points or cases is at a driven velocity between 55 km/h
and 70 km/h, a slope of ±0.05− 0.1 rad, almost no curvature and a visible distance
between 50 and 100 m.

Besides the visual analysis in the form of plots, the data is also analysed based on
its statistical features in Table 3.1. The statistical features are the minimum and
maximum occurring value in the dataset, and the 25-, 50- and 75-quantile. Quantiles
are values that partition a finite set of values into subsets of almost equal sizes. For
example, the quantile Q25 stands for the value, which is greater than 25% of the
values in the dataset. In other words, 25% of the dataset’s values are lower than Q25.
According to this notation, the minimum could also be called Q0 and the maximum
Q100, while the mean value is Q50. In Table 3.1, the findings of the visual observation
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Figure 3.4: Histograms of the velocity (A-B) and the route attributes visible distance svis
(C-D), curvature c (E-F) and slope α (G-H) in upwards, downwards and

combined-direction each
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Figure 3.5: Histogram of the visible distance svis, related to the
driven velocity
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are confirmed. The distribution of the driven velocity is almost symmetric, while the
distribution of the visible distance has a trend to lower values. Q75 accounts for about
137 m, while the maximum value is 300 m. This means that the width of the range of
the first 75% of the data is almost equal to the width of the range of the last 25%
of the data. Another unique behavior occurs at the curvature, where the 3 quantiles
are equal zero. Of course, they are not exactly equal to zero, but differ in some
digit behind the comma. Nevertheless, this circumstance shows that the curvature is
mainly relatively low along the route. The slope is distributed symmetrically, as the 2
distributions of the upward and downward direction mainly differ by their sign.

Table 3.1: Statistical features of the recorded data.
Attribute min Q25 Q50 Q75 max

v in m/s 2.83 15.83 18.31 20.65 29.35
svis in m 10.93 65.81 93.57 136.82 300.00
c in 1/m -0.16 0.00 0.00 0.00 0.16
α in rad -0.12 -0.07 0.00 0.07 0.11

3.2.2 Analysis by a self-made test drive

In order to get a better feeling of the route and the various situations which can wait
for a real driver, an additional test-drive was executed on the route and filmed with a
conventional mobile phone camera. The most significant spots or situations with the
expectation of the influence on a potential driver will be discussed in the following:

• Spots with high and low slope α:
In this case “low slope” includes also downhill segments, which is shown in
Figure 3.7. From an heuristic, subjective point of view, the slope may affect the
drivers behavior in terms of velocity and fuel consumption. On the one hand, if
the slope is high, acceleration and therefore fuel consumption is needed to at
least maintain at constant velocity. On the other hand, if the slope is low, no
acceleration would be needed. However, this depends on the type of driver.

Figure 3.6: Spot with highest slope
αmax = 0.112 rad = 6.39 ◦ =̂ 14.2 %

Figure 3.7: Spot with lowest slope
αmin = −0.0289 rad = 1.66 ◦ =̂ −3.68 %
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• Spots with high and low curvature c:
At spots with high curvature like in Figure 3.8, the driver has to adjust the
velocity in order to pass the curve safely.

Figure 3.8: Spot with highest curvature
cmax = 0.156 m−1

Figure 3.9: Spot with lowest curvature
cmin ≈ 0 m−1

• Spots with high and low visible distance svis:
The same as in Figure 3.8 stands for spots with low visible distance, whereby
Figure 3.8 and Figure 3.10 show the same spot. The driver has to adjust the
velocity, as he has no appropriate overview of the situation.

Figure 3.10: Spot with highest visible dis-
tance svis,max = 301.4 m

Figure 3.11: Spot with lowest visible dis-
tance svis,min = 10.9 m

With these observations of the topological attributes, the question arises how the
consideration of certain attributes influences the quality of a prediction model. This
question is addressed by the approach presented in Chapter 4.





Chapter 4

Determination of the influence of
the topological attributes

In this chapter the influence of the already introduced topological attributes will
be analyzed. For this purpose, models with different combinations of considered
topological attributes will be trained and compared with the help of performance
measures, which will be introduced at the beginning of the chapter.

4.1 Experimental setup

As explained in Section 2.2.2, five topological attributes are deployed for the consider-
ation in the prediction models: visible distance svis, curvature c, maximum curvature
within the visible distance c̄vis, absolute value of the slope |α| and sign of the slope
sign(α). In order to determine their single influence on the quality of the prediction
models, as well as the influence of different combinations of the topological attributes,
the Bayesian nets for this observation will be trained with all possible combinations of
the above mentioned variables. With this approach it is also possible to determine how
the inclusion or extraction of certain topological attributes affects the performance.

The number of possible combinations can be calculated with the binomial coefficient(
n

k

)
= n!
k! · (n− k)!

ncomb =
(

1
5

)
+
(

2
5

)
+
(

3
5

)
+
(

4
5

)
+
(

5
5

)
= 31 combinations

Therefore, including the basic method with only first principles (position and velocity,
without topological attributes), this results in a total of 32 different models. These 32
models will be analysed step by step: first, the models are compared based on their
number of considered topological attributes in the prediction model. Subsequently,
the models are compared based on the particular topological attributes which are
considered in the certain models. As a next step, the influence of including a particular

35



36 4 Determination of the influence of the topological attributes

variable will be observed. Finally, this observation will be done for short and long
prediction horizons. The present database with a total of 39 drives is divided in two
parts, whereby the first 20 drives are used for identification and the second 19 drives
are used for validation of the prediction models.

4.2 Performance measures

In order to quantify and measure the prediction performance, two aspects are analyzed,
on the one hand the accuracy of prediction and on the other hand the aspect, how
conservative the prediction is. This is especially relevant in cases – such as the present
one – where the result of the prediction is an interval and not a precise value. In
case the predicted interval is overestimated, the first criterion would always evaluate
very good, while yielding a practically not useful big interval. This problem is dealt
with by additionally comparing a measure for the width of the interval in the second
criterion. n = [1, . . . , 20] prediction steps are analyzed, whereby the sampling time is
chosen with TS = 0.5 s.

4.2.1 Prediction accuracy

As the primary objective of the validation is to find how well one can trust in the
predicted interval, a measure to rate the accuracy of the interval, similar to the P15/15
method from [33], is used. At first sight the term “accuracy” could sound confusing in
combination with probabilistic prediction, but the accuracy in this case means merely
to determine if a measured sample lies in the predicted interval.

P (·)
acc(n, p) = 100

J

J∑
j=1

p(·)
acc(n, p) (4.1)

p(·)
acc(n, p) =


1 if

ŝ
(·)
lb(p)(k

′ + n) ≤ s(k′ + n) ∧
ŝ

(·)
ub(p)(k

′ + n) ≥ s(k′ + n)
0 otherwise

(4.2)

High values of Pacc(n, p) indicate a good performance, while low values imply the
opposite. An intuitive interpretation is, that for a very high number of validation
datasets J and a perfect match of prediction method and actual behavior, the value
of Pacc(n, p) should converge towards p. Values > p indicate an underestimation of
the behavior-variance, values < p indicate the opposite. For all tests, one standard
deviation was set as the bidirectional limit (z68.26 %

f = 1), which poses a limitation as
only a certain range of the probability distribution is observed. Nevertheless, with
the assumption of Gaussian distributions the results of this approach have general
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expressive power. In order to have a better comparison to the basic method P0, the
following adaption of the accuracy will be used in some cases:

P%
acc(n, p) = Pacc(n, p)− PP0

acc(n, p)
PP0acc(n, p)

(4.3)

yielding the absolute percentage deviation of the predicted accuracy from the accuracy
of the basic method.

4.2.2 Prediction conservativeness

Consequently, a measure for the conservativeness of the predicted interval is calculated
by comparing the predicted standard deviations to the one from the basic method P0.

P (·)
con(n) = 100

J

J∑
j=1

ŝ
(·)
σ (k′ + n)− ŝP0

σ (k′ + n)
ŝP0
σ (k′ + n)

(4.4)

This reflects, how additional information influences the confidence measure of the
Bayesian network in the predicted distribution, which is represented by the standard
deviation.

4.3 Comparison based on number of considered attributes

In a first step, these 32 prediction models are compared based on the performance
measures, as it could be seen in the previous section. The results of the validation are
depicted in Figure 4.1 – 4.4.

There it can be seen in general, that the consideration of more topological attributes
leads to higher deviations in the prediction accuracy between the respective models.
This means, that some models perform better than the ones before, but there are
also models which perform worse regarding accuracy. The main difference is, that the
measure for conservativeness PCon decreases, which means that the predicted intervals
get smaller or tighter when more attributes are considered. Especially when 4 or more
attributes are considered, the predicted intervals of all models are up to 3% tighter
than the interval of the basic method, as it can be seen in Figure 4.4. Therefore, the
main learning of this approach is, that by adding and considering more topological
attributes in the Bayesian net, a smaller or tighter future spatial area of the vehicle
can be predicted, while the accuracy remains almost constant.
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Performance with 1 influence

Figure 4.1: Performance measures of the approaches based on only one topological attribute
(no combinations)

Performance with 2 influences

Figure 4.2: Performance measures of the approaches based on combinations of 2 topological
attributes
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Performance with 3 influences

Figure 4.3: Performance measures of the approaches based on combinations of 3 topological
attributes

Performance with 4 influences

Figure 4.4: Performance measures of the approaches based on combinations of 4 topological
attributes
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4.4 Comparison based on the considered topological at-
tributes

As yet, it was shown that the interval is tightened by adding more topological attributes
into consideration. This could be seen in Figure 4.1 – 4.4 as only the change of the
whole curve set was observed. But it is hardly possible to make out which of the 5
or 10 curves is the best or to compare two specific curves. In order to assess and
compare the performance of the models, another representation of the results will be
used. The idea is, that, in terms of accuracy, one model is better than the other if
the curve of the prediction accuracy “lies above” the curve of the other model. If
one curve lies above the other, the mean value PAcc(n) over n = 1 . . . 20 of the first
mentioned curve has to be higher than the other one. Therefore, the mean value of
the prediction accuracy PAcc and prediction conservativeness PCon each will be used
as measures for comparing the models.

00

10

11

20

12

21

22

30

13

23

24

31

25

32
33

40

14

26

27

34

28

35

36

41

29

37

38

42

39

43

44

50

Figure 4.5: 2D-Plot of the performance measures of all possible combinations of the topological
attributes.

In Figure 4.5 the results of these adjustments are shown. Every data point in this
plot stands for one model or one combination of the topological attributes which were
considered in the Bayesian net. The points are enumerated, with the first cypher
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signalizing the number of topological attributes that were included in this case and
the second cypher representing the enumeration within this group. All data points
with the same number of included variables have the same color in the plot and the
small legend in the right top corner shows which group has which color. With the
large legend on the right side one can see which topological attributes were used at
the respective enumerated data point. For example, at data point “37” 3 topological
attributes were considered in the Bayesian net, namely visible distance svis and the
magnitude A(α) and the sign S(α) of the slope. This data point is the 7th data point
in the group of those points, where 3 attributes were considered, and all of them are
colored in white in the plot.

As the performance measures are calculated in relation to those of the basic method
(only first principles in the Bayesian net), the data point of the basic method is the
reference point in Figure 4.5, where the 4 colored rectangles meet. The colors of
the rectangles signalize a assessment of the quality of the prediction performance in
relation to the basic method. There are 3 possible situations:

1. Green: The prediction is more accurate and less conservative (tighter prediction
interval) than the basic method, and therefore the model performs clearly better
than the basic model

PAcc > 0 and PCon < 0

2. Yellow: The prediction is either more accurate and more conservative, or less
accurate and less conservative. So, looking at one measure, the performance
indeed is better, but looking at the other measure makes the prediction seem
worse.

PAcc > 0 and PCon > 0

or

PAcc < 0 and PCon < 0

3. Red: The prediction is less accurate and more conservative, which signals clearly
a worse behavior in comparison to the basic method

PAcc < 0 and PCon > 0

Looking at Figure 4.5, one can see, that, in a way, the most prediction approaches
had a better performance than the basic method. The majority of those data points
lies in the yellow areas and so the performance is not clearly better, as there are
drawbacks. Approximately a quarter of the data points, so 8 out of 31, had a clearly
better performance than the basic method and therefore lie in the green area. As one
can see, there is no clear cluster regarding the colors, as points of every group lie in
the green and in the yellow area. Only the green points, where only one topological
attribute is considered, do not have a point in the green area. So it can be said, that
considering only one topological attribute yields no advantage in comparison to the
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basic method. But now it is to analyze, if other characteristics can be found, which
are unique at the points in the green area and therefore guarantee a good prediction
performance. Therefore, the topological attributes, which were considered at the data
points in the green area in Table 4.1 and those considered at the data points in the
other areas in Table 4.2 will be examined:

Table 4.1: Overview of the topological attributes which were included at data points with a
good performance

Num svis c cvis A(α) S(α)
27 0 1 0 0 1
34 1 1 0 0 1
36 0 1 1 0 1
41 1 1 1 0 1
38 0 1 0 1 1
42 1 1 0 1 1
44 0 1 1 1 1
50 1 1 1 1 1

Absolute frequency 4 8 4 4 8
Relative share of subset 50% 100% 50% 50% 100%
Relative share of whole set 12.5% 25% 12.5% 12.5% 25%

By comparing Table 4.1 and Table 4.2, it can be seen, that regarding the visible
distance svis, the maximum curvature in the visible distance cvis and the magnitude
of the slope A(α), no clear statement can be made about their influence on the
performance, as all of them appear in approaches with good and bad performances.
Also the curvature c and the sign of the slope S(α) do not seem to guarantee a good
or bad performance by themselves. But, the main conclusion that can be drawn from
Table 4.1 is, that every data point where c and S(α) are included together performs
well. As no data point which includes c and S(α) together appears in the red or yellow
zone, it can be said that a prediction method performs clearly better than the basic
method, if and only if, it includes c and S(α) together in its Bayesian net.

4.5 Influence of the consideration of particular topological
attributes

As a next step, the question arises, how the inclusion or extraction of particular
topological attributes affects the performance. For example, looking at Table 4.1, the
change in performance by switching from point 27 to point 34, which means including
the visible distance svis, is to be determined. Of course, both points are in the green
area and thus are approaches with a good performance, but nevertheless, through
this inclusion the performance could be even better (nearer to the top left corner in
Figure 4.5) or worse (nearer to the bottom right corner). The determination of the
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Table 4.2: Overview of the topological attributes which were included at data points with a
“bad” performance

Num svis c cvis A(α) S(α)
10 1 0 0 0 0
11 0 1 0 0 0
20 1 1 0 0 0
12 0 0 1 0 0
21 1 0 1 0 0
22 0 1 1 0 0
30 1 1 1 0 0
13 0 0 0 1 0
23 1 0 0 1 0
24 0 1 0 1 0
31 1 1 0 1 0
25 0 0 1 1 0
32 1 0 1 1 0
33 0 1 1 1 0
40 1 1 1 1 0
14 0 0 0 0 1
26 1 0 0 0 1
28 0 0 1 0 1
35 1 0 1 0 1
29 0 0 0 1 1
37 1 0 0 1 1
39 0 0 1 1 1
43 1 0 1 1 1

Absolute frequency 12 8 12 12 8
Relative share of subset 50% 33% 50% 50% 30%
Relative share of whole set 37.5% 25% 37.5% 37.5% 25%
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change in performance will be done visually by adding arrows in Figure 4.5, where
the arrows will signalize the transition from one point to another (e.g., arrow from
point 27 to point 34).

There are three possibilities for the direction of the arrows:

• Towards top left corner: this transition or inclusion of an attribute causes a rise
in performance as the new data point respectively prediction method achieves a
higher accuracy and lower conservativeness. These arrows will be depicted in
green.

• Towards top right or bottom left corner: this inclusion causes an improvement
of one performance measure, but also at the same time a worsening of the other
performance measure. For example, an arrow pointing towards the top right
corner means a rise in prediction accuracy, but also a rise in conservativeness.
These arrows are depicted in yellow.

• Towards bottom right corner: this inclusion causes a worsening of both perfor-
mance measures and thus an overall decline in performance. These arrows are
depicted in red.
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Figure 4.6: Influence of the inclusion of the visible distance svis on the prediction performance
.

In Figure 4.6 – 4.10 the transitions are depicted in form of arrows for every topological
attribute. There already can be seen some tendencies on first sight, but to get an
overall view over the influence of the respective variable, the cumulated result in
Figure 4.11 is used. In this figure, all single arrows for one variable are summed up
vectorially, in order to get an overall trend of the behavior. The resulting arrows are
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Figure 4.7: Influence of the inclusion of the curvature c on the prediction performance
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Figure 4.8: Influence of the inclusion of the maximum curvature cvis on the prediction
performance
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Figure 4.9: Influence of the inclusion of the magnitude of the slope A(α) on the prediction
performance
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Figure 4.10: Influence of the inclusion of the sign of the slope S(α) on the prediction
performance
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Figure 4.11: Cumulated influences of the respective topological attributes

colored equally as the “small” arrows, i.e. if the arrow points towards the top left
corner it is colored green and so on.

The results of this analysis are, that the additional inclusion of the curvature c, the
maximum curvature cvis and the sign of the slope S(α) leads to a better performance
in general. This was to expect, as it could be seen before that the consideration of the
curvature and the sign of the slope guarantees a good performance. The maximum
curvature in the visible distance cvis is in some kind related to the curvature and
therefore it is no surprise that it also has a good cumulated influence. The curvature
has the best cumulated result of those 3 variables, as the direction of the resulting
arrow is almost exactly towards the top left corner, which means that both performance
measures are improved equally. The arrow of S(α) shows that the conservativeness is
more reduced than the prediction accuracy is raised.

The additional inclusions of the magnitude of the slope A(α) and the visible distance
svis lead to two different, but not categorically bad, results. On the one hand, the
inclusion of A(α) in almost all data points leads to a drop of the prediction accuracy, but
also to an improvement by lowering the conservativeness of the prediction. Therefore,
the resulting arrow points towards the bottom left corner. On the other hand, the
inclusion of svis leads to an opposite behavior, where the prediction accuracy is raised,
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but also the prediction conservativeness. Hence, the resulting arrow points in the
opposite direction. From an intuitive point of view, this is quite surprising, as one
would expect that the visible distance is an attribute with a high positive influence on
the driving behavior.

4.6 Comparison of the behavior for short and long prediction
horizons

In the previous section all 2D-plots were created based on the mean values of the
prediction performance measures, with the mean considering all prediction steps
n = 1 . . . 20 from Figure 4.1 – 4.4. Now the question arises, if the before observed
behavior is the same over the whole prediction horizon or if there are differences
between, e.g., short and long prediction horizons. Therefore, the prediction horizon
is divided in two parts: short prediction horizon n1 = 1 . . . 10 and long prediction
horizon n2 = 11 . . . 20. The same analyses as in the previous chapter were executed
for these two parts each and depicted in Figure 4.12 – 4.15.
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Figure 4.12: 2D-Plot of the performance measures of all possible combinations of the topo-
logical attributes for a short prediction horizon n = 1 . . . 10.
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Figure 4.13: Cumulated influences of the respective topological attributes for a short prediction
horizon n = 1 . . . 10
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Figure 4.14: 2D-Plot of the performance measures of all possible combinations of the topo-
logical attributes for a long prediction horizon n = 11 . . . 20.
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Figure 4.15: Cumulated influences of the respective topological attributes for a long prediction
horizon n = 11 . . . 20

Figure 4.12 and Figure 4.13 show the results for the short prediction horizon. In
comparison to the overall behavior, it can be seen that the performance in general
is worse, as the data points in Figure 4.12 are nearer to the reference point and less
scattered in the performance measure space. Especially in the green area, which
indicates a clearly better performance than the basic prediction method with first
principles, contains only six data points, two less than in the approach over the entire
prediction horizon. Furthermore, in Figure 4.13 can be seen, that the influences of the
inclusion of the topological attributes is smaller and rather directed towards worse
performance than with the overall approach. The resulting cumulated arrows are
shorter and rotated anti-clockwise, which leads to the fact, that, e.g., the inclusion of
the sign of the slope S(α) on average brings no improvement in prediction accuracy.

The results of the long prediction horizon show an opposing behavior. On first sight,
Figure 4.14 looks similar to Figure 4.5, but in this case the axis limits were changed
in order to show all data points. This means that, in comparison to the approach over
the entire prediction horizon, the data points in the green area are spreaded wider and
thus the performance of these approaches is better for longer prediction horizons. Also
the influences of the inclusion of the topological attributes are higher, as the resulting
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cumulated transition arrows in Figure 4.15 are longer, whereby the axis limits were
adapted too. Regarding the direction of the arrows, a slight clockwise rotation can be
detected, but the main difference compared to the overall approach is the length of
the arrows and thus the impact of the inclusion of the respective attributes.

4.7 Comparison of different sampling rates

As described in Section 2.4, the validation of the models is done by drawing NS random
samples of the output nodes. Due to this process, every output node generates NS

predicted trajectories, resulting in a set of predicted trajectories, which are described
by their mean trajectory and its standard deviation.

In order to determine the influence of the number of samples NS on the prediction
quality, three different sampling rates will be deployed at the 32 prediction approaches
from this chapter. The result of this observation can be seen in Figure 4.16.

Figure 4.16: Comparison of the quality of prediction models based on the number of validation
samples NS

It becomes apparent, that the number of validation samples has an influence on the
prediction results. While the influence on the prediction accuracy (vertical axis) is
insignificant, the difference regarding the conservativeness is obvious. With a number
of samples NS = 10, the prediction conservativeness is up to 7 % worse than with
NS = 100 or respectively NS = 1000. The difference between the two higher NS is
rather small with a maximum difference of 1 %.

To sum up, the prediction is the less conservative, the higher the number of validation
samples NS is, whereby the difference in conservativeness from NS = 100 only changes
slightly.

In this chapter it became apparent that the topological attributes have an impact on
the quality of the prediction models. Especially the consideration of the curvature
and the sign of the slope of the road in the Bayesian network yields good results.
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Furthermore, it was shown that the prediction models perform differently for short
and long prediction horizons and that especially the prediction conservativeness is
dependent on the validation sample rate.



Chapter 5

Validation of different identification
strategies

In the previous chapter, the influence of the choice of the considered topological
attributes on the quality of the prediction model was determined. In this chapter, the
influence of the choice of the training data will be analyzed. Therefore, a measure
for the “richness” of a dataset will be introduced, in order to define three different
identification strategies and to validate them subsequently.

5.1 Methodology for identification

5.1.1 Definition of the richness

In Chapter 3 and especially in Figure 3.3 it could be seen, that the used data covers
a wide range in terms of the topological attributes and that the certain attributes
are differently distributed along the route. The question arises, how the distribution
of these attributes within the training dataset, or respectively, how the “richness”
of a chosen training dataset affects the prediction performance. The richness of a
consecutive segment of the route R[s(k′), s(k′)+Lsel] – with a spatial length Lsel – is
defined by comparing the histograms of the segment and the route R[0, Ltot] – with a
total spatial length Ltot. It is assumed that the optimal or “richest” selection of the
segment would be the one, whose histogram is the most “similar” to the histogram of
the whole route. This means, that the histogram of the selection would cover exactly
a fraction Lsel/Ltot of each bin m. As richer data than the fraction Lsel/Ltot in one
bin comes at the cost of reduced data in another bin, it is assumed that this additional
share does not increase the richness of the respective segment. It is assumed that the
M bins cover equal ranges in terms of the respective data.

The concept of the richness is depicted in Figure 5.1. On the left side, an exemplary
histogram of the whole route is given, whose bins are colored in white. Additionally,
the histogram of a exemplary chosen road segment is depicted in blue. On the right
side of the figure, the seventh bin is analysed regarding the richness of the chosen
segment. There it can be seen, that the bin of the whole route (a) represents the
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maximum achievable score. The optimal score for this certain bin is depicted in green
(b), which is determined by multiplying the total score with Lsel/Ltot. In lightblue (c),
the actual score of the chosen segment is depicted. As explained above, a higher score
than the optimal score comes at the cost of another bin, and so it is neglected for the
determination of the richness, which is shown in blue (d).
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Figure 5.1: Concept of “richness” calculation using the M = 7 bins of a given histogram of
the total dataset. Details are given for bin m = 7. a) Single bin with maximum achievable
score (dotted). b) “Optimal” share per bin for this case. c) Actual share per bin for this case.
d) Share that contributes to the “richness” score.

The above given visual explanation of the determination of the richness can be
expressed in three or respectively four equations. The richness Rx(k′) of a route
segment with a spatial length Lsel, R[s(k′), s(k′)+Lsel] connected to a generic variable x
can be calculated as

Rx(k′) = 1
M

M∑
m=1

N∗sel(k′, m)
Ntot(m) (5.1)

N∗sel(k′, m) = min(Nopt(m), Nsel(k′, m)) (5.2)

Nopt(m) = Ntot(m) · Lsel
Ltot

. (5.3)

Consequently, the total “richness” of a segment starting at s(k′) can be calculated as

R(k′) = 1
3
(
Rc(k′) +Rsvis(k′) +Rα(k′)

)
. (5.4)

5.1.2 Definition of the identification strategies

Before defining the identification strategies, the available dataset has to be divided in
an identification and validation part. As mentioned in Chapter 3, the available dataset
consists of a total of 39 drives in both directions. For this approach, the dataset will
be divided almost equally, with the first 20 drives used for identification and the last
19 drives used for validation.

In the previous section, the richness was introduced to describe the distribution of
the topological attributes within a certain segment of the route. In the following,
the richness is used as a basic criterion for the choice of the training data within the
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identification part of the dataset. Furthermore, it is used to define three different
strategies, which are compared for the total route with a length of Ltot = 5 km:

A) The whole route (both directions) is utilized for identification.

B) The “richest” (consecutive) Lsel = 2 km of the route (both directions) are used
for model identification.

kB = arg max
k′

R(k′) s.t. s(k′) + Lsel < Ltot (5.5)

C) The “least rich” (consecutive) Lsel = 2 km of the route (both directions) are
used for model identification.

kC = arg min
k′

R(k′) s.t. s(k′) + Lsel < Ltot (5.6)

This methodology is summarized in Figure 5.2, where the identification part is shaded in
blue and the validation part is shaded in green. Furthermore, within the identification
part, the blue shade shows the difference in terms of the used data segments for
identification based on the richness.
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Figure 5.2: Concept of data selection for the identification. The first 20 drives D1−20 are
used for identification (blue shaded parts) and the remaining 19 drives D21−39 (whole route)
for validation.

The resulting richnesses according to (5.1)-(5.4) of the strategies are shown in Table 5.1,
where the “richness” of the curvature appears as the main difference between B and C.

In contrast to the previous chapter, where 32 models were trained, for this approach
only 6 models will be trained per identification strategy, as the focus lies on the
comparison of the strategies, and not particularly on the comparison of the models.
For this purpose, the following models will be trained:
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Table 5.1: Calculated richnesses for B) the richest segment and C) the least rich segment

Strategy Rsvis Rc Rα R

B 0.29 0.37 0.09 0.25
C 0.26 0.16 0.11 0.18

P0 . . . first principles

P1 . . . P0 + visible distance {svis(k′)}

P2 . . . P0 + curvature {c(k′)}

P3 . . . P0 + max. curvature within svis(k′) {cvis(k′)}

P4 . . . P0 + slope {|α(k′)|, sign(α(k′))}

PΣ . . . all previous

Although the models with only one considered topological attribute did not perform
best in the previous chapter, they are used for this observation, as they may be best
suited for showing differences between the identification strategies. For example, one
could expect, that prediction approach P2 performs better with the “rich” strategy B
than with C, as the training data is “richer” regarding the curvature. Furthermore, the
basic method with only first principles and the method with all topological attributes
are deployed for better comparison.

5.2 Methodology for validation

The validation is done in accordance to the visualization from Figure 5.2, where the
last 19 drives of the dataset are used for validation. In contrast to the identification,
there is no choice of certain road segments based on the richness, but the whole route
will be used in both directions for validation.

The performance of the prediction methods {P0, P1, P2, P3, P4, PΣ} will be assessed
based on the measures defined in Section 4.2. The assessment will mainly be done in
relation to the basic method P0. These six methods are compared for all identification
strategies {A, B, C}, which are defined above.

5.3 Results and discussion

Three different training datasets for the three identification strategies {A, B, C} are
deployed. The Bayesian nets are structured based on the topological attributes, which
yields six different prediction methods or structures of the net {P0,P1, P2, P3, P4,PΣ}.
All in all, 18 different models are identified and validated and the results of these
validations will be compared and discussed in the following.

Looking at Figure 5.3, it can be stated that the richness (B versus C) as well as
the volume (A vs. B |C) of the identification dataset influences the quality of the
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Figure 5.3: Comparison of the Bayesian network-based prediction methods by relating them
to the basic method P0. Identification was done based on A) the whole route, B) the richest
segment and C) the least rich segment of the route.

prediction models. While the accuracies of the different prediction methods are very
similar for the identification strategy B with a rich/variable dataset, the accuracies for
identification strategy C differ significantly. Especially, the model PΣ considering all
influences – together with P4 – has the worst performance at identification strategy C.
One reason could be, that PΣ tries to find a good generic result and therefore has to
follow the weakest link (in this case P4), while other models only have to consider one
additional influence.

On the other hand, PΣ has the best performance at identification strategy A, which
used the whole identification dataset for identification – especially for longer prediction
horizons. This is an important result, as it has the highest practical relevance (as the
presence of sufficient identification data exceeding our limited dataset can be assumed).
This advantage at longer prediction horizons is also present if the identification dataset
is rich enough, as for strategy B.

Figure 5.4 displays the evaluated values of (4.4). It can be observed, that PΣ is the
least conservative prediction model for almost all predicted steps and identification
strategies. For strategy C, it gets – compared to other methods – even less conservative
for a longer prediction horizon, which might also be one of the reasons for the drop in
accuracy observable in Figure 5.3-C. Looking at the general prediction performance, it
can be concluded that – with an identification dataset which is rich enough regarding
volume and “richness” – the combined prediction approach PΣ performs best.
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Figure 5.4: Calculated prediction conservativeness resulting for prediction models identified
with A) the whole route, B) the richest segment and C) the least rich segment of the route.

These observations can also be made by looking at Figure 5.5, where the comparison is
done based on a two-dimensional representation, as introduced in Chapter 4. It can be
seen, that PΣ has the best performance when identifying with the full dataset, as the
prediction is the least conservative and the accuracy is relatively high. The approach
PΣ performs also well for the other identification strategies, with the difference that
the accuracy is rather low for the identification strategy using the poor dataset.

The question, which arises in this course, is how the volume of the training dataset
influences the quality of the prediction models. Therefore, five different road segments
with increasing length were used for the identification of 32 different prediction
methods, as known from Chapter 4, whereby the start of every of these five segments
is the start of the route. These five approaches are compared in a two-dimensional
representation in Figure 5.6.

It becomes apparent, that the volume of the identification dataset has a significant
influence on the quality of the prediction models. For short road segment lengths (1 km
and 2 km), the sensitivity of the prediction performance concerning the considered
topological attributes is relatively high, which is obvious because of the wide spread
of the data points. But, the longer the dataset is, the smaller is the spread of the
data points, as it can be seen for the higher lengths. Another interesting fact is that
the prediction approaches considering the topological attributes perform only better
than the basic method P0 for the models identified with the highest length of 5 km,
which is equal to the whole dataset. At all other road segment lengths, the models
perform worse than the basic method, as they are placed bottom left in relation to
the basic method, which is depicted as a black data point. One shortcoming of the
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Figure 5.5: Two-dimensional comparison of the results from Figure 5.3 and Figure 5.4 for
three different identification strategies

Figure 5.6: Comparison of the prediction quality of models identified with datasets with
different length
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models identified with the whole dataset is that they are up to 14 % more conservative
than the models identified with smaller datasets, while therefore the accuracy is lower.
This can be seen as a trade-off between accuracy and conservativeness, whereby the
improvement in accuracy is paid with a higher worsening in conservativeness.



Chapter 6

Practical application – ACC

To demonstrate the performance of the combined prediction method PΣ on a practical
application, it is – as well as comparative methods – evaluated using a simple ACC
where the region of the vehicle’s position is assessed using the respective prediction
methods to be able to guarantee a required safe inter-vehicle distance.

6.1 Introduction to ACC and MPC

In the following, the basic concepts of ACC and MPC will be explained, in order to
comprehend the deployment of the prediction method in this chapter.

6.1.1 Adaptive Cruise Control

As already mentioned in Chapter 1, ACC systems belong to the group of ADAS
(Advanced Driver Assistance Systems). Therefore, its goal is to relive the driver
of simple or monotone tasks in road traffic and to perform these tasks in a way,
which achieves an increase of driving comfort, fuel efficiency or safety. The task,
which the ACC takes over from the driver, is to follow the preceding vehicle with an
appropriate distance at a certain velocity. Therefore, it is an extension or enhancement
of the traditional cruise control, where the controller tracks only the reference velocity
without consideration of the distance to the preceding vehicle. So, the ACC tracks a
reference velocity vref that is set by the driver while maintaining a safe inter-vehicle
distance ds to the preceding vehicle.

The determination of this safe inter-vehicle distance is done according to a so called
spacing policy, which defines the desired steady state spacing between two consecutive
vehicles during vehicle following. The choice of the spacing policy is done at the
beginning of the ACC system design and plays a significant role in various aspects
such as traffic capacity, fuel/energy consumption, driver’s subjective acceptance, and
safety.

61
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Criteria for the choice of spacing policies

Important criteria for the choice and evaluation of spacing policies are summarized in
[34] and [35]:

1. Individual vehicle stability:
The spacing policy and its associated control law have to ensure individual
vehicle stability, which means that the spacing error

δi = di − ddes

of the ego vehicle should converge to zero if the preceding vehicle is driving at
constant speed (v̇i−1 = 0). di denotes the current distance between the vehicles
and ddes stands for the desired distance.

2. String stability:
The string stability is a group property of a queue of ACC controlled vehicles.
As the spacing error propagates towards the end of the queue, the spacing policy
has to ensure string stability, in order to avoid a diverging spacing error.

3. Traffic flow stability:
The selected spacing policy should guarantee traffic flow stability, which describes
the variations of traffic flow in response to small disturbances in traffic density.

4. Collision avoidance:
The spacing policy should ensure safety for the ego vehicle, even when unpre-
dictable actions of the preceding vehicle occur.

5. Comfort of the driver:
The spacing policy should provide similar driving patterns to human driving
behaviors, in order to avoid possible discomfort for the driver and passengers.

Types of spacing policies

Besides the different criteria for spacing policies, also different types of spacing policies
exist, which are summarized in [35]. In general, there are two major groups of spacing
policies: Constant spacing policies and variable spacing policies.

As the name says, constant spacing policies are based on a constant inter-vehicle
spacing, independent of the driving environment. On the one hand, the advantages of
this approach are a low computational load and a high traffic capacity when choosing
a small distance. On the other hand, it has been proven that this policy can not
guarantee string stability if ACC systems with linear controllers are used. This leads
to a bad drive quality and potentially also to collisions. One solution to this problem
would be inter-vehicle communication, which is not available in road traffic so far.

In contrast to this approach, variable spacing policies define the desired inter-vehicle
spacing as a function of the vehicle’s velocity. Within this group of policies, four
different types from existing works are summed up in [35]:
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1. Time headway policy:
The time headway policy is the most common spacing policy. Time headway
describes the period during which the front bumper of the preceding vehicle
and the front bumper of the ego vehicle pass a fixed position on the road.
The desired inter-vehicle distance ds consists of a minimum distance d0 and a
velocity-dependent part, where the velocity of the ego-vehicle vE(k) is multiplied
with the time headway.

ds(k) = vE(k) th + d0

Furthermore, two types exist for the time headway: Constant time headway
(CTH) and variable time headway (VTH). As the name says, at CTH the time
headway th is constant. At VTH, the time headway is a variable, which is
also dependent on the velocity. This approach has the advantage, that one can
implement an upper limit for the time headway as the velocity gets higher, in
order to maintain the traffic throughput and to not reduce it further due to
large distances between the vehicles.

2. Traffic flow stability policy:
CTH policies cannot ensure traffic flow stability. Therefore, traffic flow stability
policies were invented as an alternative in order to overcome this problem, as
they incorporate the traffic density in the determination of the desired distance.

3. Constant safety factor policy:
Constant safety factor (CSF) spacing polices were proposed to improve safety
and minimize the possibility of collisions. The determination of the desired
distance is based on a safe stopping distance Dstop and a safety factor K:

ds(k) = Dstop(k) ·K

4. Human driving behavior policy:
The idea of human driving behavior policies is that the ACC should act similar
to a human driver in terms of spacing. For this purpose, real human driving
data is recorded and utilized to develop a spacing policy

ds(k) = A+ T · vE(k) +G · vE(k)2

where A represents the inter-vehicle spacing at rest, and T and G are the
coefficients of the first and second order terms, which are determined from the
real world data.

After the choice of the spacing policy, the realization of the ACC is pending. This is
usually done by formulating the ACC system as an optimal control problem and by
solving it within a MPC (Model Predictive Control) framework. The basic ideas and
concepts of MPCs will be expounded in the following section.
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6.1.2 Model Predictive Control

This section is mainly based on the books [36] and [37], which describe the concepts
of model predictive control comprehensively.

Working scheme

MPC belongs to the group of predictive controllers and is one of the most common
type of this group. The working concept of MPC will be explained based on Figure 6.1:

1. In a MPC, a physical model of the plant to be controlled is used, in order to
predict the controlled variable ŷ for k = 1 . . . nPH time steps. These predicted
values are dependent on past output values y(t) and input values u(t), as well
as future input values û(t+ k|t) for k = 0 . . . nCH − 1 time steps.

2. These future input values û(t|t) . . . û(t+ nCH − 1|t) are computed by solving an
optimal control problem, whereby the future output values ŷ(t+ 1|t) . . . ŷ(t+
nPH|t) should track a reference r(t+ 1|t) . . . r(t+ nPH|t). The cost function is
usually a quadratic function and incorporates the error between the predicted
output values and the reference, as well as the input values.

3. After determining the inputs û(t|t) . . . û(t+nCH− 1|t), only the first value û(t|t)
is used as an input for the plant. Subsequently, the process starts again from
the next step.

t

y(t)

u(t)

nCH

nPH

tt− 1 t+ k t+ nPH

u(t+ k|t)

ŷ(t+ k|t)

Figure 6.1: Concept of Model Predictive Control

Advantages and Disadvantages

One major advantage of MPC is the simple consideration of constraints. Due to
physical limitations, many systems underlie constraints on its inputs, outputs or states.
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Generally, this leads to non-linear behavior, which makes the treatment of constraints
in classic linear control applications quite difficult. At MPC, the constraints can be
considered easily in the minimization problem, which means that at every time step a
new controller is designed. Further advantages of MPC are:

• The case of multiple inputs and multiple outputs (MIMO) can be handled easily.

• They are suitable for a large number of systems.

• A feed-forward extension allows the compensation of measurable disturbances,
as well as a predictive compensation, if the disturbance is predictable.

• The resulting controller can be implemented by a linear control law, whereby
this law can change in every time step.

One of those advantages contains a major drawback, namely that in every time step the
control law changes, as in every time step a optimization problem is solved. This leads
to a high computational burden, which makes the usage at fast changing processes
difficult.

Cost Function

For simplicity, we will consider a linear MPC, which we will also use later in the
chapter. Therefore, the model of the plant has the form

x(k + 1) = Ax(k) + Bu(k) (6.1)
y(k) = Cx(k) (6.2)

In order to find the optimal input sequence, the cost function has to be defined. A
commonly used cost function has the form

Vk =
nPH∑
i=n0

(
ŷk+i|k − rk+i

)>
Qi
(
ŷk+i|k − rk+i

)
+
nCH−1∑
i=0

(
∆ûk+i|k

)>
Ri
(
∆ûk+i|k

)
(6.3)

The cost function is minimized regarding the degrees of freedom ∆ûk+i|k, which
consist of the sequence ∆ûk|k . . .∆ûk+nCH−1|k. The variable nCH is called control
horizon and describes from where on the input signal is constant, meaning ∆uk+nCH =
∆uk+nCH+1 = · · · = ∆uk+nPH = 0. The prediction horizon nPH specifies the length of
the prediction. The matrices Qi > 0 and Ri > 0 are tuning parameters, which can
be used to weigh certain inputs or outputs more or less. As it can be seen, besides
the error between the reference and the output, also the change of the input signal is
weighed with Ri. Alternatively, the input signal itself can be considered in the cost
function, as it will be done in the following.
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6.2 Design of the ACC

6.2.1 Choice of spacing policy

The inter-vehicle distance is determined according to the most common spacing policy,
the constant time headway (CTH) policy

ds(k) = vE(k) th + d0, (6.4)

where vE(k) is the actual speed driven, th = 2.6 s denotes the time headway and
d0 = 3m represents a safe distance for low velocities and during standstill, as deployed
in [38].

6.2.2 Formulation of the optimal control problem

As explained in the previous section, the ACC is formulated as an optimal control
problem and solved within an MPC framework. The MPC calculates an optimal
(input) control sequence aEopt = [aE(k′), aE(k′+ 1), . . . , aE(k′+N)] through minimizing
a cost function V(k′, N) during a finite time horizon N (starting from the current
time step k′) by using a model of the vehicle to predict its future states. In this
specific example, the advantage of an MPC is that constraints like, for example, the
safe inter-vehicle distance (6.4) that must not be exceeded, can be considered easily.
The first element of aEopt is applied to the vehicle, and the optimization begins anew
from the new vehicle state at time step k′ + 1, see also [5]. The vehicle model within
the MPC is formulated as a double integrator of the vehicle’s position sE(k) and
discretization leads to

xE(k + 1) = AxE(k) + B aE(k), (6.5)

with

xE(k) =
[
sE(k)
vE(k)

]
,A =

[
1 Ts
0 1

]
,B =

[
0.5T 2

s
Ts

]
, (6.6)

where Ts denotes the sample time and xE(k) the state. The distance d(k) to the
preceding vehicle is defined as

d(k, · ) = sE(k)− ŝ(·)
lb (k) (6.7)

utilizing the predicted lower boundary of the spatial distribution ŝ(·)
lb (k) within the

prediction horizon of the MPC. Both, the method PΣ and C, as well as a frozen time
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prediction approach F [39] are compared in this setup. The resulting optimization
problem for the ACC is a quadratic program with linear constraints and follows to

aEopt = arg min
aE
V(k′, N) (6.8)

V(k′, N) =
k′+N∑
k=k′

Q (vE(k)− vref(k′))2 +RaE(k)2 (6.9)

s.t. xE(k + 1) = AxE(k) + B aE(k) (6.10)
0 m/s ≤ vE(k) ≤ 35 m/s (6.11)
d(k, · ) < ds(k). (6.12)

vref(k′) is set to the respective maximum allowed speed by law at step k′

and vE(k) is restricted to a realistic range, while aE(k) is not explicitly re-
stricted as high values are avoided based on the second term (weighted with
R) in the cost function. Q and R, which represent the “aggressiveness” of the
ACC – where higher ratios of R/Q lead to a less aggressive controller – were
manually tuned to Q = 1 and R = 10. The optimization problem was solved
using Yalmip [40] and quadprog [41].

6.2.3 Validation of the ACC

Again, the validation dataset is utilized for simulation, but this time the measurements
serve as preceding vehicles which are followed by the controlled vehicle E with a head
start of 10 s for the respective preceding vehicles in the initial state. To compare the
influence of the prediction methods, the validation cost function

V(·)
v (k′, N) =

k′+N∑
k=k′

aEopt(k)2 (6.13)

was evaluated for all simulation results over the whole simulation time, as the squared
acceleration is a measure of both fuel economy [24] and comfort [42] which qualifies it
as a good measure for the quality of the results.

6.2.4 Comparative prediction methods

Stochastical approach C

In addition to the prediction method based on a Bayesian network structure, the
approach from [4] (from now on with superscript C) is utilized. As a base of the
calculation, the time dependent spatial mean ŝCµ(k′+n) as well as the spatial standard
deviation ŝCσ(k′+n) need to be calculated. s(k′) and v(k′) represent the initial position
and velocity. Based on the assumptions from [4], the stochastic distribution over all
steps results in

ŝCµ(k′ + n) = s(k′) + v(k′) (n · Ts) +
aCµ
2 · (n · Ts)

2 (6.14)
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for the spatial mean. Through simulation the spatial standard deviation can be
approximated to

ŝCσ(k′ + n) ≈
√

1
3 · a

C
σ · (n · Ts)

3
2 . (6.15)

where µCa and σCa represent the mean and standard deviation of an assumed distribution
of acceleration. Based on [4], aCµ = 0.2 m/s2 and aCσ = 1 m/s2 are used.

As it can be seen, this prediction method only bases on first principles, like the position
and the velocity, but no topological informations are used.

Frozen time approach F

The frozen time prediction approach from [39] bases on the actual position and velocity
and can be calculated with the following equation:

ŝFlb(k + n) = s(k) + v(k) · n · TS (6.16)

6.3 Outcome of the example

The validation costs (6.13) for the respective prediction methods are visualized with
box plots in Figure 6.2 and further described in Table 6.1.

It becomes apparent that the developed prediction method PΣ is superior to the
method C which does not take into account the environment and also F which is
relatively simple and only based on first principles. The mean value of PΣ lies
approximately 20% lower than the ones of the other approaches, which means that a
significant increase in fuel economy and driving comfort can be expected by considering
environmental attributes in the prediction of driving behavior.

Figure 6.2: Visualization of the evaluated cost function for the respective prediction methods.

In Table 6.1 the boundaries of the boxplot are given explicitly. It can be seen, that
for PΣ the range of the cost function is smaller compared to the two other prediction
approaches.
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Table 6.1: Statistical features of the validation costs for the prediction methods.

V(·)
v (1, Ntot) min Q25 Q50 Q75 max

F 134.78 190.27 216.29 248.35 300.96
C 129.78 182.38 209.78 238.84 290.57
PΣ 112.94 158.07 184.34 215.42 252.62





Chapter 7

Conclusion and Outlook

In this thesis, probabilistic prediction method for estimating the future range – in
terms of spatial position – of vehicles on country roads which incorporates topological
factors such as visible range, slope, curvature and maximum curvature within the
visible range was developed.

The prediction itself was implemented using Bayesian networks to determine the
influence factors of the single topological attributes. It was shown that especially the
consideration of the curvature of the road in combination with the sign of the slope
has a positive influence on the prediction results. This holds especially for longer
prediction horizons.

Furthermore, various identification strategies were followed to gain insight into how
the “richness” of identification data – which is separately defined within the paper
– influences the prediction performance. In this course, it could be seen that the
“richness” and also the volume of the identification dataset influences the quality of
the prediction models. Models incorporating all measurable topological attributes
achieve the least conservative prediction, and the highest accuracy for longer prediction
horizons.

Finally, the Bayesian network model was used for an Adaptive Cruise Controller
(ACC) in simulation, where it – compared to other prediction approaches – improved
both comfort and fuel economy.

Summing up, it can be said that the consideration of topological attributes of country
roads for the prediction of driving behavior yields in more accurate and less conservative
predictions compared to approaches considering only first principles.

In future works, it is planned to use the method for a safety application as presented
in [5] which additionally considers possible lane changes of a driver, and therefore
requires a realistic prediction of surroundings for maneuver validation.
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