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Convex Optimization for Fuel Cell Hybrid Trains:
Speed, Energy Management System, and Battery Thermals

Rabee Jibrin∗, Stuart Hillmansen, Clive Roberts

Abstract— We optimize the operation of a fuel cell hybrid
train using convex optimization. The main objective is to
minimize hydrogen fuel consumption for a target journey time
while considering battery thermal constraints. The state tra-
jectories: train speed, energy management system, and battery
temperature, are all optimized concurrently within a single
optimization problem. A novel thermal model is proposed in
order to include battery temperature yet maintain formulation
convexity. Simulations show fuel savings and better thermal
management when temperature is optimized concurrently with
the other states rather than sequentially—separately after-
wards. The fuel reduction is caused by reduced cooling effort
which is motivated by the formulation’s awareness of active
cooling energy consumption. The benefit is more pronounced
for warmer ambient temperatures that require more cooling.

I. INTRODUCTION

A. Motivation

Hydrogen fuel cell hybrid trains (see Fig. 1) are expected
to play a key role in decarbonizing the railways owing to
their lack of harmful emissions at point-of-use and adequate
driving range; however, their total cost of ownership is pro-
jected to be higher than incumbent diesel trains primarily due
to the higher cost of hydrogen fuel in comparison to diesel
fuel [1]. We aim at reducing hydrogen fuel consumption
by optimizing train operation. Furthermore, battery thermals
are included in order to extend battery lifetime. Convex
optimization is used to alleviate computational concerns.

B. Background

Train speed optimization has been researched extensively
owing to the large contribution of traction power towards rail
energy consumption [2]. More recently, the 2019 IEEE VTS
Motor Vehicles Challenge brought attention to the energy
management system (EMS) of fuel cell hybrid trains [3]. The
EMS determines power distribution among a hybrid vehicle’s
multiple power sources and is thus a vital determinant of
efficiency. An extensive literature review of fuel cell hybrid
EMS has been covered by [4]. Simulations suggest that
optimization-based algorithms outperform their rule-based
counterparts which motivates our focus on the former [5].

While the aforementioned references are exclusively con-
cerned with either train speed or EMS, other works have
attempted to optimize both within a single optimization
problem (concurrently) in order to achieve better solution
optimality by embedding knowledge of the dynamic coupling
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Fig. 1. Fuel cell hybrid powertrain. Arrows depict feasible power flow.

between both trajectories, e.g., dynamic programming [6],
indirect optimal control [7], integer programming [8], and
relaxed convex optimization [9], [10].

The high capital cost of traction batteries has also mo-
tivated many to consider penalizing [11] or bounding [12]
battery degradation, though strictly within the EMS problem
setting—speed is optimized beforehand separately. The semi-
empirical battery degradation model presented by [13] as a
function of temperature, state-of-charge, and C-rate, is the
most often used. A common assumption among optimization
formulations that consider battery degradation is an active
cooling system that maintains a constant battery temperature
which simplifies the degradation model to static temperature.
This simplification can lead to unexpected battery degrada-
tion when subject to non-ideal thermal management in the
real-world [14]. Therefore, dropping the static temperature
assumption could further benefit battery lifetime, especially
in light of experimental results that designate elevated tem-
peratures as the leading cause of battery degradation [15].
Moreover, including thermal constraints while planning the
duty cycle can reduce the reliance on the active cooling
system and thus reduce its parasitic energy draw [16]. For-
mulations that did consider battery temperature as a bounded
dynamic state have done so strictly within the EMS problem
setting and often at great computational cost, e.g., genetic
algorithm [17], dynamic programming [18], and relaxed
convex optimization [19].

C. Contribution and Outline

The benefit from concurrent speed and EMS optimization
has already been proven by previous works, yet literature
lacks a concurrent formulation that considers battery thermal
constraints. The high predictability of railway environments
promises substantial returns for such a holistic optimization
approach that considers many variables a priori. We propose
a relaxed convex optimization formulation that embeds a
novel thermal model to achieve this goal. This paper builds
upon a previous paper of ours that exclusively derived
mathematical models and adds to it simulation results [20].



To the the best of our knowledge, this is the first attempt at
optimizing all mentioned state variables concurrently.

Section 2 presents the train model, section 3 details the
problem formulation, section 4 analyzes simulation results.

II. MODELING

Common among model-based optimization for dynamic
systems is to model the system in the time-domain, i.e., the
model predicts system state after a temporal interval of ∆t
seconds. However, a complication from optimizing vehicle
speed in the time-domain is interpolating track information,
e.g., gradient, when the physical location for a given tem-
poral interval is dependent on the optimized speed and thus
unknown a priori. We address this by using the space-domain
instead, i.e., the model predicts system state after a spatial
interval of ∆s meters longitudinally along the track. As such,
one can accurately retrieve track information for any interval
by directly referring to its location in space. Herein, the
models and thus the optimization problem are formulated
in the discrete space-domain with zero-order hold between
spatial intervals {∆s,i|i = 0, · · · , N − 1}.

Below, the train’s longitudinal dynamics are first derived
after which the powertrain components are covered. Figure
1 depicts the powertrain considered, a polymer electrolyte
membrane fuel cell (PEMFC) in a hybrid configuration with
a lithium-ion battery that power the motor-generator (MG)
and train auxiliary loads. More details and figures of the
models can be found in [20].

A. Train Longitudinal Speed

The train is assumed a point mass m with an equivalent
inertial mass meq traveling at a longitudinal speed v that is
controlled by traction motor force Fm and mechanical brakes
force Fbrk [21]. The external forces acting on the train Fext
are represented by the summation of the Davis Equation a+
bvi+ cv2i and gravitational pull mg sin(θi). To predict speed
after a single spatial interval, construct

1

2
meqv

2
i+1 =

1

2
meqv

2
i + (Fm,i + Fbrk,i)∆s,i − Fext,i∆s,i (1)

using kinetic energy Ek.e. = 1/2meqv
2, mechanical work

Ework = F∆s, and the principle of energy conservation.
Equation (1) is nonlinear in v but can be linearized by
substituting the quadratic terms v2 with z and keeping the
non-quadratic terms v unchanged, namely

1

2
meqzi+1 =

1

2
meqzi + (Fm,i + Fbrk,i)∆s,i − Fext,i∆s,i (2)

and
Fext,i = a+ bvi + czi +mg sin(θi). (3)

The linear model (2) relies on both v and z to define train
speed and thus requires the non-convex equality constraint
v2 = z to hold true which is subsequently relaxed into the
convex inequality

v2 ≤ z. (4)

B. Journey Time

Total journey time is expressed as summation of time
required for all spatial intervals

∑N−1
i=0 ∆s,i/vi but is non-

linear in v. This expression can be replaced by the linear
N−1∑
i=0

∆s,iλv,i (5)

when used along the auxiliary non-convex equality λv = 1/v
which is then relaxed into the convex inequality

λv ≥ 1/v (6)

for v, λv > 0 [22]. Section 3 explains how the strict positivity
constraint imposed on speed has a negligible impact on
solution optimality and how the relaxed inequalities (4) and
(6) hold with equality at the optimal solution.

C. Traction Motor

The electric power flow in Fig. 1 is described by

Pm/ηm(Pm) + Pcool + Paux = Pfc + Pbatt, (7)

where Pm is motor mechanical power, ηm(Pm) is motor
efficiency and thus Pm/ηm(Pm) is electric power at motor
terminals, Pcool is the electric load of the battery cooling
system, Paux is other auxiliary loads, Pfc is fuel cell electric
power output, and Pbatt is battery electric power output. Paux
is modeled as constant.

The power balance expression (7) requires the non-convex
constraint Pm = Fmv to hold true in order to use it in
conjunction with the speed model (2). To resolve this non-
convexity, start by dividing (7) by v to yield

Fm/ηm(Fm, z) + Fcool + Pauxλv = Ffc + Fbatt, (8)

where motor efficiency is defined as ηm(Fm, z) instead of
ηm(Pm), recall P = F

√
z. The alternative model (8) ex-

presses energy flow per longitudinal meter traveled, recall
Ework = F∆s and F = Pλv . The forces Ffc and Fbatt are
fictitious but numerically represent the energy contribution of
each power source per meter. Since (8) is directly written in
terms of Fm the non-convex constraint Pm = Fmv is dropped.

The equality (8) is non-convex due to the non-linearity in
Fm/ηm(Fm, z). Moreover, motor efficiency, ηm, is typically
a discrete look-up table rather than a smooth function.
Fm/ηm(Fm, z) can be accurately approximated by the convex
quadratic polynomial qm(Fm, z) := p00 + p10z + p01Fm +
p11Fmv + p20z

2 + p02F
2
m, as shown by [20, Fig. 2], which

can be used to relax (8) into the convex inequality

qm(Fm, z) + Fcool + Pauxλv ≤ Ffc + Fbatt. (9)

Motors are constrained by two regions, a constant force
region under the cutoff speed

Fm ≤ Fm ≤ Fm (10)

and a constant power region above the cutoff speed

Pmλv ≤ Fm, (11a)

Fm ≤ Pmλv. (11b)



D. Fuel Cell

To penalize hydrogen fuel consumption, we derive an
expression for fuel energy consumed per longitudinal meter
traveled. The exact fuel penalty per meter is Ffc/ηfc(Ffc, z)
which can be accurately approximated by the convex
quadratic polynomial [20, Fig. 3]

qfc(Ffc, z) :=p′00 + p′10z + p′01Ffc

+ p′11Ffcv + p′20z
2 + p′02F

2
fc.

(12)

The fuel cell power constraints are

Pfcλv ≤ Ffc, (13a)

Ffc ≤ Pfcλv, (13b)

where Pfc may be strictly positive to curtail the excessive
degradation that accompanies idling and restarting [23].

E. Battery State-of-Charge

Predicting the battery’s state-of-charge ζ is vital in order
to guarantee charge-sustaining operation—terminal battery
charge identical to initial. The battery is modeled with a
fixed open-circuit voltage Uoc and a fixed internal resistance
R, a model that is accurate for the narrow state-of-charge
range employed by hybrid vehicles and is validated by [24].

The change of state-of-charge is

∆ζ =
Uoc −

√
U2

oc − 4PbattR

2R
· 1

3600Q
·∆t, (14)

where Q is battery charge capacity, valid for Pbatt ≤
U2

oc/4R [25]. Accordingly, a positive/(negative) Pbatt will
discharge/(charge) the battery

ζi+1 = ζi −∆ζ,i. (15)

For a given ∆t, (14) is convex in Pbatt which empowers
the convex quadratic qζ(Pbatt) := αP 2

batt+βPbatt to accurately
approximate it, as shown by [20, Fig. 4]. Nevertheless, an
expression written in terms of spatial intervals ∆s rather than
temporal intervals ∆t needs to be derived for a space-domain
formulation. Start by assuming ∆ζ = qζ(Pbatt)∆t

∆ζ = (αP 2
batt + βPbatt)∆t (16)

which can be rewritten in terms of Pbatt = Fbattv

∆ζ = (αF 2
battv

2 + βFbattv)∆t (17)

followed by the substitution v = ∆s/∆t

∆ζ =
(
αF 2

battv
∆s

∆t
+ βFbatt

∆s

∆t

)
∆t (18)

then cancel out ∆t in order to obtain the spatial expression

∆ζ = αF 2
battv∆s + βFbatt∆s. (19)

Equation (19) is non-convex but can be rewritten as

αF 2
batt∆s =

∆ζ − βFbatt∆s

v
(20)

then subsumed into

αF 2
batt∆s = λζλv (21)

using the linear auxiliary constraint

λζ = ∆ζ − βFbatt∆s (22)

and the convex constraint (6).
The relaxation of the non-convex equality (21),

αF 2
batt∆s ≤ λζλv, (23)

forms a convex feasible set for λζ , λv ≥ 0 which is
nonrestrictive, since λv and the left-hand side of (23) are non-
negative by definition. Section 3 proves that the inequality
(23) holds with equality at the optimal solution.

F. Battery Temperature

Battery temperature Tbatt is to be modeled in order to keep
temperature under the upper bound

Tbatt ≤ Tbatt (24)

to protect battery lifetime. For a change ∆Tbatt between
intervals, battery temperature is predicted using the linear

Tbatt,i+1 = Tbatt,i + ∆Tbatt,i. (25)

Temperature changes are caused by electrochemical losses
during use, heat emitted passively to the surroundings, and
heat extracted by the active cooling system. The battery can
be modeled as a lumped mass mbatt with thermal capacity
cbatt that admits a thermal content change of mbattcbatt∆Tbatt
for the change ∆Tbatt [26]. Using the fictitious forces con-
vention, the heat balance is

mbattcbatt∆Tbatt = (Qgen −Qrem)∆s, (26)

where Qgen and Qrem denote the battery heat generated and
removed per meter traveled, respectively.

1) Derivation of Heat Generated: Qgen can be expressed
in terms battery efficiency for both charging and discharging

Qgen = |Fbatt|
(
1− ηbatt(Fbatt, v)

)
; (27)

however, the linear equality (26) would not remain linear
if it were to admit the absolute value operation |Fbatt|.
Alternatively, we propose to mimic |Fbatt| using Fdis − Fchr

Qgen = (Fdis − Fchr)
(
1− ηbatt(Fbatt, v)

)
, (28)

where Fdis ≥ Fbatt, 0 and Fchr ≤ Fbatt, 0. Section 3 explains
how Fdis and Fchr adopt the positive discharging and negative
charging values of Fbatt, respectively. Lastly, the variable
efficiency term ηbatt(Fbatt, v) is simplified to the constant

Qgen =Fdis(1− η̃dis)− Fchr(1− η̃chr), (29)

where η̃dis and η̃chr denote average discharging and charging
efficiency, respectively.



2) Derivation of Heat Removed: The heat removed from
the battery per meter comprises of heat emitted to ambient
per meter Qamb and heat extracted by active cooling system
per meter Qcool

Qrem = Qamb +Qcool. (30)

The heat lost to ambient per second is h(Tbatt − Tamb),
where h is rate of heat transfer per second per kelvin. As
such, Qamb becomes

Qamb = h(Tbatt − Tamb)δt, (31)

where δt,i = 1/vi is the time required to travel one meter at
the speed of interval i. In the space-domain, δt is dependent
on the optimized speed profile and thus unknown a priori;
therefore, the fixed average value δ̃t is used instead, except
for station dwell (wait) times which are known a priori. The
error induced by this approximation is negligible.

A relation between Qcool and Fcool is required for the bal-
ance expression (9). Assuming a direct connection between
energy used and heat removed Fcool = Qcool/γ̃, where γ̃ is
the average coefficient of performance—the ratio of active
cooling rate to power consumed by cooling system.

Lastly, peak heat removal rate per second Q̇cool is related
to Qcool by

Qcool ≤ Q̇coolλv. (32)

3) Compilation of Thermal Model: Substitute (29) and
(30) into (26) to get the linear

mbattcbatt∆Tbatt =
(
Fdis(1− η̃dis)− Fchr(1− η̃chr)

− h(Tbatt − Tamb)δ̃t −Qcool

)
∆s.

(33)

III. OPTIMIZATION FORMULATION

The models derived in section 2 are now used to for-
mulate the target optimization problem. The optimized sys-
tem states are (z, ζ, Tbatt); the main control variables are
(Fm, Fbrk, Ffc, Fbatt, Qcool); and the auxiliary variables are
(v, λv, λζ ,∆ζ ,∆Tbatt, Fdis, Fchr). After obtaining the optimal
solution, the optimal trajectories of the fictitious variables
(Ffc, Fbatt, Qcool) are multiplied by speed in order to obtain
their respective power commands, namely fuel cell power
output, battery power output, and cooling rate per second.

The optimization problem computes the trajectory for N
intervals from i = 0, 1, · · · , N − 1 starting with initial states
(z0, ζ0, Tbatt,0). The cost function penalizes hydrogen fuel∑

i

qfc(Ffc,i, zi)∆s,i. (34)

The linear equality constraints (2), (15), and (25), predict
the system’s states (z, ζ, Tbatt), respectively. A second set
of necessary equality constraints are (22) and (33) for the
auxiliary variables λζ and ∆Tbatt. Moreover, the equality

ζN = ζ0 (35)

enforces charge-sustaining operation on the battery,∑
i

∆s,iλv,i = τ (36)

terminates the journey exactly τ seconds after start, and

vj = vstop (37)

halts the train at station stop intervals denoted j.
The linear inequality constraints are broken down into the

simple lower and upper bounds

Fchr,i ≤ 0 ≤ λv,i, λζ,i, Fdis,i (38a)
v ≤ vi ≤ v, (38b)

v2 ≤ zi ≤ v2, (38c)

ζ ≤ ζi ≤ ζ, (38d)

Tbatt,i ≤ Tbatt, (38e)

Fm ≤ Fm,i ≤ Fm, (38f)

Fbrk ≤ Fbrk,i ≤ Fbrk (38g)

and the more elaborate linear inequalities

Pmλv,i ≤ Fm,i ≤ Pmλv,i, (39a)

Pbattλv,i ≤ Fbatt,i ≤ Pbattλv,i, (39b)

Pfcλv,i ≤ Ffc,i ≤ Pfcλv,i, (39c)

0 ≤ Qcool,i ≤ Q̇coolλv,i. (39d)

Lastly are the list of relaxed inequalities

1 ≤ viλv,i, (40a)

v2i ≤ zi, (40b)
qm(Fm,i, zi) +Qcool,i/γ̃ + Pauxλv,i ≤ Ffc,i + Fbatt,i, (40c)

αF 2
batt,i∆s,i ≤ λζ,iλv,i, (40d)

Fchr,i ≤ Fbatt,i, (40e)
Fbatt,i ≤ Fdis,i. (40f)

The constraint (40a) implies that v is strictly positive
and thus z as well due to (40b). Nevertheless, in order to
emulate being stationary at station stops in (37), vstop is
set to a small positive value that approaches zero. During
station stops Fext,j is zeroed in order to successfully emulate
a stationary state without motion induced resistance, see (3).
Since the optimized speed profile is strictly positive, the
sampling intervals during station stops ∆s,j are adjusted a
priori to the multiplication of expected dwell time by vstop.
Although the optimized speed at station stops never attains
zero, in practice, it can be zeroed without affecting feasibility
or optimality if vstop in (37) was small enough.

In order to prove the optimality of the proposed formula-
tion, the relaxed constraints (40) need to be proven to hold
with equality. The following justifies inequality tightness:
• (40a): the summation

∑
i λv,i is fixed through (36) and

v has the incentive to drop due to losses in (3);
• (40b): z has incentive to drop due to penalty (34) but v

is constrained by (40a);
• (40c): Fbatt has incentive to drop or turn negative for

free battery charge, Ffc is minimized by penalty (34),
whereas the left-hand side is necessary for auxiliary
loads and to move the train for the journey time
constraint (36);



TABLE I
SIMULATED TRAIN PARAMETERS

Vehicle Motor Battery Cooling

m 183 t Pm −585 kW Pbatt −600 kW Tbatt 40 °C

λ 0.0625 Pm 585 kW Pbatt 600 kW Q̇cool 15 kW

a 1.743 kN Fm −87 kN Q 220 kWh γ̃ 4

b 76.4 kg/s Fm 87 kN R 21.7 mΩ mbatt 3 t

c 6.2 kg/m Pfc 24 kW Uoc 600 V cbatt 1 kJ/(kg · K)

Fbrk −180 kN Pfc 400 kW ζ 20% ηdis 0.9

Paux 85 kW ζ 80% ηchr 0.9

hamb 25 J/(s · K)

• (40d): the relaxed version of its original model (17),
∆ζ ≥ (αF 2

battv
2 + βFbattv)∆t, is tight when relaxed, as

it would rather minimize ∆ζ or turn it negative to gain
free battery charge, whereas Fbatt on the right-hand side
is necessary to move the train in (40c);

• (40e),(40f): if the upper temperature bound (38e) is
reached, (33) would rather tighten (40e) and (40f)
before relying on the active cooling system command
Qcool that is indirectly penalized by (34) through (40c).
Tightness is only guaranteed if the upper temperature
bound is reached otherwise the thermal constraint is not
necessary. Tightness is not guaranteed for a lower bound
on temperature but that is not likely needed for traction
batteries during use.

The optimization formulation proposed is convex because
it penalizes a convex quadratic cost function subject to linear
equality and convex inequality constraints. We formulate it
as a second-order cone program and solve it using the barrier
method [27].

IV. SIMULATION RESULTS

The formulation proposed in section 3 is now tested on a
benchmark train and rail journey under three different ambi-
ent temperatures: −5 °C, 20 °C and 35 °C. The target train
optimized is the HydroFLEX [28], a four-car hydrogen train
with parameters shown in Table I. The rail line simulated is
the 63-km-long Tees Valley Line located in northern England.
The line runs between Saltburn and Bishop Auckland with 16
intermediate stops. Route elevation data has been extracted
from [29] using the EU-DEM dataset. The route is optimized
and simulated at a spatial sampling interval ∆s of 10 m
leading to around 6300 intervals.

In order to guarantee a fair comparison, the following
has been unified between simulations: initial and terminal
state-of-charge of 50% using (35); total journey time of 87
minutes using (36); dwell time at stations. The initial battery
temperature is assumed equal to ambient for 20 °C and 35 °C,
whereas the battery is pre-heated to 10 °C for the ambient
−5 °C in order to prepare it for peak performance. The upper
temperature bound Tbatt is 40 °C.

Figure 2 shows the optimized battery temperature under
all ambient conditions. The coldest profile −5 °C was the

Fig. 2. Progression of battery temperature under three ambient conditions.

only not to reach the upper bound and not to require
the active cooling system thus its trajectory is identical
to previous formulations that do not optimize temperature
[10]. Both warmer profiles required active cooling to remain
under the upper temperature bound which led to higher fuel
consumption, 0.7% for 20 °C and 1.7% for 35 °C.

Figure 3 compares at an ambient of 35 °C the concurrent
method—all trajectories are optimized together as in section
3—against the sequential method—only speed and EMS are
optimized together, whereas temperature is optimized later
during operation. The concurrent is able to control battery
temperature more effectively with less cooling effort and thus
cost 3% less fuel. This thermal enhancement is partly due
to the concurrent using cooling early-on before temperature
became too hot and partly because it generated less heat to
begin with. The concurrent’s fuel benefit to the sequential at
20 °C ambient was a more modest 0.3% due to the lower
active cooling demand in a cooler environment.

Figure 4 gives an example of why the concurrent generated
less heat than the sequential using trajectories between two
stations. The state-of-charge plot ζ shows the concurrent’s
battery being discharged less than the sequential at around
1100 s which subsequently required less recharging later on.
This lower utilization of the concurrent’s battery leads to
less temperature rise and is repeated throughout. While this
implies that the fuel cell compensates for the battery’s lower
utilization, the concurrent finds a global minima that balances
between battery utilization and battery cooling consumption.

V. CONCLUSION

A convex formulation for concurrently optimizing train
speed, EMS, and battery temperature is proposed. It is
concluded that optimizing battery temperature concurrently
with speed and EMS can enhance both fuel consumption
and thermal management. The degree of benefit is reliant
on ambient temperature. Quick convex optimization can
empower the proposed formulation to be used in real-time in
order to get more accurate ambient readings. A continuation
to this work is to investigate fuel cell temperature.
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