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Energy-optimal Design and Control of Electric Powertrains
under Motor Thermal Constraints

Mouleeswar Konda, Theo Hofman, Mauro Salazar

Abstract— This paper presents a modeling and optimization
framework to minimize the energy consumption of a fully elec-
tric powertrain by optimizing its design and control strategies
whilst explicitly accounting for the thermal behavior of the
Electric Motor (EM). Specifically, we first derive convex models
of the powertrain components, including the battery, the EM,
the transmission and a Lumped Parameter Thermal Network
(LPTN) capturing the thermal dynamics of the EM. Second, we
frame the optimal control problem in time domain, and devise
a two-step algorithm to accelerate convergence and efficiently
solve the resulting convex problem via nonlinear programming.
Subsequently, we present a case study for a compact family
car, optimize its transmission design and operation jointly with
the regenerative braking and EM cooling control strategies
for a finite number of motors and transmission technologies.
We validate our proposed models using the high-fidelity sim-
ulation software Motor-CAD, showing that the LPTN quite
accurately captures the thermal dynamics of the EM, and
that the permanent magnets’ temperature is the limiting factor
during extended driving. Furthermore, our results reveal that
powertrains equipped with a continuously variable transmission
(CVT) result into a lower energy consumption than with a
fixed-gear transmission (FGT), as a CVT can lower the EM
losses, resulting in lower EM temperatures. Finally, our results
emphasize the significance of considering the thermal behavior
when designing an EM and the potential offered by CVTs in
terms of downsizing.

I. INTRODUCTION

HE automotive industry is transitioning to electrified
T powertrains for several reasons, including environmen-
tal pollution and natural resource depletion. Whilst combus-
tion engine cars are being hybridized, fully electric vehicles
are slowly pervading the market. This trend is visible in
all vehicle classes, from light passenger vehicles to micro-
mobility, SUVs to long-haul trucks, electric sportscars, and
motorsports [1], [2]. Furthermore, electric vehicles (EVs) are
becoming more practical as they provide longer ranges and
superior performance compared to conventional vehicles.

However, to achieve the best market penetration of pas-
senger electric vehicles, costs must be further reduced, which
can be accomplished by downsizing the powertrain compo-
nents to lower component costs and increasing the overall
powertrain efficiency to lower operational costs. In this
regard, the efficient downsizing of an Electric Motor (EM)
necessitates for the effective use of the EM’s peak perfor-
mance envelope. Despite its benefits, EMs can sustain peak
performance only for a limited time, due to overheating. In
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Fig. 1.  Schematic layout of the electric powertrain. It consists of a
battery pack (BAT), an inverter (INV), an electric motor (EM), a radiator-
fan assembly (FAN), a transmission (GB) which is either a fixed-gear
transmission (FGT) or a continuously variable transmission (CVT); and a
final drive reduction gear (FD) connected to the wheels (W). The arrows
indicate the power flows between the components with mechanical power
in orange, electric power in green and thermal power in blue.

addition, the components are prone to failure because of the
difficulties involved in cooling the downsized components.
Therefore, the thermal behavior should be considered when
designing an electric powertrain and its control strategies.

The thermal management system of an EV predominantly
has two thermal circuits to cool its components: a low-
temperature circuit for the battery and a high-temperature
circuit for the inverter-motor-transmission assembly [3]. This
research focuses on the latter. Specifically, we model the
thermal behavior of an EM by first capturing the temper-
atures of each of its subcomponents (magnets, windings,
etc.) together with highly accurate loss models. In addition,
we propose a framework based on convex optimization to
efficiently solve the optimization problem while controlling,
first, the transmission ratio to ensure efficient operation of
the EM and, second, the amount of regenerative braking to
keep the EM temperatures under their limits.

Related Literature: The problem studied in this work
pertains to two main research lines: The first one is devoted
to the design and control of (hybrid) electric vehicles. The
nonlinear nature of the problem was addressed through
high-fidelity modeling and derivative-free methods in [4]—
[6]. In [7]-[9], convex optimization, which partly sacrifices
accuracy for globally optimal and time-efficient algorithms,
was used. Nonetheless, neither of the methods account for
the thermal behavior of an EM at a subcomponent level.
An exception is made for our previous work [10], which is
however tailored for racing applications and hence based on



less accurate models, and requires ad-hoc solution schemes
that do not provide global optimality guarantees, as the
underlying optimization problem is not entirely convex.

The second stream pertains to the thermal modeling of
the electric machines. This problem is usually addressed
with Finite-Element Analysis (FEA), Computational Fluid
Dynamics (CFD), or Lumped Parameter Thermal Net-
works (LPTNs) [11]. Whilst FEA and CFD provide accurate
results [12], [13], they are computationally expensive and
infeasible for optimization. The second method is to derive
LPTNs based on first principles. These are sufficiently ac-
curate and computationally inexpensive, which makes them
suitable for optimization applications. Detailed component
level LPTNs, on the other hand, have not been used in
powertrain energy minimization problems. In conclusion, to
the best of the authors’ knowledge, there are no globally
optimal methods to design and control electric powertrains
accounting for their performance requirements and explicitly
considering the thermal behavior of the EM.

Statement of Contributions: Against this backdrop, our
paper presents a convex optimization framework to jointly
optimize the transmission design and operation of an electric
powertrain. First, we identify a convex model of a central-
EM powertrain, capturing the losses of its components, the
EM temperatures and the radiator fan operation. Second,
we validate our methods using the high-fidelity simulation
software Motor-CAD [14]. Finally, we perform a case study
with a compact family car and compare the results for
the powertrain equipped with three different motors and
two transmissions: a fixed-gear transmission (FGT) and a
continuously variable transmission (CVT).

Organization: The remainder of this paper is organized
as follows: Section presents the convex model of the
EV powertrain, including the loss models of the EM in
Section [[I-C| and a detailed lumped parameter thermal model
in Section The optimal control problem is framed
in Section The numerical results of the optimization
problem are presented and analyzed in Section Finally,
we draw conclusions and discuss future research directions
in Section [[V1

II. METHODOLOGY

In this section, we present a framework based on convex
optimization to optimize the design and control strategies
of the electric vehicle powertrain shown in Fig. First,
we define the optimization objective and frame the optimal
control problem in time domain. Second, we introduce the
convex quasi-static models of the powertrain components,
including the transmission and battery. The temperature-
dependent motor loss models and thermal models are pre-
sented in Sections and respectively. Finally, we
summarize the optimization problem and discuss some key
features of the proposed framework.

The all-electric powertrain consists of a battery that con-
verts chemical energy to electrical energy. The inverter-motor
assembly, in turn, converts it into mechanical energy, which
is transferred from the motor shaft to the wheels through

a gearbox and a final drive. We consider two gearboxes:
an FGT and a CVT. The losses in the inverter, motor and
transmission generate heat which is continuously removed
from the powertrain to prevent any damage to the vehicle
via a thermal circuit comprising the radiator, fan and the
coolant. The coolant transfers the thermal energy from
different components to the radiator-fan assembly, which
dissipates the heat into the atmosphere. An electric motor
is capable of recuperating a part of the kinetic energy
when the vehicle is decelerating which is otherwise lost
to friction. The recuperation process induces losses in the
motor which increases the temperatures of its components.
Therefore, we regulate the temperatures by controlling the
amount of power recuperated and divert the additional power
to mechanical brakes. Thereby, we consider the trade-off
between maximizing regenerative braking at the cost of a
higher heat generation and minimizing the radiator operation
at the cost of less cooling.

The input variables to the optimal control problem with
the CVT are the mechanical brake force P,i(t) and the
gear ratio 7(t). For the FGT-equipped vehicle, the only
input variable is Py (t), whereas the gear ratio v is a
design variable. The state variables are the amount of battery
energy used since the start of the driving cycle AFE(t),
and the components’ temperatures: the shaft’s temperature
Dt (t), the rotor’s temperature J,,(¢), the permanent mag-
nets’ temperature Uy,g (), the stator’s temperature g, (t),
the windings’ temperature ¥yqg (), and the end-windings’
temperature Jewdg(t). The optimal control problem will be
discussed in detail below.

A. Objective

Our objective is to minimize the internal energy consump-
tion of the battery over a given drive cycle:

min J = min AE},, )

where AFj, is the difference in the battery state of energy
defined as

AEy, = Ey(0) — Ep(T), 2)

and Ey(0) and F},(T) denote the battery state of energy at
the start and end of the drive cycle, respectively.

B. Vehicle Dynamics and Transmission

In this section, we model the vehicle and the transmission
in a quasi-static manner in line with current practices [15]. In
this regard, we present a convex model of the longitudinal
vehicle dynamics in time domain. To improve readability,
we exclude time dependence whenever it is clear from the
context. First, the power equilibrium at the wheels is given
as

Pfd :Preq+Pbrk7 (3)

where P4 is the final drive power, P, is the power required
at the wheels and P,y is the mechanical brake power re-
quired. As mentioned above, P is an input variable, and it
controls the amount of regenerative braking to maintain EM



temperatures within their limits. Additionally, we constrain
the brake power according to

Pbrk 2 0. (4)

Picq is a combination of aerodynamic drag, rolling resis-
tance, gravitational force and vehicle inertia. We compute
P,eq for a given drive cycle with a velocity v(¢), an accel-
eration a(t), and a road gradient a(t) with

P (0(0), () a(t) = v(t) - (5 - pa-ca - A 00+

my (g - ¢ - cos(a(t)) + g - sin(a(t)) + a(t))),

)

where m, is the total mass of the vehicle, cq is the vehicle’s

drag coefficient, A; is the frontal area of the vehicle, ¢, is

the road friction coefficient, p, is the air density and g is the

Earth’s gravitational constant. We assume a constant final

drive and transmission efficiency, 7¢q and 7,1, respectively.

Therefore, the power at the motor shaft, P, is given by

! - Pra if Pq>0

Tgb * Mid (6)
Ngb *MNed - Tb - Pra if Pra <0,

Py =

where 75, = ey and Mg, = 7y are efficiencies of FGT
and CVT, respectively, and r}, is the regenerative braking
fraction. The rotational speed of the motor shaft for a given
gear ratio <y is calculated using
v(t
wm:“y"yfm#, @)

where 7, is the radius of the wheel, ~¢4 is the final drive gear
ratio, and y is the transmission gear ratio. The transmission
ratio is one of the optimization variables and depending on
the type of transmission, it is constrained as
= gt > 0 V¢ if FGT,
o {Z

8
S [’Ymin,’ymax] C R++ Vit if CVT, ®)

where R, is the set of positive real numbers. Finally, the
total mass of the vehicle is

if FGT,
if CVT,

Migt

mv:mo+mm+{ ©)

Mevt
where my is the base mass of the vehicle, m,, is the mass
of the motor, myggy is the mass of the FGT, and m..y is the
mass of the CVT. We assume that the base mass includes the
frame’s mass, the battery’s mass, and the equivalent mass due
to the moment of inertia of rotating parts.

C. Electric Motor and Inverter

In this section, we derive an accurate temperature-
dependent model of the EM losses inspired by our previous
work [10], [16]. One of the most common types of motors
for a light passenger vehicle is an Interior Permanent Magnet
(IPM) motor [17]. We model the IPM motor based on the
templates provided in the high-fidelity simulation software
Motor-CAD. We use the data generated by the software to
identify and validate the motor loss models and motor ther-
mal models. Subsequently, the power at the motor terminals,
P, is given by

an = FPm + 1310557 (10)

where Pj,ss represents the combined losses of all the motor
subcomponents and can be defined as

Ploss = Z P, vV {i = sft, rtr, mgt, str, wdg}, (11)

where P; represents the losses corresponding to the subcom-
ponents of the motor, namely the shaft (sft), the rotor (rtr), the
permanent magnets (mgt), the stator (str) and the windings
(wdg). The losses are individually identified for each EM
component in order to build an LPTN and explicitly capture
the thermal dynamics of the EM, which will be discussed in
Section The shaft losses, Pi, represent the bearing
friction losses and are independent of motor power and
temperature. Therefore, we compute them using the linear
relation

Psft = Qsft,0 + Qsft,1 * Wm, (12)

where agg is subject to identification. Now we present the
loss models for the other EM subcomponents for which we
divide the driving cycle into two parts: traction (including
coasting) and braking. During traction, the motor must sup-
ply the full power required to propel the vehicle. In contrast,
when braking, we can split the power between the friction
brakes and EM (via regenerative braking) to keep the EM’s
temperatures within their limits. The main advantage of this
model is that for a given drive cycle, the motor power is
known during traction, which enables us to accurately model
the EM losses by using motor-power-level-specific fitting
coefficients. To this end, we compute the minimum tractive

power required to propel the vehicle, P, as

P, = max 'Preq7’l7gb'77fd "rb'Preq7Pm,rnin)7 (13)

<77gb - Ntd
where Py, min is the minimum EM power. First, the rotor
and stator losses represent the iron losses in the EM’s rotor
and stator, respectively, and are computed with the relaxed
equations

artr,O(Pm) + artr,l(Pm) “Wm + artr,2(Pm) . UJIQI”

Py > if Py, > 0,
yTQrtry7 if ?H[ < O,
_ _ _ (14)
astr,O(Pm) + astr,l(Pm) *Wm + astr,Q(Pm) g?n:
Par > if Py > 0,
¥ Qstry, if Py < 0,
15)

where a,t;, astr, Qrtr and Qgtr are subject to identification,
and y = [1 wWm  Pan w?n Pr% Wm * Pm] T. To retain
convexity in the positive speed domain, we ensure that
Artr2 > 0, asgr2 > 0, and Qryr, Qstr are positive semi-
definite matrices. Given the objective (1)), constraints
and (T3)) will always hold with equality at the optimum [18].
For the remainder of this paper we will directly introduce all
constraints in their convex relaxed form, following the same
rationale. Second, the magnet loss models are temperature-
dependent and computed using convex quadratic relations of
the form

T _
Zmgt ngt (Pm) Zmgt s

0
’ (16)
yTngtya 0
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Fig. 2. Efficiency map of the interior permanent magnet (IPM) machine
(left) and its convex model (right) at a temperature of 65 °C.

where Qg and Ry, are positive semi-definite matrices
. . . . T

subject to identification, and zmgr = [l wm Vgt

Third, the copper losses in the EM are represented by

temperature-dependent winding losses as

awdg,l(ﬁm) awdg,Q(Pm)

Z;,rdg Rwdg(ﬁm) Zwdg + w + w2 5
Puag 2 if Py > 0,
" Qwagy, if Pr <(1(;,)

where awdg, Qwdg, and Ryq4g are subject to identification

2 2 T
and zwqg = [ wm Vwdg Wi Vegg W Vwdg] - In

addition, we ensure that awgg1 > 0, Gwdag2 => 0, and
Qwdg, Rwag are positive semi-definite matrices to preserve
convexity in the positive speed domain. To prevent the
winding losses from reaching infinity when the vehicle is
starting, we set awdg,1 = 0 and awqgg2 = 0 at very low
speeds. Moreover, we constrain the power losses with

P, >0, Vv {i = sft, rtr, mgt, str, wdg}. (18)
Fig. 2] compares the efficiency map obtained from Motor-
CAD with the efficiency map from convex models. We
can observe that the models are accurate, especially in the
positive domain where most of the operation occurs. The

torque limits of the EM are

Prn [S [Tm,minmi,max} * Wm, (19)

where T, max and T}y min are the maximum and minimum
torques subject to identification. In addition, we bound the
EM power as

Pm € [Pm,min, Pm,max] ) (20)

where Py, min and Py max are the minimum and maxi-
mum motor powers, respectively. We compute them using
the relationships Py min = di,min Wm  +  do mins
Pm,max = dl,max Wm  + dO,max where dO,min,
d1,min, domax and di max are the coefficients subject to

End-winding

Coolant

Fig. 3. A 3-dimensional section view of the IPM motor from Motor-CAD
(top) and the corresponding Lumped Parameter Thermal Network (bottom).

identification. The non-negative rotational speed of the motor
is bounded by the maximum EM speed, Wy, max, as

wWm € [0, Wm,max] - 21

Finally, we approximate and relax the inverter losses using
the quadratic function

Pac > @iny - Poy + P, (22)

where ainy > 0 is the inverter loss-coefficient subject to
identification, and Py, is the power at the inverter terminals.

D. Motor Thermal Model and Fan Model

In this section, we derive an LPTN model, based on [10],
[19], [20]. In addition to the EM components presented in
Section [[I-C| we include the overhanging copper windings,
further referred to as end-windings (edwg), in our thermal
model because the end-windings reach higher temperatures
and are the limiting factors in high-performance opera-
tions [21]. Therefore, we build the LPTN with a total of 6
nodes: the shaft (sft), the rotor (rtr), the permanent magnets
(mgt), the stator (str), the windings (wdg) and the end-
windings (edwg). The LPTN is based on the following
assumptions: First, the heat flow in the radial direction is



independent of the heat flow in the axial direction. Second,
the heat flow in the circumferential direction is absent.
Third, each component’s thermal properties, including its
temperature, can be represented by a single node, i.e., the
temperature distribution in a component is uniform. Fig. [3]
shows the cross-section of the IPM machine at the top and
its LPTN at the bottom. The energy balance equations for
the LPTN are given by

Pt = Csftlésft + k‘sft,rtr(ﬂsft - "9rtr)

Py = CrtrVrtr + kst rer (Orer — Ostt) + Ertr,met (Frtr — Omet)
+ krtr,str (Urer — Ustr) + Krer,wdg (Urtr — Fwdg)
Prgt = Cmgtlémgt + Ertr,mgt (Vmgt — Urer)
Pser = Cstriéstr + krtr,str (Pstr — Orer) + Kstr,wdg (Fstr — Pwdg)

+ kstr,col (ﬁstr -

ﬁcol)
Pwdg - cwdgﬁwdg + kstr,wdg('gwdg - 19str)
+ krtr,wdg(ﬁwdg - ﬂrtr) + kwdg,ewdg('&wdg - ﬂewdg)

Pwdg - Cewdg'léewdg + kwdg,ewdg (ﬂewdg - 19wclg):
(23)

where ¥; and ¥; represent the temperature of a node and the
rate of change of temperature, respectively, for the nodes,
i € {sft, rtr, mgt, str, wdg, ewdg}. Parameter k; ; represents
the overall heat transfer coefficient between node ¢ and node
7, and ¢; represents the heat capacity of the node. Parameters
ki ; and c; are subject to identification. We use nonlinear
gradient-based methods to identify the thermal coefficients.
In addition, we use the losses estimated by our power loss
models instead of the losses from the high-fidelity software
to avoid propagating the error of the power loss model to
the LPTN. In order to prevent motor failure due to thermal
limitations, we constrain the temperature of each node using

1971 S ﬁi,max, (24)

where ¥; max is the temperature limit of node 7. We initialize
the temperature of each node at the coolant temperature, .1,
as

9:(0) = Yeol. (25)

Finally, the air flow rate, 77,;,, required by the fan to remove
heat is given by
Prnot,rej + Ploss,inv + Hoss,tra

Mair = , (26)

The * Cp,air : Aﬂa
where the transmission losses are Ploss tra = Pm — Pra, the
inverter losses are given as Ploss iny = Fac — Pinv and the
heat rejected by the EM is Protrej = Kstr,col (Ustr — Peol)-

In addition, 71, is the heat exchanger efficiency, Cy ,ir is
the specific heat capacity of air and A, is the constant
temperature gain of the air across the radiator [20]. We
compute the power required by the fan, P, as

Pran > af- miir: (27)

where ay > 0 is again subject to identification. Finally, the
air flow rate is constrained as
(28)

Mair S Mair,max

where the maximum air flow rate, 7airmax, 1S a given
parameter. Hereby, we observe that P, is not an explicit

control variable, but rather results from the airflow needed
to guarantee a constant temperature gain Ad, for the given
losses, as expressed in (26).

E. Battery

In this section, we derive a detailed energy-dependent
battery model in line with [18]. First, the electric power at
the battery terminals, P,¢, is computed as

Pbat :Pdc+Paux+Pfan7 (29)

where P, is the auxiliary power. Subsequently, the internal
battery power Py, which changes the battery state of energy,
is related to P,t as

(Pint — Poat) - Poc > P, (30)

where P,. is the open circuit power dependent on the
internal resistance of the battery and its open circuit voltage.
Furthermore, P, is a function of the state of energy (SoE)
of the battery and defined as

Poc = bl . Eb + b2 . Eb,maxy (31)

where b; and by are subject to identification [18]. Addi-
tionally, we bound the battery SoE using the minimum and
maximum state of charge (SoC) levels, (b min and (b max,
respectively, as

Eb S [Cb,miny Cb,max] . Eb,max- (32)

We assume that the vehicle starts with a full battery at the
start of the cycle:

Eb(o) = Eb,max : Cb,max- (33)
Finally, the battery SoE changes with P,,; as
d
EEb - _]Dit\t~ (34)

F. Performance Requirements

In this section, we derive the performance requirements
of the vehicle in order to ascertain that they are within ac-
ceptable limits. In line with [18], we capture the gradeability
requirement as

. . if FGT
My-gSin (Qstart) Tw < T max Td“Yed { Zitt ;ﬁnax ;f CVT,
(35)

where agiart 1 the required starting gradient. Lastly, in line
with [2], we ensure that the EM can deliver the required
torque to propel the vehicle at its top speed on a flat road
using the constraint

Tm,speed < min(Tcm,max s Mtd - Ngb * Vx * Vtd,

Tw

) Mta * Mgn),

(36)
where v, = 7y for the FGT, vy = ~ymin for the CVT,
Tn,speed 1s the torque required at the vehicle’s top speed,

Umax, and can be computed as
Preq(vmax, 07 0)

Tm,speed = *Twe
vmax

(dl,max *Yx  YEd + dO,max .

max

(37



G. Optimization Problem

We present the optimal design and control problem below.
The state variables for both the transmission technologies are
given by = = (Eb, Vs, Frtr, Fmet, Fstrs Vwdg, Vewdg ). The
control and design variables for FGT are u = Pk and
DFGT = 7igt, Tespectively. The control variables for CVT
are given by u = ( Py, y(¢)).

Problem 1 (Nonlinear Convex Problem). The minimum-
energy design and control strategies are the solution of
min AEb = Eb(()) — Eb (T)
s.t. @) — (12, (@) — G-

Problem [T] is convex. Yet it cannot be solved by standard
convex programming algorithms [22]. Nevertheless, we can
compute the global optimum by nonlinear programming.
In order to accelerate convergence, we warm-start it with
the solution of a simplified temperature-independent convex
quadratically constrained quadratic program (QCQP).

H. Discussion

A few comments are in order. First, in line with the current
practices in high-level design and optimization of automotive
powertrains [18], we assume constant efficiencies for the
FGT, the CVT and neglect the dynamics of the CVT since
the transmission modeling is not the aim of this research.
We refer readers to [9], [23], [24], where a more careful
analysis of the CVT dynamics is presented. Second, we
exclude the gearbox, inverter, and battery temperatures from
our thermal models and assume them not to be the limiting
factors. However, we can easily extend our framework to
account for the temperatures, capturing the full thermal
behavior of an EV. Interested readers are directed to [19]
for more information. Third, convex approximations to the
nonlinear EM power losses may result in frequent under- or
overestimation of the power losses. This error spreads to the
LPTN’s neighboring nodes, potentially resulting in diverging
temperatures. To mitigate such effects, we identify the LPTN
for each driving cycle. Fourth, we consider the average
temperatures of each node during fitting and validation of
the LPTN to preserve the physical meaning of the LPTN.
However, we can emulate hot-spot temperatures by lowering
the temperature limits of each component, because replacing
average temperatures with hot-spot temperatures may reduce
LPTN’s accuracy. Finally, we neglect the thermal dynamics
of the coolant and assume it to be kept at a constant
temperature, .o, by the radiator. Nevertheless, our results
in Section below show that our models can accurately
estimate the temperatures of each component of the EM.

III. RESULTS

This section presents the numerical results obtained when
we apply the framework presented in Section |lIf to optimize
the powertrain design and control strategies of a compact
family car. In line with current practices for hybrid electric
vehicles [15], we optimize the powertrain design and con-
trol for given driving cycles: the World harmonized Light-
vehicles Test Cycle (WLTC) Class 3 and a custom cycle

TABLE I

SIMULATION PARAMETERS.

Parameter Symbol Value Units
Vehicle Dynamics & Transmission
Wheel Radius Tw 0.3 [m]
Air drag coefficient [ 0.28 [-]
Frontal Area Ag 2.29 [m?]
Air density Pa 1.2041 [kg/m3]
Rolling resistance coefficient Crr 0.007 [-]
Gravitational constant g 9.81 [m/s2 1
Brake fraction Th 0.65 [-]
Final drive ratio Yid, fgt 1 [-]
Ved,cvt 7 [-]
CVT gear ratio limits Ymin 0.75 [-]
Yinax 2.1 [l
Vehicle base mass mo 2000 (134
Gear box mass Migt 50 kgl
Mevt 80 [ke]
Motor to Wheel Efficiency Nigt * Nfd 0.98 [-]
Neve “Nea 0.96 [-]
Thermal Network & Fan
Coolant temperature Yol 65 °C
Air temperature gain AV, 18 [20] °C
Specific heat capacity,air Ch,air 1 kJ/kgK
Heat exchanger efficiency Nhe 0.6 [20] [-]
Battery
Battery Capacity By, max 37 [kWh]
Maximum SoC Cb,max 0.85 [-]
Minimum SoC Cb,min 0.15 [-]
Performance Requirements
Starting Gradient Qstart 0.2 [-]
Top Speed Vtop 135 [kmph]
Acceleration Time tace 15 [s]
Acceleration Speed Vace 100 [kmph]
TABLE II
ELECTRIC MOTOR SPECIFICATIONS.
| Motor 1 | Motor 2 | Motor 3
mm [kg] 50.66 42.04  (-17.0%) | 2458  (-51.5%)
T max [Nm] 287 228 (-20.6%) 145 (-49.5%)
Pon max [KW] 134 132 (-1.5%) | 112 (-16.4%)
Wm,max [rad/s] 1047
Wm,b [rad/s] 419 550 733
Mol [/min] 6.5 52 (-20.0%) | 0.2 (-96.9%)

TABLE III
THERMAL LIMITS OF THE NODES OF THE THERMAL NETWORK.

Component ¥ max [°C]  Component ¥ max [°C]
Shaft 140 Permanent Magnets 120
Rotor 140 Stator 140
Windings 160 End-windings 160

obtained by repeating the WLTC Class 3 twice, further
referred to as WLTCx2. In addition, we use the WLTCx2 to
simulate extended driving scenarios, thereby thermally stress
testing the EM. We optimize the control strategies for an
electric powertrain equipped on of the three motors detailed
in Table an FGT or a CVT, and on two drive cycles
(WLTC and WLTCx2), resulting in 12 unique combinations.

Table [I] shows the vehicle parameters used to obtain the
numerical results presented in this section, and the motor
specifications are summarized in Table [[I] and fitted from
Motor-CAD data [14]. Motor 1, shown in the top subplot
of Fig. |3 is based on the 2011 Nissan Leaf’s EM, whilst
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Fig. 4. Optimization results for a vehicle equipped with Motor 3, an

FGT, and simulated over the WLTC. The plot shows the EM components’
temperature (solid), their limits (dashed) and a validation with the high-
fidelity simulation software Motor-CAD (dash-dotted).

Motors 2 and 3 are created by reducing its coolant flow
rates, and scaling its dimensions, resulting in lower peak
power and torque levels. Finally, Table [[l] summarizes the
maximum temperatures of all the nodes. In line with [18], we
discretize the optimization problem with a sampling time of
1 s using trapezoidal integration in order to avoid numerical
instabilities stemming from the LPTN [10]. We parse the
problem in CasADi [25] and solve it with the nonlinear
solver TPOPT [26]. Overall, It takes about 50s to parse
and 100 to converge for one motor-transmission-drive cycle
combination when using a computer with Intel® Core™ i7-
9750H CPU and 16 GB of RAM.

The remainder of the results are presented as follows:
First, we validate the accuracy of our models by compar-
ing them with the high-fidelity simulation software Motor-
CAD [14]. Second, we present a case study comparing
an electric powertrain equipped with an FGT and a CVT.
Finally, we compare the optimization results for all the
motor-transmission-drive cycle combinations.

A. Validation

In order to validate our models, we solve the optimal
control problem of a powertrain equipped with Motor 3 and
an FGT on the WLTC. Fig. [ shows that our models closely
reproduce the thermal behavior from Motor-CAD, resulting
in a cumulative drift below 1°C for all the components except
the end-windings, whose temperature drifts by 2°C.

B. Case Study: Comparison between an FGT and a CVT

Fig. 5] showcases the optimization results for a powertrain
with Motor 3, an FGT and simulated over the WLTCx2.
Whilst Fig. [6] presents the optimization results for a pow-
ertrain equipped with Motor 3, a CVT and simulated over
the WLTCx2 cycle. The evolution of the components’ tem-
peratures is shown in the plots. We can observe that the
EM’s components reach higher temperatures when compared
to Section [I-A] because of extended driving. In addition,
the powertrain equipped with an FGT reaches the thermal
boundaries of the magnets, whilst the powertrain equipped
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Fig. 5. The resulting temperatures for an electric powertrain equipped

with Motor 3, an FGT and simulated over the WLTCx2 cycle.
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Fig. 7. Comparison of the energy consumption rates for different motor-

transmission combinations.

with a CVT can operate on the optimal operating line when-
ever possible, thereby improving the motor efficiency and
consequently having overall lower temperatures. Thereby,
regenerative braking was always favored at the cost of a
higher fan operation. Moreover, a larger amount of regener-
ative power is diverted to the mechanical brakes in the case
of an FGT, as it is forced to keep the EM temperatures within
their limits, resulting into the CVT achieving a lower energy
consumption.



C. Comparison of Results

Fig. |7| presents the optimization results for all the motor,
transmission, and drive cycle combinations, where Fj, is the
energy consumption per distance traveled D, and mathemat-
ically defined as

—  AFE,

Ey = D

(38)

Despite the CVT being heavier and with a lower mechani-
cal efficiency, the CVT-equipped powertrains have lower en-
ergy consumption because their more efficient EM operation
results in fewer losses, whilst enabling more regenerative
braking. This result shows the downsizing potential associ-
ated with the effective use of the EM’s peak performance
envelope stemming from CVTs.

IV. CONCLUSION

In this paper, we investigated methods for jointly opti-
mizing the design and control strategies of an all-electric
powertrain in terms of energy consumption while explicitly
accounting for the thermal behavior of the electric motor
(EM). Specifically, we explored the trade-off between max-
imizing regenerative braking and minimizing radiator usage
to maintain the temperature of the EM within its limits. To
this end, we derived convex models of the vehicle compo-
nents, determined the performance requirements, formulated
a convex optimization problem and applied our methods to
design an electric compact family car. Our validation with
Motor-CAD showed that our models accurately captured the
thermal behavior of the EM, and the permanent magnets’
temperature is the limiting factor during extended driving.
Furthermore, our results revealed that continuously vari-
able transmission (CVT) equipped powertrains can operate
at lower EM temperatures w.r.t. fixed gear transmission
equipped powertrains, as the CVT keeps the EM on the
maximum efficiency line whenever possible, resulting in
lower losses and consequently less heat generation, hence
enabling more regenerative braking. Finally, we could de-
crease the maximum power of the EM by 16%, highlighting
the importance of considering the thermal behavior when
designing an electric powertrain.

This research opens the field for the following extensions:
First, we would like to include the thermal dynamics of the
inverter, transmission, and battery to exhaustively capture the
thermal behavior of an electric powertrain. Second, we would
like to control the active aerodynamic elements to regulate
the airflow over the radiator for cooling purposes. Third, we
would like to extend the methods for real time control of
electric vehicles.
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