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Combining ICA Feature-Based Offline and Online Machine Learning to
Estimate State of Health of Lithium-Ion Batteries

Chengqi She, Yang Li, Torsten Wik, and Changfu Zou

Abstract— This article proposes an adaptive state of health
(SOH) estimation method for lithium-ion batteries using ma-
chine learning. Practical problems with cell inconsistency and
online implementability are specifically solved using a proposed
individualized estimation scheme blending offline model migra-
tion with online ensemble learning. First, based on the data of
pseudo-open-circuit voltage measured over the battery lifespan,
a systematic comparison of different incremental capacity
features is conducted to identify a suitable SOH indicator. Next,
a pool of candidate models, composed of slope-bias correction
(SBC) and radial basis function neural networks (RBFNNs), are
trained offline. For online operation, the prediction errors due
to cell inconsistency in the target new cell are then mitigated
by a proposed modified random forest regression (mRFR)
based ensemble learning process with high adaptability. The
results show that compared to prevailing methods, the proposed
SBC-RBFNN-mRFR-based scheme can achieve considerably
improved SOH estimation accuracy (15%) with only a small
amount of early-age data and online measurements are needed
for practical operation.

I. INTRODUCTION

Lithium-ion (Li-ion) batteries have been reckoned as the
backbone of electric vehicles (EVs) and key components
of modern grid systems due to their salient merits of high
energy and power densities, low self-discharge rate, and ever-
declining costs in recent years [1]. However, the energy
storage capacity and power capability of Li-ion batteries can
gradually reduce caused by various aging mechanisms, lead-
ing to limited service life and degraded system performance
over time [2]. To ensure the safe, reliable, and efficient use
of Li-ion batteries, the indicator of battery health, namely
the state of health (SOH), must be precisely monitored and
predicted, which forms a fundamental functionality of Li-ion
battery management systems (BMSs) [3].

The SOH is a number defined by comparing an aged
battery parameter to its pristine value at the beginning of
life, commonly defined using battery capacity or internal
resistance. Many battery SOH estimation algorithms have
been developed in the literature. In the last decade, the
data-driven methods have received rapidly growing research
attention, as their model-free and easy-to-implement natures
are in favor of real-world applications [4]. Among many
data-driven techniques, incremental capacity analysis (ICA)
is one of the most extensively investigated methods. In ICA,
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the incremental capacity (IC) curves are generated based
on the capacity–voltage relationship obtained from constant-
current charging/discharging. The movement of the IC curve
is closely related to the phase transitions and phase equilibria
during the lithiation and de-lithiation processes inside the
Li-ion cells [5]. Thus, features of interest (FOIs) can be
reasonably extracted from the IC curves to reveal the hidden
relationships between the direct measurements to SOH [6].

FOIs are usually constructed by investigating the positions
and amplitudes of the points of interest (POIs) on the IC
curve. For instance, Li et al. compared the estimation accu-
racy of the IC features generated from different POIs [7]. The
main POIs that have been identified as qualified for battery
SOH estimation are the peak and valley points, especially in
high-voltage regions [8], and it usually requires the battery
to cycle under a full charging/discharging protocol in the
lifelong operation. Unfortunately, such a cycling process is
rarely experienced in real-world applications, and in many
cases, these POIs are inappropriate to be used for full life-
cycle prediction. For example, the peak points on the IC
curves may decrease and vanish towards the battery’s end
of life. As a result, the effectiveness of the SOH estimation
algorithms based on these features would be significantly
reduced for aged batteries. To address this problem, Li et
al. focused on the datasets with a selected state of charge
(SOC) range during actual charging processes and a model
was proposed to adopt multipoint features as the model
inputs [9]. Indeed, by selecting several points distributed in
a region with a drastically changed IC curve, the risk of
losing a single point feature as battery ages can be lowered.
Nevertheless, both features extracted from a single point and
multiple points are prone to measurement noises. In contrast,
using area features of the IC curves can effectively reduce
the sensitivity to these noises and mitigate the influence of
applied filtering algorithms, thereby achieving high accuracy
for battery SOH estimation [10].

Most of the algorithms based on IC features are investigat-
ed and validated at the battery cell level. A common problem
found in the above-mentioned SOH estimation algorithms
is that the effects of cell inconsistency are overlooked. In
fact, cell inconsistency is inevitable due to manufacturing
tolerance: even the same type of batteries from the same
manufacturing batch will exhibit different characteristics.
The inconsistency can be magnified with the cell being used
due to unbalanced aging trajectories caused by thermal, elec-
trical, and mechanical nonuniformity in the battery packs.
Hence, the suitability for extrapolating the predictive model
derived by fitting the data from one cell or one pack to other



individuals is not guaranteed.
In this paper, suitable IC features are first selected and

extracted to provide the information for training a pool of
predictive models fused with slope-bias correction (SBC) and
radial basis function neural networks (RBFNNs). The peak
value in the high-voltage region of IC curves is used as the
input of the proposed SBC-RBFNN models, where highly
nonlinear relationships of the corrected parameters in the
SBC method are identified by RBFNNs. To handle the cell
inconsistency between the candidate offline models and the
new target cell, a modified random forest regression (mRFR)
based online ensemble learning is developed for the first
time to realize individualized estimation by incorporating the
adaptively generated weighting into the offline SBC-RBFNN
models. The applicability and the effectiveness of our pro-
posed method are validated through comparative studies with
several state-of-the-art SOH estimation techniques using the
data collected from laboratory tests.

II. DATASET DESCRIPTION AND DATA PREPROCESSING

The Oxford Battery Degradation Dataset is used in this
work. The dataset contains measurements of battery aging
data from eight commercial Kokam pouch cells of 740-
mAh nominal capacity, with graphite-based negative elec-
trode and lithium cobalt oxide/lithium nickel cobalt oxide
positive electrode [11]. The cells were tested in a thermal
chamber at 40 ◦C and repeatedly exposed to a 1C or C/25
constant-current-constant-voltage charging profile, followed
by a driving cycle discharging profile obtained from the
Urban Artemis profile. Characterization measurements with
a sampling frequency of 1 Hz were taken every 100 driving
cycles. More detailed descriptions of this dataset can be
found in [11] and [12].

The voltage data measured under very low current rates
in the laboratory dataset usually contain the most perti-
nent knowledge of the OCV, and we denote them as the
pseudo-open-circuit voltage (pseudo-OCV) data, e.g., the
C/25 constant current in the characterization processes in
the Oxford Battery Degradation Dataset. Although close to
the true OCV data, the pseudo-OCV data are disturbed by
measurement errors and affected by the inconsistent variation
of the internal resistance. Directly using the pseudo-OCV
data for feature extraction can thus lead to inaccurate SOH
estimation results, and it is beneficial to approximate the true
OCV curves before conducting feature extraction.

Usually, when the current rate applied to the battery is very
low, the overpotentials due to polarization and hysteresis are
negligible, and the impact of temperature variation on the
equilibrium voltage due to self-heating can also be ignored
[13]. In this condition, the pseudo-OCV, or the terminal
voltage during low-rate charging and discharging, can be
simply expressed as

Vch = OCVch + IchR (1)

Vdc = OCVdc − IdcR (2)

where the symbols V , I , and R represent the terminal voltage
(pseudo-OCV), current magnitude, and internal resistance,

respectively, and the subscripts ch and dc denote the charging
and discharging processes, respectively. Since in this dataset
the batteries were fully charged and fully discharged in each
characterization, the SOC and the SOH can be defined and
calculated by

SOCt = Qt/Qn (3)

SOHn = Qn/Q0 (4)

where Qt represents the Coulomb-counting capacity at time t
of the nth characterization, Qn denotes the charging capacity
of the nth characterization, and Q0 is the cell capacity at the
beginning of life.

Considering the consecutive charging/discharging process
with the same current rate and ambient temperature, at the
same SOC level SOCch = SOCdc, we have OCVch =
OCVdc. Applying this condition to (1) and (2) yields the
expression of the internal resistance

R = (Vch − Vdc)/(Ich + Idc) = (Vch − Vdc)/(2I) (5)

where Ich = Idc = I . According to (1), the true OCV can
be approximated by the following corrected OCV, i.e.,

OCVcorrected = Vch − IchR. (6)

III. DEVELOPMENT OF SOH ESTIMATION ALGORITHM

A. Development of Offline Models Based on SBC-RBFNN

The individual candidate models to be developed should
be able to cover the entire space of the possible cell variation
and simple to train. Since model migration can properly
balance the individuality and similarity in generating these
models, it is well-suited for our present investigation. Sev-
eral model migration methods have been proposed in the
literature to reliably deal with the predictive performance
of similar processes and to save experimental resources,
amongst which the SBC is considered to be one of the most
effective approaches yet simple to implement [14]. In the
SBC, the inconsistency between the base model f(·) and the
new model is completely parameterized by the input slope
W [1] and bias b[1] as well as the output slope W [2] and bias
b[2]. The general equation g(x) for the SBC model is

g(x) = W [2]f(W [1]x+ b[1]) + b[2] (7)

In our proposed three-layer SBC-RBFNN framework,
Layers 1 and 2 are described by the SBC model (7), and
an RBFNN model is connected to the output of the SBC
structure for its excellent capability to capture the underlying
nonlinear relationship. In an RBFNN, the activation function
can map the input feature to a high dimensional space and
transform the nonlinear relationship into a linear one.

The numbers of nodes of the three layers in the SBC-
RBFNN are denoted by l, m, and n, respectively. The IC
values of peak point C are the inputs of the base model
(Layer 1), corrected by the SBC function (Layer 2). The
outputs of Layer 2 can be written as a vector g(x) = z =
[z1, z2, · · · , zm]> ∈ Rm, which acts as the input vector of the
RBF layer (Layer 3). As the model output, the SOH values



are predicted by the RBFNN model, in which the Gaussian
function is used as the transfer function, i.e.,

κ(z, zcj) = exp
(
(− ‖ z − zcj ‖2)/2σ2

j

)
(8)

where κ(·, ·) represents the kernel function, j ∈
{1, 2, · · · , n} is the index of the node in the RBF layer, and
zcj and σj are the RBF center vector and the standard devi-
ation of the Gaussian function of the jth node, respectively.
The RBFNN function can thus be written as

y =

n∑
j=1

w
[3]
j · κ(z, zcj) + b[3] (9)

where we denote W [3] = [w
[3]
1 , w

[3]
2 , · · ·, w[3]

n ]> and b[3] as
the weights and bias of the RBF layer, respectively.

The offline SBC-RBFNN model structure is obtained by
combining (7)–(9), denoted by y = h(x). To obtain the
parameters for one individual model, including the weights
W [1], W [2], and W [3], the biases b[1], b[2], and b[3], as well as
the center vector [zc1, zc2, · · · , zcn], the datasets are random-
ly split into the base model group, training group, and testing
group, and they are used for base model generation, SBC-
RBFNN model training, and model verification, respectively.
The root-mean-square error (RMSE) between the model and
the expected output, calculated by

RMSE =

√√√√ 1

M

M∑
k=1

(h(xk)− yk)
2 (10)

where k and M denote the index and the total number
of data samples, respectively. Once the predictive model is
established, the remaining laboratory datasets of battery cells
are used to verify and test the model accuracy.

B. Online Model Adaptation Using mRFR

In the previous subsection, the N SBC-RBFNN models
offline trained from historical data are expected to provide
sufficient information to cover the most representative aging
behaviors of all individual cells, and they form a pool of
candidate models for individualized estimation. In order to
estimate the SOH for a new target cell, of which only limited
early-age data and online measurements are available, it is
essential to develop an algorithm to exploit these N offline
models for online use. A general and simple strategy is to
find a proper blending scheme by weighted averaging, i.e.,

h̄k =

N∑
i=1

wihi(xk) (11)

where xk and h̄k represents the blended model input and
model output at time instant k, respectively, hi(·) is the ith
offline SBC-RBFNN model established based on the method
described in Section III-A, and our objective is to find proper
weights {w1, w2, · · · , wN} for online operation.

A modified random forest regression (mRFR) based online
ensemble learning algorithm is proposed to adaptively gener-
ate and adjust the weights wi of each offline model, with the
structure illustrated in Fig. 1. A similar “bootstrap” technique

Fig. 1. Flowchart of the online ensemble learning process.

in the conventional RFR [15] is adopted to randomly sample
from the dataset with replacement, resulting in N different
and uncorrelated decision trees, namely the offline models.
The way to plant trees is different from the conventional RFR
and has been described in Section III-A. Once the N offline
SBC-RBFNN models with corresponding model parameters
have been determined, based on the real-time measurements
that can reflect the user’s real-world behaviors, the weights
wi are next generated and updated online according to the
following steps:

First, for each cell or vehicle i, its RMSE over a selected
time horizon P in one online adaptive event is calculated:

RMSEi =

√√√√ 1

P

P∑
p=1

(
hi(xp)− h′p

)2
(12)

where hi(xp) and h′p are the estimated output from the ith
model and the true output data (i.e., true SOH), respec-
tively, both obtained at time step p. To calibrate the true
SOH in terms of the battery capacity, a full discharge and
charge process is needed. This can be readily triggered in
experimental studies, but rarely occurs for real-world EV
battery systems, which is also the reason to estimate SOH.
A practical scenario is to generate SOH measurements when
EVs do regular maintenance in the service center, which
can be every six months or 10,000 km, for instance. In that
case, the online adaption is then activated in a much slower
timescale than the offline models.

Next, we consider the importance of each model inversely
proportional to its calculated RMSE, and the weighting factor
for the ith model is given by

ri =

(
N∑
i=1

RMSEi

)
/RMSEi (13)

Finally, normalizing ri yields the weight for the ith offline
model, i.e.,

wi = ri/

N∑
i=1

ri (14)
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Fig. 2. (a) Predictive result of No. 6 cell in Case 1. (b) Predictive error
of No. 6 cell in Case 1.

with which the estimated SOH can be obtained based on
(11). When the sampling time interval of p is larger than
that of k, the weights wi will be held constant until the next
SOH measurement comes at p+ 1.

IV. RESULTS AND DISCUSSION

A. Offline Model Verification

For the proposed offline SBC-RBFNN model, first, a cubic
polynomial is found to be a good candidate to describe the
base model in this study by trial and error. Backpropagation
is chosen for the training of the SBC-RBFNN, where the
gradient descent method is used to solve the fitting problem
and the learning rate is set as 0.01 based on extensive training
and testing. The maximum number of iterations for training
is set to 1000 and the stop criterion is that the RMSE for the
training set drops below 0.0001. The numbers of nodes in
the three hidden layers are set to l = 5, m = 5, and n = 25,
respectively, determined by trial-and-error.

Three benchmark algorithms are designed to verify the
stability and effectiveness of the proposed offline model and
they are described as follows. Benchmark 1 directly uses
the base model generated from one cell or vehicle dataset to
estimate the battery SOH of others. Such a method is widely
used in previous research works such as [7]. Benchmark 2
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Fig. 3. Comparison of average REPs between different offline models
based on the laboratory dataset.

is a Leaky Rectified Linear Unit (LReLU) based RBFNN
model. Due to its capability to deal with the negative part
of datasets, the LReLU is superior to the traditional ReLU
function widely used in ANN [16]. The structure and the
configuration of the LReLU-RBFNN model are similar to
that of the SBC-RBFNN model. The only difference is that
the activation function in Layer 1 is replaced by the LReLU
function. The major difference between the proposed SBC-
RBFNN and the LReLU-RBFNN is that the latter lacks prior
knowledge about the research subject while such information
is available for the proposed SBC-RBFNN by model migra-
tion. Benchmark 3 is an SBC-ANN model proposed in [14],
which is used to verify the superiority of the RBFNN. The
training method, learning rate, and nodes in Layer 1 and
Layer 2 of the SBC-ANN are both set the same as the SBC-
RBFNN for a fair comparison.

The laboratory datasets are used to examine the perfor-
mance of the proposed model following the methodology in
Section III-A. Table I presents the verification results for all
four dataset combinations, where the predictive RMSEs are
calculated by (10). In Table I, it is clearly shown that the
predictive accuracy can be significantly improved by using
model migration: The SBC-RBFNN model can better rebuild
the nonlinear relationships with a smaller predictive error
compared to the SBC-ANN model. Furthermore, although
trained by more datasets, the LReLU-RBFNN model still
generates more significant predictive errors than the proposed
SBC-RBFNN model. In fact, the LReLU-RBFNN even per-
forms worse than the SBC-ANN model in terms of the
average RMSE. This result exhibits the importance of the
experience and information buried in the base model. The
graphical results in Fig. 2 also show the superiority of the
SBC-RBFNN model, especially in the region below 90%
SOH, which indicates that the proposed method is more
reliable than the two prevailing methods under comparison.

The relative error percentage (REP) is next used to signify
the influences of estimated errors on the overall process of
battery aging. The REP for the ith model, Eri, is defined by

Eri = Ei/Si × 100% (15)

where Ei and Si represent the predictive RMSE and the



TABLE I
RMSES OF PREDICTED SOH BETWEEN DIFFERENT OFFLINE MODELS BASED ON THE LABORATORY DATASETS.

Base Model Training Cells Model Type Test Cells Average

Case 1 No.1 No.4 No.5 No.6 No.7

No.2 Base Model 0.00498 0.00583 0.00620 0.00650 0.01215 0.00713
No.2, No.3 and No.8 LReLU-RBFNN 0.00583 0.00458 0.00379 0.00399 0.00921 0.00548

No.2 No.3 and No.8
SBC-ANN 0.00807 0.00527 0.00387 0.00474 0.00759 0.00591
SBC-RBFNN 0.00716 0.00421 0.00293 0.00374 0.00727 0.00506

Case 2 No.1 No.2 No.5 No.7 No.8

No.4 Base Model 0.00820 0.00985 0.00421 0.00906 0.00734 0.00773
No.3, No.4 and No.6 LReLU-RBFNN 0.00938 0.01017 0.00372 0.00896 0.00797 0.00804

No.4 No.3 and No.6
SBC-ANN 0.00611 0.00870 0.00380 0.00897 0.00801 0.00712
SBC-RBFNN 0.00613 0.00785 0.00322 0.00889 0.00697 0.00661

Case 3 No.3 No.4 No.5 No.6 No.8

No.1 Base Model 0.00493 0.00576 0.00633 0.00670 0.00972 0.00669
No.1, No.2 and No.7 LReLU-RBFNN 0.00692 0.00606 0.00293 0.00396 0.00828 0.00563

No.1 No.2 and No.7
SBC-ANN 0.00690 0.00649 0.00539 0.00574 0.00640 0.00618
SBC-RBFNN 0.00559 0.00471 0.00305 0.00368 0.00762 0.00493

Case 4 No.2 No.3 No.4 No.5 No.6

No.7 Base model 0.01458 0.01098 0.00897 0.00631 0.00712 0.00959
No.7, No.1 and No.8 LReLU-RBFNN 0.01453 0.00935 0.00558 0.00321 0.00412 0.00736

No.7 No.1 and No.8
SBC-ANN 0.00834 0.00508 0.00527 0.00422 0.00498 0.00558
SBC-RBFNN 0.00797 0.00470 0.00422 0.00330 0.00393 0.00482

range of the SOH for the ith cell, respectively. Comparisons
of the calculated REPs are illustrated in Fig. 3 in terms
of the average relative errors over the battery lifetime. It
can be seen from Fig. 3 that by using the SBC-RBFNN
method, the predictive accuracy is 32% higher than the
direct estimated results using the base model, while the latter
is the most commonly used method in the literature. In
addition, by incorporating the model migration, we observe
an improvement of about 19% and 14% in the predictive
accuracy, compared to using the LReLU-RBFNN and the
ANN-based methods, respectively.

B. Online Model Verification

The performance of the mRFR-based online adaptive
method for individualized battery SOH estimation will be
examined in this subsection. The core step of the proposed
method is the weight generation (12)–(14), where the en-
semble weights wi are determined by the predictive errors of
each offline model. By using the laboratory dataset, two of-
fline models are trained. Datasets of three cells are extracted
to produce the base model for the benchmark method, and the
offline SBC-RBFNN models for ensemble learning to realize
a fair comparison. Two weight update rules are examined.
In the first rule, the predictive RMSEs of the first five data
are chosen to generate wi. In the second rule, two kinds of
updating intervals are chosen. The estimated results using the
offline SBC-RBFNN will be used as the benchmark in this
subsection. The benchmark method is configured according
to the suggestion given in [14], where the first 30% and 50%
of the data are used to train the individual prediction model.
The predictive accuracy is tested using the remaining data in
the dataset.

The numerical results are compared in Table II based
on the laboratory datasets. Considering that the data sizes
for each of the eight cells are different, the training data
percentage of the online ensemble learning method for each
case is provided in the table. It shows that in order to improve
the predictive accuracy in terms of the average RMSE, the
size of the training dataset has to be increased for the offline
SBC-RBFNN model. In contrast, increasing the data size
for training is not necessary for our proposed ensemble
learning method: Only a small amount of data are needed to
achieve about 90% improvement in the estimation accuracy
compared to using the offline SBC-RBFNN model trained by
the first 30% of data. Compared to the offline model trained
with the first 50% of data, the percentage of the improvement
on the performance is still high up to 80%. It is worth noting
that the estimation accuracy using the two weights generation
methods is very close, and both methods are very effective.
In this case, with the high quality of the laboratory dataset,
only a few measurements at the early operating stage are
needed to determine the individual battery aging pattern.

V. CONCLUSIONS

An online adaptive ensemble learning scheme based on
a combination of offline model training and online weight
generation has been proposed to deal with the divergence
problem in the battery SOH estimation caused by inherent
inconsistency between individual research objects. The effec-
tiveness of the IC features for battery SOH estimation was
discussed based on high-quality laboratory datasets. A pre-
trained model based on a combination of the SBC method
with an RBFNN structure was developed. Four different
dataset settings were chosen to test the stability of the



TABLE II
RMSES OF PREDICTED SOH BETWEEN DIFFERENT ONLINE ADAPTIVE METHODS BASED ON THE LABORATORY DATASETS.

Methods Base Model Offline Model Online Adaptive Test Cells Average

Case 1 No.1 No.4 No.5 No.6 No.7

SBC-RBFNN
No.2, No.3
and No.8

First 30% of the data 0.02608 0.03323 0.04294 0.06725 0.04321 0.04255
First 50% of the data 0.02084 0.01701 0.01905 0.03417 0.02843 0.02390

mRFR No.2 No.3 and No.8
First 5 data (9%) 0.00548 0.00451 0.00292 0.00393 0.00685 0.00474
Every 10 cycles (10%) 0.00596 0.00422 0.00281 0.00383 0.00744 0.00485
Every 5 cycles (20%) 0.00582 0.00406 0.00282 0.00371 0.00736 0.00475

Case 2 No.1 No.2 No.5 No.7 No.8

SBC-RBFNN
No.3, No.4
and No.6

First 30% of the data 0.06054 0.04565 0.04184 0.06345 0.07366 0.05703
First 50% of the data 0.03307 0.03211 0.02489 0.02871 0.04746 0.03325

mRFR No.4 No.3 and No.6
First 5 data (7%) 0.00412 0.00455 0.00358 0.00814 0.00601 0.00528
Every 10 cycles (11%) 0.00564 0.00544 0.00352 0.00815 0.00574 0.00570
Every 5 cycles (22%) 0.00446 0.00530 0.00341 0.00802 0.00567 0.00537

Case 3 No.3 No.4 No.5 No.6 No.8

SBC-RBFNN
No.1, No.2
and No.7

First 30% of the data 0.04937 0.04338 0.04704 0.03540 0.04041 0.04312
First 50% of the data 0.02983 0.02306 0.01173 0.02419 0.03261 0.02428

mRFR No.1 No.2 and No.7
First 5 data (9%) 0.00474 0.00539 0.00311 0.00420 0.00564 0.00462
Every 10 cycles (10%) 0.00473 0.00380 0.00305 0.00401 0.00489 0.00409
Every 5 cycles (20%) 0.00446 0.00350 0.00292 0.00351 0.00425 0.00373

Case 4 No.2 No.3 No.4 No.5 No.6

SBC-RBFNN
No.2, No.3
and No.8

First 30% of the data 0.04932 0.05399 0.03572 0.04574 0.05480 0.04792
First 50% of the data 0.02878 0.02459 0.02619 0.01488 0.01808 0.02250

mRFR No.7 No.1 and No.8
First 5 data (9%) 0.00368 0.00364 0.00411 0.00525 0.00511 0.00436
Every 10 cycles (10%) 0.00403 0.00403 0.00448 0.00509 0.00491 0.00451
Every 5 cycles (20%) 0.00374 0.00363 0.00428 0.00500 0.00484 0.00430

SBC-RBFNN model among several existing offline training
methods. The results based on the laboratory datasets showed
that the proposed SBC-RBFNN model can significantly
improve the predictive accuracy. An online adaptive scheme
was next constructed by synthesizing the offline models and
an ensemble integration process using a proposed modified
random forest regression method. The weights for each
offline model were generated by online measuring a few
data from fixed cycle or mileage interval, which markedly
reduced the requirement of datasets compared with the online
adaptive methods in previous research.
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