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Distributed Optimization of Average Consensus Containment with

Multiple Stationary Leaders

Sushobhan Chatterjee and Rachel Kalpana Kalaimani

Abstract— In this paper, we consider the problem of contain-
ment control of multi-agent systems with multiple stationary
leaders, interacting over a directed network. While, contain-
ment control refers to just ensuring that the follower agents
reach the convex hull of the leaders’ states, we focus on the
problem where the followers achieve a consensus to the average
values of the leaders’ states. We propose an algorithm that can
be implemented in a distributed manner to achieve the above
consensus among followers. Next we optimize the convergence
rate of the followers to the average consensus by proper choice
of weights for the interaction graph. This optimization is also
performed in a distributed manner using Alternating Direction
Method of Multipliers (ADMM). Finally, we complement our
results by illustrating them with numerical examples.

Index Terms— Containment control, distributed control,
leader-follower, average consensus, distributed optimization,
ADMM, directed graphs

I. INTRODUCTION

The idea of achieving a common objective in a system with

multiple agents using distributed and co-operative control

has garnered a lot of interest among research community

for a long time. A fundamental aspect of the distributed co-

operative control is that the agents achieve the collective

objective via local interaction among neighbours, thereby

making the framework robust to communication failures,

highly adaptable and cost effective.

A well addressed problem in this multi-agent system

framework is the consensus problem, where the agents are

expected to agree on a common value [15], [13]. Consensus

with a single leader is addressed in [4]. When there are

multiple leaders the problem is referred to as containment

control where the objective is to bring the remaining fol-

lower agents from any arbitrary state, within the convex

hull spanned by the leaders’ state [20]. This problem is

also motivated from nature such as gravel ants forming a

boundary over caterpillars and transporting along with them

due to their sugary extract. Practical applications include

shaping of social dynamics using a set of guiding agents,

military applications, safe disposal of hazardous waste etc.

[2]. Extensive research is done in this area such as analysing

dynamic leaders using PDE in [5], assuming directed static

topology [9], time-varying topologies [1], agents with higher

order dynamics and impact of time delays [8].
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While the above containment algorithms only focus on

general containment of followers, i.e. each follower achiev-

ing an arbitrary state, different from each other, within

the convex hull of the leaders, the primary objective of

this paper is to achieve a consensus among the followers

regarding the final destination within the convex hull of the

leaders. The idea of achieving consensus in a multiple leader

containment scenario is motivated by various applications.

One is opinion consensus of a group, driven by a couple of

external agents/factors, in a direction that gets aligned with

their own priors. Another application is a cooperative attack

on a static or, moving target, where the target is encircled by

UAVs (leaders) such that the target’s live location coincides

with the average of coordinates of UAVs. Then the missiles

(followers) can easily home in to the target without the need

for any individual radar tracking.

Motivated by the above applications for consensus con-

tainment, we provide an algorithm where the followers

reach a consensus to the average of the leaders’ state. [7]

investigates consensus of followers inside the convex hull of

stationary leaders, where a distributed control law has been

designed by formulating a centralized multi-objective opti-

mization (MOP) with a trade-off between performance error

and convergence rate. This results in a significant asymptotic

drift in the final consensus value due to non-convergence

to the exact solution on account of trade-offs. We propose

a distributed control law which ensures a fast convergence

of the followers to the consensus within the convex hull

spanned by the leaders over a directed network, without

any aforementioned asymptotic drift. The fast convergence

is designed using a distributed optimization algorithm unlike

the centralized approach in [7]. Distributed optimization of

convergence rate to consensus without leaders in a multi-

agent, undirected framework is addressed in [18].

We summarize our contribution as follows.

1) We consider a multi-agent system with multiple sta-

tionary leaders and followers communicating with each

other over a directed network topology. We propose

a distributed algorithm which ensures consensus of

followers to the average of leaders’ states.

2) We formulate an optimization problem to maximize the

rate of convergence of follower agents to the consensus

value. We propose an algorithm based on Alternating

Direction Method of Multipliers (ADMM) that solves

the above optimization problem in a distributed manner.

3) We illustrate the results using numerical examples. We

compare the results of the distributed optimization to

the centralized optimization.
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The outline of the paper is laid out as follows. Following

the introduction, Section II focuses on basic mathematical

preliminaries. In Section III, the two problems are formally

discussed. Algorithms for solving these problems are pro-

posed in Section IV. Section V provides a numerical example

to elucidate the validity of the proposed algorithms. Finally,

we give concluding remarks in Section VI. The proofs of

some of the results are in Appendix.

II. PRELIMINARIES

In this section, we briefly introduce some preliminaries

pertaining to directed graphs and convex analysis.

A. Notations

Let Rn be the n-dimensional real vector and R
n×n be the

real square matrix of order n. Let In be the n × n identity

matrix, 0n be the n× n matrix with all entries as 0 and the

vector 1n = [1, . . . , 1]T with dimension n. For any vector

x : xi or [x]i denotes its ith element, x denotes its average

value, and ‖x‖2 denotes its 2-norm. For a set S, |S| denotes

its cardinality. For a matrix P : Λ(P ) and ρ(P ) denote its

eigenvalue set and spectral radius, respectively, P ij or (P )ij

denotes its (i, j)th element and ‖P‖F denotes its Frobenius-

norm.

B. Graph Theory

Let G := (V , E , A) denote a directed graph, where V =
[v1, v2, ..., vn] represents the vertex set, E ⊆ V × V denotes

the directed edge set and A = [Aij ] ∈ R
n×n denotes the

weighted adjacency matrix defined as follows. A directed

edge is an ordered pair of distinct vertices (vj , vi) such that,

ith node (child) can access state information of jth node

(parent). The weight associated with the edge (vj , vi) is the

entry Aij ≥ 0, in A. Also we assume Aii > 0 ∀ i =
{1, 2, ..., n}.

L = [Lij] ∈ R
n×n denotes the laplacian matrix defined as:

Lij =
k=n

Σ
k=1,k 6=i

Aik ∀ i = j, and Lij = −Aij ∀ i 6= j.

For a vertex vi, the set of in-neighbours is defined by

N in
i =

{

vj | (vj , vi) ∈ E
}

and out-neighbours by N out
i =

{

vj | (vi, vj) ∈ E
}

. For a graph G := (V , E , A), the subgraph

G1 is the graph induced by a vertex set V1 ⊆ V and edge

set E1 =
{

(vi, vj) ∈ E ∀ vi, vj ∈ V1
}

.
A directed graph G is said to be strongly connected if there

exists a sequence of directed paths between any two distinct

pair of vertices {vj , vi} ∈ V , starting at vj and ending at vi.

C. Convex Analysis

A set D ⊂ R
q is said to be convex if ∃ x, y ∈ D s.t.

(1− θ)x + θy ∈ D ∀ θ ∈ [0, 1].

Definition 1: [16] The convex hull of a finite set of points

{p1, ..., pn} ∈ R
q is the smallest convex set containing all

points pi, i = 1, 2, . . . , n denoted by conv{p1, ..., pn} =
{

n

Σ
i=1

θipi | θi ∈ R, θi ≥ 0,
n

Σ
i=1

θi = 1

}

.

III. PROBLEM FORMULATION

We first explain the framework of a multi-agent system

with more than one leader. Consider a group of n agents

communicating with each other. The communication pattern

is depicted by a directed graph G. The vertices of the graph

correspond to the agents and the state of an agent j is

accessible by agent i only if there is a directed edge (vj , vi)
in the graph. An agent is designated to be a leader if its

in-neighbour set is empty. The rest of the agents are termed

as followers. Let L and F denote respectively the index set

of leaders and followers. Let GF be the subgraph induced

by the vertex set of the followers, vi ∀ i ∈ F and GFL

is a subgraph with vertex set V and edge set given by

EFL =
{

(vj , vi) ∈ E ∀ i ∈ F , j ∈ L
}

. Let xi ∈ R

denote the state of each agent and assume that they follow

the following discrete time dynamics.

xi(k + 1) = αixi(k) + ui(k), (1)

where ui(k) is the control input to agent i at kth iteration.

The following are our assumptions on the agents.

Assumption 1: (a) The leaders are stationary, i.e., ∀ k ≥
0 & i ∈ L, ui(k) = 0 & αi = 1, and hence xi(k+1) =
xi(k).

(b) Every leader has at least one follower connected to it.

(c) GF is strongly connected.

A. Average Consensus Containment

Containment control refers to the problem of designing an

input for the followers such that followers reach the convex

hull spanned by the stationary leaders [1], [9]. Containment

control does not guarantee a consensus within the convex

hull. We focus on the problem where followers reach a

consensus to average of leaders’ states. We term this problem

as average consensus containment control. We explain later

how the existing containment protocol can be modelled to

achieve average consensus containment using a centralized

approach. We propose to address this problem using a

distributed approach. Our problem is formulated below.

Problem 1: Consider a set of n agents with m leaders and

n−m followers interacting over a directed graph satisfying

Assumption 1 with dynamics given in (1). Find a control

input that can be designed and implemented in a distributed

manner, such that the follower agents state converges to the

average of the stationary leaders state.

lim
k→∞

xi(k) →
1

m

∑

j∈L
xj(0) ∀ i ∈ F (2)

B. Optimizing the convergence rate

Our next objective is to maximize the rate of convergence

of the followers to the consensus mentioned in Problem 1.

This can be achieved by suitably choosing the edge weights

of the network over which the agents are communicating.

Based on the results that we obtain for Problem 1, we

first formulate the fastest convergence rate problem as an

optimization problem. Then we attempt to solve that in a

distributed manner. This is formulated as follows.



Problem 2: Consider Problem 1 with the mentioned as-

sumptions and network model. We solve the following:

1) Formulate an optimization problem that maximizes the

rate of convergence given in (2).

2) Propose to solve this optimization problem in a dis-

tributed manner.

IV. MAIN RESULTS

A. Average Consensus Containment

In this section, we first briefly explain the assumptions and

protocol that ensures containment control. Then we introduce

our algorithm which achieves average consensus containment

that can be implemented in a distributed manner.

Consider a multi-agent network of n agents with m
stationary leaders and n−m followers, having dynamics as

given in (1) interacting over a network depicted by a graph

G. Assume that the agents use the following update protocol,

ui(k) =







Σ
j∈N in

i

αijxj(k), i ∈ F

0, i ∈ L
(3)

for some suitable choice of weights αij Let xL(k) ∈ R
m

and xF (k) ∈ R
n−m refer to the vector of all leader and

follower states respectively at kth iteration. Based on the

weights in (3) and the system dynamics in (1), we define a

matrix A ∈ R
n×n, where Aij = αij , for i 6= j and Aii = αi

which represents a weighted adjacency matrix corresponding

to graph G. The agent dynamics can be written in matrix form

as follows.
[

xF (k + 1)
xL(k + 1)

]

=

[

A1 A2

0 Im

] [

xF (k)
xL(k)

]

, A =

[

A1 A2

0 Im

]

(4)

The following result states the conditions for containment

of followers within the convex hull of leader’s states for a

suitable choice of A1 and A2.

Proposition 1: ([19], Theorem 9) Consider a set of multi-

agents satisfying Assumption 1 following the protocol in

(4). Assume A1 = In−m − αL1, A2 = −αL2, where

L1 and L2 are the weighted laplacian matrices associated

with subgraphs GF and GFL respectively. The followers will

converge to the convex hull formed by stationary leaders if

and only if step-size satisfies; α < min
λi∈Λ(L1)

2Re(λi)
Re2(λi)+Im2(λi)

,

and the final state of all the followers are given by

−L−1
1 L2xL(0). �

From the above proposition, we observe that the follower

states converge to some value within the convex hull formed

the stationary leader’s states and do not achieve any consen-

sus. We next proceed to design an update protocol for the

average consensus containment problem. We propose Algo-

rithm 1 for average consensus containment under suitable

assumptions on the matrix A. The existing Push sum algo-

rithm [6] is adapted to the current problem. The convergence

of the algorithm is proved in Theorem 1.

Remark 1: (Stopping Criterion for Algorithm 1) Each of

the agent i ∈ F fixes a small, arbitrary tolerance value, γ >

0, and calculates its successive iterate error {ei(k)}, at each

iteration k as

ei(k) = xi(k)− xi(k − 1) (5)

which indicates the extent of asymptotic convergence of the

agents trajectory. The stopping criterion for Algorithm 1 is

when

Ei(k) =
∣

∣ei(k)
∣

∣ ≤ γ ∀ i ∈ F (6)

Algorithm 1 Distributed Average Consensus Containment

Given : A, Initial condition x(0) of all agents.

Assumptions : A1 and A2 defined in (4) are column

stochastic and agents satisfy Assumption 1.

Initialize : s(0) = x(0), w(0) = 1n
Iterate :

for k ≥ 0 do

Step 1 : Exchange Values : ∀ i ∈ F ,

Receive sj(k), wj(k) from all in-neighbours j ∈ N in
i

Step 2 : Update sum and weight vectors :

s(k + 1) = As(k)
w(k + 1) = Aw(k)
Step 3 : Update state vector : ∀ i ∈ F
xi(k + 1) = si(k+1)

wi(k+1)
end for

Remark 2: (Algorithm 1 implemented in a distributed and

parallel setting) Each agent i maintains three variables,

si(k), wi(k) and xi(k) at each iteration k. At every iteration,

each agent updates its variables si and wi by exchanging

data only with its neighbours as indicated in Step 1 and 2.

Furthermore, every agent updates the variable xi as indicated

in Step 3, parallely.

Theorem 1: The average consensus containment protocol

proposed in Algorithm 1 ensures that followers converge to a

consensus which is the average of the leaders’ state values.

The proof is given in Appendix. �

B. Optimizing the convergence rate

In this section we address Problem 2, where we maximize

the rate of convergence of the follower agents to consensus

which is the average of stationary leaders’ states. We first

identify the parameter that influences the rate of convergence

and then formulate the relevant optimization problem. The

following lemma characterises the rate of convergence of the

follower agents in terms of the weighted adjacency matrix.

Lemma 1: Consider a multi-agent system following dy-

namics given in (1) and satisfying Assumption 1. Assume

that the agents are implementing Algorithm 1. The rate of

convergence is characterised by ρ
(

A1 −
1

n−m
11

T
)

. �

The proof of the lemma is given in Appendix.

From the above lemma, it is clear that we have to optimize

the weights of the follower interaction, i.e., entries of A1,

so as to maximize the convergence rate. For this, we for-

mulate the following optimization problem with appropriate



constraints.

minimize
A1

ρ

(

A1 −
1

n−m
11

T

)

subject to A11 = 1, AT
1 1 = 1, (A)

(A1)
ij = 0, (i, j) /∈ EF

where EF is the edge set of the subgraph GF and 1 =
1n−m. Here, A1 should be column stochastic because of

the assumption in Algorithm 1, and the requirement of row

stochasticity has been explained later. The third equality is

the topological constraint imposed by the communication

pattern of the follower agents.

The above minimization problem is not convex due to

ρ
(

A1 − 1
n−m

11
T
)

being a non-convex function of A1

[14]. The problem is modified by using a convex function
∥

∥A1−
1

n−m
11

T
∥

∥

2
in place of the objective function ρ

(

A1−
1

n−m
11

T
)

. The relaxed optimization problem is as follows.

minimize
A1

∥

∥

∥

∥

A1 −
1

n−m
11

T

∥

∥

∥

∥

2

subject to A11 = 1, AT
1 1 = 1, (B)

(A1)
ij = 0, (i, j) /∈ EF

Since, for a directed graph, A1 6= AT
1 , ρ

(

A1 −
1

n−m
11

T
)

≤

‖A1−
1

n−m
11

T ‖2. Suppose A∗
1 is the solution to above opti-

mization problem (B), then with A∗
1 being doubly stochastic

it can be shown that ‖A∗
1 −

1
n−m

11
T ‖2 < 1 ([18], Lemma

3), and hence ρ
(

A∗
1 −

1
n−m

11
T
)

< 1.

Note that the above problem can be solved as a centralized

optimization problem using any of the standard optimization

solvers. Since our proposed Algorithm 1 is implemented in

a distributed manner, we propose to solve the above problem

(B) also in a distributed manner using ADMM over directed

graphs. For this purpose, we modify the problem as follows.

minimize
(A1)i ∀ i∈F

n−m

Σ
i=1

∥

∥(A1)i −
1

n−m
11

T
∥

∥

2

n−m

subject to (A1)i = (A1)j , (i, j) ∈ EF ,

(A1)i1 = 1, (A1)
T
i 1 = 1, (C)

(A1)
ij
i = 0, (i, j) /∈ EF

In problem (C), each of the matrices (A1)i are copies

of the optimization variable A1 maintained by each agent

i ∈ F , and are their estimates of the centralized optimal

solution A∗
1. Now, since GF is strongly connected, (A1)i =

(A1)j , (i, j) ∈ EF implies that all (A1)i’s are equal. Hence,

we conclude that (B) and (C) are equivalent. Since we want

the constraints to be decoupled for a distributed approach, we

ensure that each (A1)i has the graph topological constraints

only on its ith row and not the entire matrix. This is ensured

in the last constraint of the above problem.

Now (C) can be implemented in a distributed manner, but

parallel operation across all the agents is not possible due to

the fact that (A1)i’s of different agents all come up in the

same constraint, (A1)i = (A1)j , (i, j) ∈ EF in (C). In order

to circumvent this issue, we formulate it using Fenchel du-

ality ([12], Section 3.1.2). We introduce an auxiliary primal

variable Z ∈ R
(n−m)×(n−m) as follows, which decouples

the consensus constraint by enforcing cohesion among all

copies.

minimize
(A1)i ∀ i∈F

n−m

Σ
i=1

∥

∥(A1)i −
1

n−m
11

T
∥

∥

2

n−m

subject to (A1)i = Z, i ∈ F ,

(A1)i1 = 1, (A1)
T
i 1 = 1, (D)

(A1)
ij
i = 0, (i, j) /∈ EF

We propose Algorithm 2 that solves the above optimization

problem (D) in a distributed manner using ADMM for

directed graphs. The steps involved in the derivation are

given in the Appendix. �

Algorithm 2 Local estimation of optimal weight matrix A∗
1

by agent i ∈ F over a directed network using ADMM

Initialize : ρ > 0, (A1)i(0) = 0n−m, Zi(0) = 0n−m,

Ci(0) = 0n−m, vi(0, 0) > 0 to a small value, ∀ i ∈ F
Iterate : ∀ i ∈ F
for k ≥ 0 do

Primal Update :

Evaluate (A1)i(k + 1) as per (17).

Initialize Mi(0, k) = (A1)i(k + 1)
for t = 0, 1, . . . , H − 1 do

Send vi(t, k) and Mi(t, k) to

out-neighbours.

Compute vi(t+ 1, k) using (20)

Compute Mi(t+ 1, k) using (19)

end for

Fix vi(0, k + 1) = vi(H, k)
Fix Zi(k + 1) = Mi(H, k)
Dual Update :

Compute Ci(k + 1) as per (18).

end for

Remark 3: The update step for the primal variable Z
in optimization problem (D) involves computation of an

average across all agents over a directed network, as shown

in (16). Hence for each iteration k in Algorithm 2, every

agent i ∈ F computes an estimate of Z , denoted as Zi, by

performing H rounds of communication in the inner loop.

The performance of the algorithm improves as H increases.

A lower bound on H for the convergence of the algorithm

is discussed in [17].

Remark 4: (Stopping Criterion for Algorithm 2) Each of

the agent i ∈ F fixes a small, arbitrary tolerance value, ǫ > 0,

and calculates its residual values at each iteration k as

r1ij(k) =
1

n−m

∥

∥(A1)i(k+1)− (A1)j(k+1)
∥

∥

F
, j ∈ N in

i

(7)

r2ij(k) =
∣

∣(A1)
ij
i (k)

∣

∣, j /∈ N in
i (8)

which indicates the extent of violations of the constraints

involved. The stopping criterion for Algorithm 2 is when

Ri(k) = max
{

r1ij(k), r2ij(k) ; ∀ j
}

≤ ǫ ∀ i ∈ F (9)
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V. EXAMPLE

In this section, we present a numerical example that

illustrates our result when all the agents are in 2-D plane.

We consider a set of 24 agents interacting over a directed

network topology, i.e., n = 24. Assume that there are

m = 10 leaders, and the rest are followers interacting as

shown in Fig. 1. Let x1 and x2 denote two sets of state

variable that indicates the position of each agent in 2-D

plane. The state values of the stationary leader agents are

given by x1
L =

[

5 3 2 2 3 5 7 8 8 7
]

T and x2
L =

[

1 2 4

5 7 8 7 5 4 2
]

T . Algorithm 2 is employed to compute an

optimal A1 matrix in a distributed manner. Then using that

A1 and any random choice of A2 following Assumption 1,

Algorithm 1 is employed to ensure that follower agents reach

a consensus to the average of the stationary leader states

which is (x̄1
L, x̄

2
L) = (5, 4.5), is illustrated in Fig. 2.

Computation method ‖A1 − 1

n−m
11

T ‖2 ρ(A1 − 1

n−m
11

T )

Centralized [A∗

1
] 0.7071 0.5010

WBA 0.9344 0.9317
Algorithm 2 0.7086 0.5146

TABLE I

CONVERGENCE FACTORS OF DIFFERENT WEIGHT MATRICES FOR THE

NETWORK IN FIG.1

The convergence factors of the weight matrices (A1)
generated by different methods have been given in Table

I, for comparison purposes. A weight-balance algorithm

(WBA) proposed in [10] generates balancing weights for a

directed network, which, although not optimal, is computed

k
0 20 40 60 80 100 120

||
(A

1
) i
(k
)
−

1
n
−
m
11

T
||
2
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Centralized A
1
*
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Fig. 3. Objective variation plot of the agents to the centralized optimal
value ‖A∗

1
− 1

n−m
11

T ‖2

in a distributed manner.
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Fig. 4. Maximum log residual plot across all agents with ρ = 5

It can be observed that A1 computed by Algorithm 2 is quite

close to the optimal A∗
1 given by centralized methods as

depicted in Fig. 3, and performs much better than that of

WBA. In Remark 3, we explained how the performance of

Algorithm 2 improves with increase in H . This is illustrated

in Fig. 4 where we observe that the residual values decreases

faster for increase in values of H .

VI. CONCLUSION

We considered a special case of the discrete-time contain-

ment control problem for multi-agent systems with multiple

stationary leaders, interacting over a directed communication

topology. We studied the problem of achieving faster conver-

gence to a consensus among followers to the average of the

leaders’ state, terming it as the average consensus contain-

ment. First, we provided sufficient conditions that guarantee

average consensus containment. A distributed algorithm was

proposed that ensured average consensus containment. Using

this analysis, an optimization problem was formulated to

maximize the convergence rate which was also solved in a

distributed manner using ADMM algorithm. Through numer-

ical examples, we demonstrated that the optimal convergence

rate obtained using locally computed weights in a distributed

manner is very close to the optimal value obtained by

centralized methods. Moving forward, it would be interesting



to investigate analogous results using dynamic leaders, and

under a continuous-time setting.
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APPENDIX

PROOF OF THEOREM 1

Since A1 is a column stochastic matrix associated with

a strongly-connected graph (Assumption 1), it is irreducible

[3]. Furthermore, [11, Sec. 8.3], A1 is primitive as its non-

negative irreducible with positive diagonal entries due to

each follower knowing its own state. Hence, 1 is a simple

eigenvalue of A1. Let ur and ul respectively denote the right

and left eigenvector of A1 corresponding to eigenvalue 1.

Note that ul =
1n−m√
n−m

. Using [11, Sec 7.10] we get

lim
k→∞

Ak
1 = G, (10)

where, G is the spectral projector onto nullspace of

(In−m − A1) along the columnspace of (In−m − A1), and

is given by G = uru
T
l . Also, as per [11, Sec 8.4], A1 being

column-stochastic, is Cesáro summable, with the Cesáro

limit

lim
k→∞

Ak−1
1 + ...+A1 + In−m

k
= G, (11)

From (10), (11),

lim
k→∞

Ak−1
1 + ...+ A1 + In−m

k
= uru

T
l (12)

In Algorithm 1, from Step 3 we get xi(k) =
[s(k)]

i

[w(k)]
i

which

when using the update law ∀ i ∈ F , becomes

xi(k) =
[Ak

1xF (0)+{Ak−1
1 +A

k−2
1 +...+A1+In−m}A2xL(0)]

i

[Ak

11n−m+{Ak−1
1 +A

k−2
1 +...+A1+In−m}A21m]

i

Dividing numerator and denominator by k and taking

limits with xs
i := lim

k→∞
xi(k).

xs
i =

[

lim
k→∞

A
k
1xF (0)

k
+ lim

k→∞

{

A
k−1
1

+A
k−2
1

+...+A1+In−m

k

}

A2xL(0)

]

i
[

lim
k→∞

Ak
11n−m

k
+ lim

k→∞

{

A
k−1
1 +A

k−2
1 +...+A1+In−m

k

}

A21m

]

i

From (10),

[

lim
k→∞

Ak

1xF (0)
k

]

i

→ 0 and

[

lim
k→∞

Ak

11n−m

k

]

i

→ 0.

From (10), (12), we get

xs
i =

[

lim
k→∞

Ak
1A2xL(0)

]

i
[

lim
k→∞

Ak
1A21m

]

i

=

[

ur1
T
n−mA2xL(0)

]

i
[

ur1Tn−mA21m
]

i

(13)

Since, A2 is column stochastic, 1Tn−mA2 = 1Tm. Hence,

xs
i =

[

ur1
T
mxL(0)

]

i

[ur1Tm1m]i
=

[

ur1
T
mxL(0)

]

i

[urm]i
=

1TmxL(0)

m
=: xL(0)

From the above equation, we observe that the followers are in

consensus at the average of the leaders’ state values. Hence

the proof. �

PROOF OF LEMMA 1

From (13) we have ∀ i ∈ F ,

lim
k→∞

xi(k) =

[

lim
k→∞

Ak
1A2xL(0)

]

i
[

lim
k→∞

Ak
1A21m

]

i

(14)

A1 is primitive and as such, its eigenvalues satisfy λ1 = 1 >
λ2 ≥ . . . ≥ λn−m. Therefore, the convergence rate of xi(k)
is determined by λ2 = ρ

(

A1 −
1

n−m
11

T
)

. �



DERIVATION OF ALGORITHM 2

The augmented Lagrangian (Lρ) for (D) is given by

Lρ =
1

n−m

n−m

Σ
i=1

∥

∥

∥

∥

(A1)i −
1

n−m
11

T

∥

∥

∥

∥

2

+

n−m

Σ
i=1

trace
[

((A1)i − Z)TCi

]

+
n−m

Σ
i=1

ρ

2

∥

∥

∥

∥

(A1)i − Z

∥

∥

∥

∥

2

F
(15)

where ρ > 0 is the penalty parameter. Now, the standard 2-

block ADMM algorithm for (D) is given below. The primal

variables
[

(A1)i(k) ∀ i ∈ F , Z(k)
]

are updated sequentially

and dual variables
[

Ci(k) ∀ i ∈ F
]

are updated afterwards.

The constraint set S :=
{

(A1)i | (A1)i1 = 1, (A1)
T
i 1 =

1, (A1)
ij
i = 0, (i, j) /∈ EF} has been incorporated into

primal update steps rather than being dualized.

Z update step : Z(k + 1) = argmin
Z

{

Lρ

}

Z(k + 1) =
1

n−m

n−m

Σ
i=1

[

Ci(k)

ρ
+ (A1)i(k + 1)

]

(16)

The Z update step involves computing an average across

all follower agents over a directed network. Hence we use

an approach based on dynamic average consensus, proposed

in [17], to get the Z update step, in a distributed manner.

Each agent i ∈ F maintains Zi which is an estimate for Z .

Before we provide a distributed update law for Z , we write

the update law for the other variables.

(A1)i update step : (A1)i(k + 1) = argmin
S

{Lρ}

(A1)i(k + 1) = argmin
S

{

‖(A1)i −
1

n−m
11

T ‖2

n−m
+

trace
[

((A1)i − Zi(k))
TCi(k)

]

+
ρ

2

∥

∥

∥

∥

(A1)i − Zi(k)

∥

∥

∥

∥

2

F

}

(17)

Ci update step :

Ci(k + 1) = Ci(k) + ρ
[

(A1)i(k + 1)− Zi(k + 1)
]

(18)

Note that in both (17) and (18), we use the estimate Zi

instead of Z . Next, we simplify the Z update step in

(16). At every iteration k, each agent initializes a variable

Mi(0, k) := Zi(k)+(A1)i(k+1)−(A1)i(k)+
Ci(k)−Ci(k−1)

ρ
.

From (18), this is further simplified as Mi(0, k) =
(A1)i(k + 1). For some H ≥ 1, 0 ≤ t ≤ H − 1, i ∈ F do

Mi(t+ 1, k) =
[

1− divi(t, k)
]

Mi(t, k) +

Σ
j∈N in

i

vj(t, k)Mj(t, k)
(19)

vi(t+ 1, k) =
1

2

[

vi(t, k) +
1

di
Σ

j∈N in

i

vj(t, k)
]

(20)

Then Zi(k+1) = Mi(H, k). In (19), di := |N out
i | is the out-

degree of ith follower agent. In (20), vi(t, k) ∈ R is the node-

weight used by ith agent to scale its outgoing information

and evolves dynamically as shown. As defined in [10], the

node-weights are initialized as vi(0, 0) ≤ (1/d∗)2D+1, where

D is the diameter of the subgraph GF and d∗ = max
i∈F

di.
Each of the agent i ∈ F initialises a small value as its node-

weight, vi(0, 0) > 0. �
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