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Abstract— The autonomous vehicle following problem has
been extensively studied for at least two decades with the rapid
development of intelligent transport systems. In this context,
this paper proposes a robust model predictive control (RMPC)
method that aims to find the energy-efficient following velocity
of an ego battery electric vehicle and to guarantee a safe rear-
end distance in the presence of disturbances and modelling
errors. The optimisation problem is formulated in the space
domain so that the overall problem can be convexified in
the form of a semi-definite program, which ensures a rapid
solving speed and a unique solution. Simulations are carried
out to provide numerical comparisons with a nominal model
predictive control (MPC) scheme. It is shown that the RMPC
guarantees robust constraint satisfaction for the closed-loop
system whereas constraints may be violated when the nominal
MPC is in use. Moreover, the impact of the prediction horizon
length on optimality is investigated, showing that a finely tuned
horizon could produce significant energy savings.

I. INTRODUCTION

Thanks to the recent development of Vehicle-to-Vehicle
(V2V) communication technologies [1], real-time vehicle
information including velocity, position and trajectory can
be transmitted among vehicles [2]. It is therefore of great
interest to study how improvements in road vehicle control
can be made with the information accessed by V2V and
Vehicle-to-Infrastructure (V2I) connectivity. Of particular
interest is adaptive cruise control (ACC), which involves
determining an optimal driving speed during car-following
paradigms with consideration of various aspects, such as
energy-efficiency, safety and comfort [3], [4], [5].

When eco-driving and ACC are fused (namely eco-ACC),
it leads to a constrained control/optimisation problem for
which model predictive control (MPC) has been known
as one of the most preferable solution methods. Over the
past decade, numerous MPC-based approaches have been
proposed for this problem [4], [6], [7], [8], [9], [10]. In
particular, reference [4] proposed a multi-objective MPC
algorithm that optimises a weighted sum of fuel-economy,
comfort and safety properties for conventional vehicles. The
trade-off between tracking capability and the fuel economy
is investigated in [9] while other important aspects such as
ride comfort and driver acceptable tracking error are taken
into account by input and state constraints. Moreover, the
work presented in [10] compared driving performances of an
MPC method and human drivers and showed that the MPC
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controller can operate more safely than real drivers without
sacrificing passenger comfort.

Despite the rich literature in MPC-based ACC strategies,
ubiquitous modelling uncertainties and external disturbances
are not taken into consideration until recent years [11],
[12], [13], [14], [15]. More specifically, in [13], the authors
proposed a tube-based robust MPC method to solve vehicle
following problems subject to inaccurate or delayed informa-
tion of the lead vehicle and modelling errors. An alternative
tube-based MPC was proposed in [14], where two types of
disturbances are addressed including both unmodelled dy-
namics and traffic perturbations, such as cut-in, lane change
and emergency braking. A disturbance predictor has been
integrated in the MPC proposed in [15] so as to enhance
system robustness with the disturbance forecast.

Considering the nonlinearity of the vehicle longitudinal
and powertrain dynamics involved in the eco-ACC problem,
most of the existing MPC-based control strategies are still
computationally demanding for onboard processing units of
modern vehicles, particularly the nonlinear MPC approaches
[16], [17], [18]. In this context, this paper deals with a
computationally efficient robust MPC (RMPC) algorithm for
eco-ACC. The contribution of the paper is threefold: 1) a
convex eco-ACC modelling framework for an electric vehicle
with consideration of various disturbances and uncertainties
is developed; 2) an RMPC algorithm is designed for the
ACC problem with semi-definite programming relaxation
(SDPR) to formulate the control problem into linear matrix
inequalities (LMIs); and 3) numerical comparisons between
the robust and a nominal MPC are carried out to verify the
effectiveness of the RMPC method.

The rest paper begins with a description of the vehicle
following model and a convex problem formulation in Sec-
tion II, and it is followed by Section III, which introduces
the SDPR RMPC algorithm. Simulation results are illustrated
and discussed in Section IV. Finally, conclusions are pro-
vided and a future work plan is suggested in Section V.

II. SYSTEM DESCRIPTION

A. Vehicle Following Model
This work considers the vehicle following scenario, where

an ego vehicle (controlled vehicle) follows a lead vehicle
(reference vehicle) with a safety inter-vehicular time gap.
The space domain modelling approach is utilised to facilitate
problem convexification [19]; the convexification process
will be presented later in Section II-B. Let s denote the
variable of travelled distance. The transformation from time
to space domain is achieved by changing the independent
variable of time t to s via d

ds =
1
v

d
dt . Further consider m

the mass of the controlled vehicle. It is convenient to use



Fig. 1: Scheme of the RMPC-based eco-ACC.

as a state variable the kinetic energy E(s)= 1
2 mv2(s) in the

space domain instead of the variable v(s), the linear (forward)
velocity of the controlled vehicle.

Fig. 1 shows the scheme of the vehicle following problem
with the V2V communication system. Past information con-
taining kinetic energy Ere f (s) and travelled time tre f (s) of the
reference vehicle are shared with the controlled vehicle. Note
that the communication through the V2V system in this work
is assumed to be ideal with no delays. For safety purposes
and the feasibility of the V2V communication range, the
following constraint is imposed:

∆v(s)
|aw,min|

+Tσ ≤ ∆t(s)≤ ∆tmax (1)

where ∆t(s) = t(s)− tre f (s) is the time gap between the
two vehicles at distance s, ∆v(s) = v(s)− vre f (s) is the
corresponding velocity difference with v(s) =

√
2E(s)/m,

vre f (s) =
√

2Ere f (s)/mre f , and mre f is the mass of the
reference vehicle. Moreover, aw,min=

Fw,min
m is the maximum

allowed deceleration, with Fw,min the maximum braking force
(it has a negative value), such that the force acting on the
wheels (driving or braking), Fw ≥ Fw,min. Tσ is the braking
response time of the vehicle braking system (lag between
driver braking command and braking system response) [19].
As such, the left hand side of (1) is the time-to-collision
(TTC) constraint designed for the controlled vehicle to avoid
a potential rear-end collision. The right hand side of (1) is a
designed upper bound of ∆t(s) where its value is determined
by considering the traffic flow rate [20], the driver preference
[21], as well as the V2V communication range [22].

Instead of utilising the state of the controlled vehicle (E(s),
t(s)) to construct the control problem, this work considers
(∆E(s),∆t(s)) as system states for the convenience of dealing
with the influence of a potential disturbance w(s) in (1):

d
ds

∆E(s) = Fw(s)−Ftyre−2
fd

m
E(s)−Fre f (s)+w(s) , (2a)

d
ds

∆t(s) =
1

v(s)
− 1

vre f
, (2b)

where ∆E(s) = E(s)−Ere f (s) is the difference of the kinetic
energies of the two vehicles, Ftyre = fT mg is the tyre resis-
tance force with fT the rolling resistance coefficient, fd is
air drag resistance coefficient [23], and Fre f (s)= d

ds Ere f (s)
is the total force of the reference vehicle. Furthermore,
w(s)≤ fw(vw) is an external disturbance caused by various
reasons such as V2V communication noises, modelling mis-
matches and prediction errors, where fw(vw)=

1
2 mvw

2/∆s is
defined in terms of the disturbance limits on the reference
vehicle speed vw ∈ R>0 and the sampling interval ∆s∈R>0.
The difference of the kinetic energies ∆E(s) and driving force
Fw(s) of the controlled vehicle are constrained, respectively,
by permissible limits:

1
2

mv2
min−Ere f (s)≤∆E(s)≤ 1

2
mv2

max−Ere f (s) , (3a)

Fw,min ≤Fw(s)≤ Fw,max , (3b)

where vmin and vmax are minimum and maximum speed
limits, in which vmax is determined based on infrastructure
requirements and traffic regulations and vmin is set as a
sufficiently small positive value to avoid the singularity issue
in (2b). Moreover, Fw,max is the maximum force that the
powertrain is capable of delivering to the wheels [19].

In this work, we consider the controlled vehicle as a bat-
tery electric vehicle (BEV), in which the energy regeneration
system is considered for the energy consumption evaluation.
As such, the battery energy consumption is formulated by
the “wheel-to-distance” energy losses, such that the energy
dissipation function of the controlled vehicle over a specific
space range [0, s f ] with s f ∈R>0 is described by [24]:

Eb =
∫ s f

0
Fw(s)ds , (4)

where Fw(s)≥0 indicates discharge of the battery and Fw(s)<
0 corresponds to braking energy recovered by the powertrain.

The objective of the vehicle following problem is to find
the optimal wheel force, Fw(s), that minimises a multi-
objective function of the controlled vehicle, achieving driv-
ing speed and energy optimisation over the range [0, s f ],
expressed as follows:

V =W1

∫ s f

0
(E(s)−1

2
mv̄2(s))2ds+W2Eb(s f ), (5)

where W1,W2 ∈R>0 are weighting factors. The first term in
(5) is designed for the controlled vehicle to follow a constant
cruise speed v̄, whose value is determined based on various
road conditions (such as highway or urban road) and the
legal speed limit, and the second term aims to minimise the
battery energy consumption (4).

The main characteristic parameters of the vehicle model
are summarised in Table. I.

TABLE I: PARAMETERS OF VEHICLE FOLLOWING MODEL.

description symbols values
controlled/reference vehicle mass m/mre f 1500 kg
tyre rolling resistance coefficient fT 0.01
air drag coefficient fd 0.36
minimum/maximum velocity vmin/vmax 1/33 m/s
braking response time Tσ 2 s
maximum time difference ∆tmax 11 s
minimum/maximum force on wheels Fw,min/Fw,max -4500/4500 N

B. Model Convexification
Despite the complexity introduced in the time difference

constraint (1) and the dynamics system of the vehicle fol-
lowing model in space domain (2), this work formulates
the eco-ACC problem as a convex optimisation problem by
suitable approximations, to take advantage of computational
efficiency and guarantee of a unique optimal solution of
convex optimisation. The approximation made in this work
ensures that the approximated problem is consistent and
feasible to the original problem.



To convexify the nonlinearity in the state dynamics of the
time difference ∆t(s) (see (2b)), an auxillary optimisation
variable ζ (s) is introduced to relax the derivative of the
travelled time of the controlled vehicle d

ds t(s)= 1
v(s) :

d
ds

∆t(s) = ζ (s)−1/vre f , (6a)

ζ (s)≥ 1/
√

2E(s)/m , (6b)

such that (2b) is relaxed as a linear dynamic (6a) and a
convex path constraint (6b). With the introduction of ζ (s),
the objective function (5) can be rewritten in a convex form
with a convex function J(s):

V=
∫ s f

0
J(s)ds=

∫ s f

0
W1(E(s)−

mv̄2(s)
2

)2+W2Fw(s)+W3ζ (s)ds,
(7)

where the third term aims to minimise ζ (s) to ensure the
tightness of (6b), which indirectly guarantees the feasibility
and conservativeness of the convex solutions. Further verifi-
cation of the validity of (6b) is performed in the simulations
in Section IV (see Fig. 4).

In terms of the left hand side of (1), the nonlinearity
existing in the representation of the velocity of the controlled
vehicle, v(s)=

√
2E(s)/m, can be approximated by a conser-

vative linear relationship fe(E(s))=aE(s)+b [19], as shown
in Fig. 2. Hence, the constraint of ∆t can be rewritten in a
convex form:

Tσ +
fe(E(s))− vre f (s)

|aw,min|
≤ ∆t(s)≤ ∆tmax , (8)

where fe(E(s))=aE(s)+ b, ∀E(s) ∈ [ 1
2 mv2

min,
1
2 mv2

max] with
a and b as the fitting parameters.

C. Optimisation Formulation

To counter the impact of the disturbance w(s), min-max
optimisation strategy is utilised to formulate the control
problem. Suppose a sampling distance interval ∆s ∈R>0,
and without loss of generality, it is assumed that s f =k f ∆s
with k f ∈ N>0. Thus, the convex optimisation problem with
the system state x(k)=[∆E(k), ∆t(k)]> and the control input
u(k)=[Fw(k), ζ (k)]> for any k∈N[0,k f ] is formulated to find
the optimal control input u(k), under the worst case scenario
caused by w(k) at each step k, that minimises the objective
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Fig. 2: Linearised approximation relationship between kinetic
energy E and velocity v.

function in discretised-form:

V =

k f

∑
k=0

J(k)∆s , (9a)

s.t. x(k+1) = Ax(k)+Bu(k)+BcC(k)+Bww(k) , (9b)

f (k)≤ f (x(k),u(k),w(k))≤ f (k) , (9c)

−ζ (k)+1/
√

2E(k)/m≤ 0 , (9d)

x(0) =
[

∆E(0)
∆t(0)

]
, x(k f ) =

[
∆E(k f )
∆t(k f )

]
, (9e)

where (9d) is a convex inequality constraint [25], (9e) are
the boundary conditions, and the convex function J(k) in
(9a) is the rearrangement based on the definition of (7) in a
state-space form:

J(k) = (z(k)− z(k))>Q>Q(z(k)− z(k))+Pz(k)+ z(k)>P>,
z(k) =Czx(k)+Dzuu(k)+Dzww(k) ,

Cz =

1 0
0 0
0 0

 , Dzu =

0 0
1 0
0 1

 , Dzw =

0
0
0

 ,

(10)
where Q = diag{

√
W1,0,0} � 0, P = [0,W2/2,W3/2] � 0,

z(k)=[∆E(k),Fw(k),ζ (k)]> and z(k)=[ 1
2 mv̄2−Ere f (k),0,0]>.

The discretised dynamic equation (9b) collecting the dif-
ferences of kinetic energy ∆E (2a) and travelled time ∆t (6a),
is specified as below:

x(k+1) = Ax(k)+Bu(k)+BcC(k)+Bww(k) ,

A =

[
1− 2 fd

m ∆s 0
0 1

]
, B =

[
∆s 0
0 ∆s

]
, Bw =

[
∆s
0

]
,

Bc =

[
∆s 0
0 ∆s

]
,C =

[
−Ftyre− 2 fd

m Ere f (k)−Fre f (k)
− 1√

2Ere f (k)/m

]
.

(11)
The inequality constraints (9c) summarises linear con-

straints (1) and (3) within a state-space form:

f (k) =C f x(k)+D f uu(k)+D f ww(k) ,

C f =

1 0
0 1
0 0

 , D f u =

0 0
0 0
1 0

 , D f w =

0
0
0

 ,
(12)

where f (k) = [∆E(k),∆t(k),Fw(k)]> with a lower bound
f (k) = [ 1

2 v2
min−Ere f (k),

∆v(s)
|aw,min|

+Tσ ,Fw,min]
> and an upper

bound f (k)=[ 1
2 vmax−Ere f (k),∆tmax,Fw,max]

>.

III. ROBUST MODEL PREDICTIVE CONTROLLER

In this work, we propose an RMPC scheme, as shown in
Fig. 1, using SDPR [26], [27], following a similar method-
ology to a computationally efficient and verified scheme
in non-automotive industrial applications [28]. In order to
formulate the control problem into a RMPC scheme, let us
first define the following stack vectors:

x=


x(0)
x(1)

...
x(N)

,f=


f (0)
f (1)

...
f (N)

,z=


z(0)
z(1)

...
z(N)

,w=


w(0)
w(1)

...
w(N−1)

 (13)



and C=[C(0), . . . ,C(N−1)]>, where N ∈N>0 is the predic-
tion horizon.

Using the above stacked matrix definition, the system
dynamic over the prediction horizon N can be expressed as:

x = Ãx(0)+ B̃u+ B̃cC+ B̃dw , (14)

where Ã, B̃, B̃c and B̃d are stacked coefficient matrices
and are readily obtained from iterating the dynamics in
(9b). Moreover, the stacked vector u=[u(0), . . . ,u(N−1)]>
represents the input signal over the prediction horizon N.
Lastly, x(0) represents the initial state defined in (9e). By
substituting the stack vectors defined in (13) and repeating
recursive steps in (12), stacked coefficient matrices C̃ f , D̃ f u
and D̃ f d are obtained, and hence the corresponding stacked
format of the signal response function of constraints is:

f = C̃ f x(0)+ D̃ f uu+ D̃ f dw . (15)

By using analogous methods, the stacked form of the re-
sponse function of z(k) in the convex function J(k), which
is defined in (10), can be expressed by:

z = C̃zx(0)+ D̃zuu+ D̃zdw , (16)

where C̃z, D̃zu and D̃zd are stacked coefficient matrices after
iterating the z(k) equation in (10). By substituting (10) and
(16) in (9a), the cost function becomes:

min
u

V =(C̃zx0+D̃zuu+D̃zdw−zre f )
>Q>Q(C̃zx0+D̃zuu

+D̃zdw−zre f )+P(C̃zx0+D̃zuu+D̃zdw)

+(C̃zx0+D̃zuu+D̃zdw)>P> , (17)

where Q, P are stack matrices of the weighting matrices Q
and P, respectively, and zre f is a stacked vector of vector z.
Next, an auxiliary variable γ is defined as the upper boundary
of the cost function V ≤ γ such that

V − γ ≤ 0 . (18)

The semi-definite programming relaxation (SDPR) is applied
to the left hand side (LHS) of the inequality in (18):

LHS =−(w−w)>D(w−w)− [w> 1]L(u,D,γ)

[
w
1

]
, (19)

with LMI: L(u,D,γ) =[
−D̃>zdQ>QD̃zd +D −D w+w

2 −bd
∗ w>Dw−cd−u>D̃>zuQ>QD̃zuu+γ

]
,

bd = D̃>zdQ>QC̃zx0+D̃>zdQ>QD̃zuu−D̃>zdQ>Qzre f +D̃>zdP>,
cd = x>0 C̃>z Q>QC̃zx0+x>0 C̃>z Q>QD̃zuu+u>D̃>zuQ>QC̃zx0

−x>0 C̃>z Q>Qzre f−z>re f Q>QC̃zx0−u>D̃>zuQ>Qzre f

−z>re f Q>QD̃zuu+z>re f Q>Qzre f

+P(C̃zx0 + D̃zuu)+(C̃zx0+D̃zuu)>P>,

where ∗ denotes the symmetry element of the corresponding
matrix, D is a positive semi-definite diagonal matrix (0 �
D ∈ RN×N), and w and w are stacked vectors of the lower
boundary −| fw(vw)| and upper boundary | fw(vw)| of the
disturbance w(s). In the matrix L(u,D,γ), u is the optimal

control sequence that is expected to be computed by the
RMPC. However, the term u>D̃>zuQ>QD̃zuu is a quadratic
nonlinear term, which cannot be applied in LMI optimisation.
In order to eliminate the nonlinearity in L(u,D,γ), Schur
Complement is applied and thus, L(u,D,γ) becomes:

L(u,D,γ) =−D̃>zdQ>QD̃zd +D −D w+w
2 −bd 0

∗ w>Dw−cd + γ u>D̃>zuQ>
∗ ∗ I

 , (20)

where I ∈ R((N+1)×3)×((N+1)×3) is an identity matrix. Since
−(w−w)>D(w−w) is negative, (18) is satisfied if and only
if matrix L(u,D,γ) is positive semi-definite, L(u,D,γ)� 0.

Moreover, the linear inequality constraints (9c) are also
stacked and processed by the SDPR method in a similar
manner shown above. Let us define stacked vectors of upper
and lower boundaries of (15) such that f ≤ f ≤ f. Then,
taking the upper boundary as an example:

C̃ f x0 + D̃ f uu+ D̃ f dw≤ f. (21)
The subtraction between the linear constraint (9c) and the
upper bound (15) are described as follows:

e>i f− e>i f = e>i C̃ f x0 + e>i D̃ f uu+ e>i D̃ f dw− e>i f≤ 0,
(22)

where ei is a vector whose ith element equals to 1 and the rest
of the elements are assigned to zero, and i∈ {1,2, . . . ,N+1}.

By applying the SDPR method on (22), the LMI of linear
constraint (9c) with respect to the upper bound (15) can be
found as Lu(u,Du,i) based on the following equation:
e>i f− e>i f =−(w−w)>Du,i(w−w)−[

w> 1
][Du,i −Du,i

w+w
2 −

D̃>f dei

2
∗ w>Du,iw−e>i C̃ f x0−e>i D̃ f uu+e>i f

]
︸ ︷︷ ︸

Lu(u,Du,i)

[
w
1

]
,

(23)
where Du,i is a positive semi-definite diagonal matrix (0�
Du,i ∈ RN×N). Since −(w− w)>Du,i(w− w) is negative,
e>i f− e>i f ≤ 0 is satisfied if and only if matrix Lu(u,Du,i)
is positive semi-definite, Lu(u,Du,i)� 0.

Similarly to the deduction of Lu(u,Du,i), the LMI of (9c)
with respect to the lower bound can also be determined by:

e>i f− e>i f =−(w−w)>Dl,i(w−w)−[
w> 1

][Dl,i −Dl,i
w+w

2 −
D̃>f dei

2
∗ w>Du,iw−e>i C̃ f x0−e>i D̃ f uu+e>i f

]
︸ ︷︷ ︸

Ll(u,Dl,i)

[
www
1

]
,

(24)
where Dl,i is a negative semi-definite diagonal matrix (0 �
Dl,i ∈RN×N). Since −(w−w)>Dl,i(w−w) is positive, e>i f−
e>i f≥ 0 is satisfied if and only if matrix Ll(u,Dl,i) is negative
semi-definite, Ll(u,Dl,i)� 0.

To summarise, the RMPC problem can be expressed as a
convex optimisation, as follows:

φ =min
u
{γ : the LMIs L(u,D,γ)�0 (20), Lu(u,Du,i)�0 (23),

Ll(u,Dl,i)�0 (24), and the convex constraint (9d) are

satisfied, for some variables : 0� D ∈ RN×N ,

0� Du,i ∈ RN×N , 0� Dl,i ∈ RN×N}.



IV. SIMULATION RESULTS

The performance of the proposed RMPC on the vehicle
following scenario is evaluated in this section. The speed
profile of the reference vehicle in the following adopts the
extra high stage of the worldwide harmonised light vehicles
test cycles (WLTP) to emulate high-way driving, with its
average speed set as the cruise speed v̄ (see Fig. 3).

To begin with, it is important to verify that the equality
condition (6b) is held at all times. The representative case
of W3�W1 +W2 shows this to be the case in Fig. 4. This
example implies the validity of the formulation, which shows
that the tightness is held across all horizons. Hence, the
feasibility of the convexified solution in (6b) is verified.

The numerical evaluation of the proposed RMPC method
is performed in two steps: 1) a comparison between the
RMPC and a nominal MPC method with the same vehicle
dynamics model and the cost function under the same initial
conditions and disturbance; 2) an investigation on the impact
of the horizon length and the amplitude of the disturbance.
All the convex optimisation problems are solved by the CVX
toolkit with MOSEK solver in the Matlab environment on
a 1.6 GHz Dual-Core Intel Core i5 processor with 8 GB
memory. The sampling interval of the solver is kept the same
for all cases at ∆s = 40 m, which strikes a balance between
numerical accuracy and computation burden.

The first case considered is with a prediction horizon set
to N=5. The optimal inter-vehicular time gap, ∆t, solved by
the RMPC method is compared in Fig. 5, with the solutions
of the nominal MPC. As it can be seen, when there is a
small disturbance (vw =0.5 m/s), both nominal and robust
controllers can maintain a safe ∆t over the entire simulation.
As the amplitude of the disturbance increases to vw=2.0 m/s,
the time gap of the nominal MPC is still within the desired
safety gap due to some inherent robustness because of the
feedback-loop in the MPC framework. However, further
increase on the disturbance to vw=2.6 m/s eventually makes
the nominal MPC infeasible while the RMPC framework is
able to counter the impact of the external disturbance. Time
gap plots of different disturbances managed by the RMPC
are on top of each other, which is shown in the bottom of Fig
5. Further simulations (not shown here) demonstrate that the
RMPC controller can tolerate disturbances at least as high
as vw =3.9 m/s, thus validating its additional robustness as
compared to nominal MPC.

To further investigate the performance of the RMPC, the
energy consumption is evaluated with different prediction
horizon lengths (N=3 to N=12) and disturbance limits (vw=
0.5 m/s to vw=2.5 m/s). It can be seen in Fig. 6 that when
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Fig. 3: Velocity profile of the reference vehicle (WLTP extra
high), vre f , and the constant cruise velocity, v̄.
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Fig. 4: Validation on the tightness of ζ≥1/
√

2E/m from an
example solution of the convex RMPC with W3�W1 +W2.

N=5 there are significant energy savings for four disturbance
limit cases at roughly 40%, as compared to the result with
N=3. This can be understood that extending the prediction
horizon initially enhances the ability to anticipate future
behaviour of the reference vehicle, which leads to more
optimal solutions. However, when N is further increased,
the optimality of the RMPC with small disturbance limit
vw =0.5 m/s has trivial improvement, while the rest of the
disturbance cases have worse optimality in terms of energy
cost or infeasible solutions (for example, the vw=2.5 m/s at
N=10 is infeasible) due to the decreased accuracy of the ref-
erence vehicle velocity prediction and aggregated impact of
the external disturbances. Although extending the prediction
horizon length could improve the energy savings in some
cases, as described just above, the computational burden is
also increased, as shown in Table II. As we can see, as

TABLE II: AVERAGE COMPUTATIONAL TIME OF VARIOUS
RMPC HORIZON LENGTH FROM N = 3 TO N = 12, WITH
THE SAME DISTURBANCE LIMIT vw=0.5m/s.

Prediction horizon length, N 3 5 8 10 12
Average computational time [s] 1.02 1.37 1.93 2.45 3.09

compared to the result with N=3, the computational time of
the optimal solution with N=5 is increased by 34% but with
a 40% reduction in energy cost (see Fig. 6). Further extension
of the horizon length can barely improve the energy saving
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Fig. 5: Comparisons of the optimal inter-vehicular time gap
∆t between the nominal MPC (top) and RMPC (bottom) with
a prediction horizon N = 5.
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Fig. 6: Comparisons of energy consumption solved by the
RMPC with different N and vw.

while instead the computational burden is increased up to
202% in the case of N=12. Thus, by carefully selecting the
prediction horizon length N, the energy consumption can be
significantly reduced and the computational burden can still
be within an acceptable range for potential implementation.

V. CONCLUSION AND FUTURE WORK

This paper proposes a convex robust model predictive
control (RMPC) with semi-definite programming relaxation
(SDPR) method to optimise energy efficiency in a vehicle
following problem. Minimisation of controlled vehicle en-
ergy consumption as well as of the difference between the
controlled vehicle speed and a constant cruise speed in traffic,
subject to relevant constraints, are guaranteed under the
influence of external disturbances. Moreover, a comparison
between the proposed RMPC and a nominal MPC is con-
ducted to demonstrate the robustness of the RMPC in dealing
with the impact of external disturbances. A further investi-
gation of different RMPC prediction horizon lengths reveals
that the energy consumption can be improved by roughly
40% by carefully selecting the prediction horizon length.
Finally, an analysis of the computational time suggests the
implementation potential of the proposed RMPC. Future
work will be devoted to including additional powertrain and
battery characteristics and more realistic traffic scenarios.
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