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Abstract— In this paper, we develop and analyze a gossip-
based average consensus algorithm that enables all of the
components of a distributed system, each with some initial
value, to reach (approximate) average consensus on their initial
values after executing a finite number of iterations, and without
having to reveal the specific value they contribute to the average
calculation. We consider a fully-connected (undirected) network
in which each pair of components (nodes) can be randomly
selected to perform pairwise standard gossip averaging of their
values, and propose an enhancement that can be followed by
each node that does not want to reveal its initial value to
other (curious) nodes. We assume that curious nodes try to
identify the initial values of other nodes but do not interfere
in the computation in any other way; however, as a worst-case
assumption, curious nodes are allowed to collaborate arbitrarily
and are assumed to know the privacy-preserving strategy (but
not the actual parameters chosen by the nodes that want to
preserve their privacy). We characterize precisely conditions on
the information exchange that guarantee privacy-preservation
for a specific node. The protocol also provides a criterion that
allows the nodes to determine, in a distributed manner (while
running the enhanced gossip protocol), when to terminate their
operation because approximate average consensus has been
reached, i.e., all nodes have obtained values that are within
a small distance from the exact average of their initial values.

I. INTRODUCTION

In distributed systems and networks, it is often necessary
for all or some of the components (nodes) to calculate a
function of certain parameters that we refer to as initial
values. When all nodes calculate the average of their initial
values, they are said to reach average consensus. Average
consensus (and more generally consensus) has received a lot
of attention from the control community due to its usage
in various emerging applications, including wireless smart
meters (where all nodes have to agree on the average power
demand or consumption of the network [1]), and multi-agent
systems (where all agents communicate with each other in
order to coordinate their direction or speed [2]). Over the
last few decades, a variety of distributed algorithms for
calculating different functions of these initial values have
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been proposed by the control, communication, and computer
science communities [3], [4], [5], [6].

One approach to consensus is based on a linear iterative
strategy, where each node in the network repeatedly updates
its value to be a weighted sum of its own previous value
and the values of its neighbors. If the network topology
satisfies certain conditions, the weights for the linear iteration
can be chosen such that all of the nodes in the network
converge (asymptotically) to the same function of the initial
values, which under additional conditions on the weights,
can be the average [7], [8]. Another popular approach to
consensus is a gossip-based strategy [9] which allows the
nodes to calculate the average value of the network without
having to follow a predefined routing of the information that
needs to be transmitted/received to/from other nodes in the
network. At each iteration, information is exchanged between
a randomly selected pair of neighboring nodes, and then this
information is processed by both nodes to compute a local
pairwise average.

Both of the methods described above are asymptotic and
typically do not consider privacy issues that may arise while
the network is reaching consensus. This paper addresses the
topic of privacy-preserving average consensus in finite time,
which has received some recent attention. Specifically, an
anonymization transform using random offsets on the initial
values was proposed for a cooperative1 wireless network in
[10]. In this approach, each node that would like to protect
its privacy (i.e., does not want to reveal its initial value)
adds a random offset value to its initial value, ensuring
in this way that its true initial value will not be exposed
through the values exchanged in the network. Similarly,
in the privacy-preserving strategies proposed in [11] nodes
inject uncorrelated noise into the exchanged messages so that
the data associated to a particular node cannot be inferred
by a curious node during the execution of the algorithm.
However, note that the average value is not obtained exactly
in [11] leading to notions of differential privacy [12]. The
injection of correlated noise at each time step and for a
finite period of time was proposed in [13] and guarantees
convergence to the exact average. In [14], the nodes asymp-
totically subtract the initial offset values they added in the
computation, while in [15] each node masks its initial state
with an offset such that the sum of the offsets of each node
is zero, thus guaranteeing convergence to the average. In
[16], [17], the nodes inject an initial quantized offset to

1In a cooperative network, all the nodes follow the predefined strategy,
without deviating in any way [10].
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their initial values. During the operation of the algorithms,
the nodes are able to subtract the initial offset values they
added, which guarantees convergence in finite time to the
exact average. In [18] the nodes achieve privacy-preserving
distributed average consensus using the principle of additive
secret sharing where each node replaces its initial value with
another obfuscated value by subtracting and adding random
numbers. Finally, another approach that guarantees privacy-
preservation is via homomorphic encryption [19], [20], [21].
However, this approach requires the existence of trusted
nodes and imposes heavier computational requirements on
the nodes.

Our own previous work in [13] describes a privacy-
preserving protocol that is a variation of the standard linear
iteration in [7] that is used in the absence of privacy
requirements under undirected communication topologies
using weights that form a doubly stochastic matrix. The main
enhancement is that, at each time-step, each node following
the protocol adds an arbitrary offset value and/or the result
of its iteration, in an effort to avoid revealing its own initial
value or the initial values of other nodes. What is important
is for each node to ensure that the total offset it adds cancels
out in the end (the accumulated sum of offsets is zero).
The work in [13] establishes that under certain conditions
on the communication topology, the protocol allows the
nodes to calculate the average of their initial values in a
privacy-preserving manner, despite the presence of curious
agents. For directed topologies, inspired by ratio consensus
strategies, we devised in [22] a distributed mechanism, where
each node updates its information state by combining the
available information received from its in-neighbors using
constant positive weights and by adding an offset to one
of the two states communicated during the execution of the
algorithm. As shown in [22], if after a finite number of
iteration the nodes ensure that the total offset is zero, this
privacy-preserving version of ratio consensus converges to
the exact average of the nodes’ initial values, even in the
presence of bounded time-varying delays.

The privacy-preserving gossip-based protocol we develop
and analyze in this paper enables all of the nodes to calculate
in finite time an ε-close approximation of the average of their
initial values, without loss of privacy despite the presence of
multiple (possibly colluding) curious nodes. Curious nodes
are assumed to have full knowledge of the proposed protocol
and are allowed to collaborate arbitrarily among themselves,
but do not interfere in the computation of the average
value of the network in any other way. Our approach does
not depend on any cryptographic algorithm, but operates
by allowing the nodes to introduce pseudo-random offsets
(unknown to the curious nodes). Specifically, the proposed
protocol enhances the standard gossip-based protocol [9]
in two main directions. The first enhancement is that, at
each time-step, the randomly chosen pair of nodes not only
exchanges information and calculates the local (pairwise)
average value, but if any of the two is nodes following
the protocol, then that node also adds an arbitrary offset
value to its updated (average) result, in an effort to avoid

revealing its own initial value or the initial values of other
nodes. What is important is for each node to ensure that the
total offset added (accumulated sum of offsets) eventually
becomes zero. We establish simple conditions to ensure
that the proposed protocol allows the nodes to calculate the
average of their initial values in a privacy-preserving manner,
despite the presence of curious agents. In particular, the
protocol guarantees that when there are at least two nodes
following the protocol then privacy is guaranteed for both
of them in the sense that their individual initial values are
not revealed to the curious nodes. Note that it might still
be possible for the curious nodes to determine exactly the
sum of the initial values of nodes that follow the privacy-
preserving protocol (but not their individual values). The
second enhancement is a deterministic criterion that enables
the nodes to determine, in a distributed manner, when to seize
initiating gossip exchanges because approximate average
consensus has been reached, i.e., it is shown that eventually
all nodes will seize activity, and that point they will all have
values that are within a small distance from the true average
of their initial values.

The remainder of the paper is organized as follows. In
Section II, we provide some relevant background on graph
theory and describe the linear and gossip-based iterative
strategies for reaching average consensus in a given dis-
tributed system. In Section III we formulate the problem of
interest. We describe our proposed privacy-preserving gossip
protocol, and the main results of the paper in Section IV. In
Section V we present an example, and finish the paper with
conclusions and directions for future work in Section VI.

II. BACKGROUND

A. Distributed System Model

In a distributed system we can model the network topology
as a directed graph (digraph) G={X,E} where X={1,2, ...,N}
is the set of components in the system and E ⊆ X ×X −
{(i, i) | i ∈ X} is the set of edges (self-edges excluded). In
particular, edge (i, j) ∈ E if node j can send information to
node i. In this work, we focus on components that interact via
bidirectional links in a way that forms a connected undirected
(or symmetric) graph, i.e., a graph for which (i, j) ∈ E if
and only if ( j, i) ∈ E. The set of nodes that can exchange
information with node i are said to be the neighbors of node i
and are represented by the set Ni = {( j, i)∈ E}. The number
of neighbors of node i is called the degree of node i and is
denoted as Di=|Ni|.

Our model deals with networks where information is trans-
mitted/received between a randomly selected pair of nodes at
each time step. More specifically, each node randomly wakes
up and initiates an information exchange with a randomly
selected neighbor. We assume that nodes are aware of the
unique identity (id) of each node they communicate with
and that, during the exchange process, all the information
to/from a particular node is transmitted/received successfully
[3]. Moreover, the nodes must have sufficient memory and
computational capability in order to store and perform certain
computations while the iteration is executing. During the



transmission/reception process, the nodes in the network
receive a value from the selected node, and transmit their
value back to the selected node.

B. Average Consensus via Linear Iterative Strategy

In average consensus problems the objective is the calcu-
lation of the average of the initial values of the nodes in the
network. Assume that each node i has some initial value xi
and, at each time-step k, it updates its value as a weighted
sum of its own value and the values of its in-neighbors (e.g.,
following the method in [7]). Specifically, at each time-step
k, each node updates its value as

xi[k+1] = wiixi[k]+ ∑
j∈Ni

wi jx j[k], (1)

where wi j are a set of (fixed) weights and xi[0] = xi,∀i ∈ X .
The values for all the nodes at time-step k can be aggregated
into the value vector x[k] =

[
x1[k] x2[k] ... xN [k]

]T and
the update strategy for the entire network can be written
compactly as

x[k+1] =


w11 w12 · · · w1N
w21 w22 · · · w2N

...
...

. . .
...

wN1 wN2 · · · wNN


︸ ︷︷ ︸

W

x[k],

for k ∈ N, where wi j = 0 if x j /∈Ni∪{i}.
The system is said to reach asymptotic consensus

if limk→∞xi[k] = f(x1[0],x2[0], ...,xN [0]) for each i, where
f(x1[0],x2[0], ...,xN [0]) ∈ R. When f(x1[0],x2[0], ...,xN [0]) =
cT x[0] for some column vector c (where cT is the transpose
of c), the following result by Xiao and Boyd from [23] char-
acterizes the conditions under which iteration (1) achieves
asymptotic consensus.

Theorem 1: [23] The iteration given by (1) reaches
asymptotic consensus on the linear functional cT x[0] (under
the technical condition that c is normalized so that cT 1 = 1,
where 1 is the all ones column vector of size N) if and only
if the weight matrix W satisfies the conditions below:

1) W has a simple eigenvalue at 1, with left eigenvector
cT and right eigenvector 1=[1 1...1]T ;

2) All other eigenvalues of W have magnitude strictly less
than 1.

In particular, if cT = 1
N [1 1...1], then average consensus is

reached. Also note that if wi j are restricted to be nonnegative,
then the above conditions are equivalent to W being a doubly
stochastic matrix.

C. Average Consensus using a Randomized Gossip Strategy

In a randomized gossip protocol, a pair of nodes is ran-
domly selected at each iteration and perform local (pairwise)
averaging of the two values. Specifically, at iteration k, nodes
i and j (if selected) update their values as

xi[k+1] = x j[k+1] =
xi[k]+ x j[k]

2
, (2)

with xi[0] = xi for all i. Typically, it is assumed that each node
“wakes up” in an asynchronous manner and randomly selects
a neighbor to perform local averaging with. Note that the
remaining nodes do not update their values, i.e., xl [k+1] =
xl [k] for all nodes l, l 6= j and l 6= i.

It can be shown that, if nodes are following the above
protocol, they are guaranteed to asymptotically reach the
average of their initial values x̄ = 1

N ∑
N
l=1 xl [0], as long as the

network is connected (so that all the available information
can flow to every node in the network) and all pairs of nodes
in the network are active frequently enough.

D. Previous Work on Privacy-Preserving Average Consensus

Privacy-preserving average consensus in the presence of
curious agents in the network has already received significant
attention in the literature (e.g., [10], [13], [9], [14] [12]).
Below, we briefly review the most relevant existing results
for our work here.

As mentioned earlier, the authors of [10] proposed a
transformation method using random offset values in a
cooperative wireless network. Specifically, each node i that
wishes to protect its privacy adds a random offset value ui
to its initial value xi. This ensures that its value will not
be revealed to curious nodes that might be observing the
exchange of values in the network. The idea is based upon
the observation that, when a large number of nodes employ
the protocol, their offsets will have a zero net effect on the
average with high probability, allowing the nodes to converge
to the true average of the initial values of the nodes in
the network. Specifically, each node i sets xi[0]=xi

′= xi+ui
where ui, i = 1,2, ...,N, are i.i.d. random variables with zero
mean. Then, following the protocol for asymptotic average
consensus, the nodes converge to,

1
N

N

∑
i=1

x′i =
1
N

N

∑
i=1

xi︸ ︷︷ ︸
x

+
1
N

N

∑
i=1

ui︸ ︷︷ ︸
U

, (3)

where x is the desirable average of the original initial values
and U is a random variable that captures the net effect of
the offsets. Clearly, E[U ] = 0 (since the ui are zero mean)
and var[U ] = 1

N var(Ui) (since the ui are i.i.d.).
For N→ ∞ we have var(U) → 0 which means that

lim
N→∞

1
N

N

∑
i=1

x′i = lim
N→∞

[
1
N

N

∑
i=1

xi +
1
N

N

∑
i=1

ui

]
= x+0 = x, (4)

where the last inequality is taken in the mean square sense.
For a large number of nodes (N → ∞), this method can
give results very close to the true average of the network;
however, as the number of nodes decreases, the accuracy
of this method also decreases, due to the fact that the offset
values added to the protected nodes will add a random offset
(with mean zero and some finite variance) to the true average
value of the network.

In our own previous work [13], the objective is also to
calculate the average of the initial values of the nodes in the
network, while at the same time preserving the privacy of



the nodes following the protocol. The scheme that is used in
[13] assumes that the underlying network forms a connected
undirected graph and makes use of linear iterations as in
(1) were the weights wi j form a doubly stochastic matrix
W = [wi j] (thus, the nodes asymptotically reach consensus
to the average of their initial values). The main difference is
that node i following the protocol sets its initial value x′i[0] =
xi + ui (where ui is some random offset), and subsequently
updates its value as

x′i[k+1] = wii[k]x′i[k]+ ∑
j∈Ni

wi jx′j[k]+ui[k], k = 0,1, ..., (5)

where ui[k] is a pseudo-random value chosen by node i at
time-step k. The constraint is that ui[k] = 0 for k > Li (for
some Li known only to node i) and

ui[Li] =−
Li−1

∑
t=0

ui[t]−ui. (6)

At time-step Li, node i effectively cancels-out the pseudo-
random values it has added during the information exchange
in the network up to that point.

The main contribution of [13] is the establishment of
topological conditions that ensure privacy for the nodes
following the proposed protocol despite the presence of
curious nodes in the network. Considering a fixed network
with N nodes described by a digraph G = {X ,E} and the
iteration in (1) with weights that form a primitive doubly
stochastic weight matrix W , it assumes that a set of nodes
P follow the predefined privacy-preserving strategy in (2)
with random offsets chosen as in (6). Curious node i will
not be able to identify the initial value x j for j ∈ P, as
long as j has at least one other node l connected to it for
which all paths from l to the curious node i are through a
node j′ following the protocol (i.e., j′ ∈ P). Specifically, if
the above mentioned condition is satisfied, the network will
reach average consensus and the privacy of the initial values
of the nodes following the protocol will be preserved during
the linear iteration process.

III. PROBLEM SETUP

Consider a network with N nodes each with some initial
value (node i has initial value xi). Let us assume that all nodes
follow a gossip-based strategy for asymptotically reaching
agreement to the average of their initial values. However,
we consider that (i) a set of curious nodes Xc ⊂ X try to
identify the initial values of all or some of the nodes in
the network, (ii) a set of private nodes Xp ⊂ X would like
to preserve their privacy by not revealing to other nodes
their initial values, and (iii) a set of neutral nodes Xn ⊂ X
are neither curious nor try to preserve the privacy of their
initial values (we allow some nodes not to be curious and not
follow the privacy-preserving protocol in order to investigate
the worst-case scenario that this protocol can handle). In
this paper we describe a distributed protocol that allows
each node i to calculate the average x, while every node
i ∈ Xp is able to preserve the privacy of its initial value
from possibly colluding curious nodes in Xc. Furthermore,

once values close to x obtained for all nodes, each node
is able to determine when to terminate its operation in
a distributed manner using a deterministic criterion. More
specifically when the nodes terminate their operation, we
are guaranteed that approximate average consensus has been
reached, i.e., all nodes have obtained values that are within
a small distance from x. Note that in this paper, we assume
that the curious nodes have full knowledge of the proposed
protocol and are allowed to collaborate arbitrarily among
themselves (exchanging information as necessary), but do
not interfere in the computation of the average value in any
other way.

IV. PROPOSED STRATEGY AND MAIN RESULTS

The main contribution of this paper includes a determin-
istic privacy-preserving gossip protocol that also guarantees
distributed stopping. The protocol is deterministic in the
sense that, at its completion, it is guaranteed that all val-
ues are close to x and the nodes that follow the privacy-
preserving protocol have protected their initial values from
exposure, as long as a simple sufficient condition is satisfied.

A. Deterministic Privacy-Preserving Protocol

The first objective of the protocol is to calculate the
average of the initial values of the nodes in the network
while preserving the privacy of the nodes that follow the
proposed protocol. The scheme that we study makes use
of the iteration in (2) where, at each iteration, a randomly
selected pair of nodes perform local averaging of their
values and asymptotically reach approximate consensus to
the average of their initial values x, at least as long as each
pair of nodes is selected enough times. What we propose in
this work is a deterministic privacy-preserving protocol in
which node i following the protocol sets its initial value to

x′i[0] = xi +ui (7)

where ui is some random offset. A node l that is not
following the protocol simply sets x′l [0] = xl . Subsequently,
when nodes i and j are selected to perform local averaging
(say at iteration k), node i updates its value as

x′i[k+1] =
(
x′i[k]+ x′j[k]

)
/2+ui[k], k = 0,1, ..., (8)

where ui[k] is a pseudo-random value chosen by node i at
iteration k. Node j does something similar (adding a pseudo-
random offset u j[k]) if it is following the protocol; if node j
is not following the protocol, then node j sets

x′j[k+1] =
(
x′i[k]+ x′j[k]

)
/2, k = 0,1, .... (9)

The constraints are (i) ui[k] = 0 for k > Li where Li is the
time step where node i is first selected after it identifies that
it has exchanged information with each node in the network
at least once, and (ii)

ui[Li] =−
Li−1

∑
t=0

ui[t]−ui. (10)

Note that at time-step Li, node i effectively cancels-out the
pseudo-random values it has added during the information



exchange in the network up to that point; thus, from that
point onward the remaining accumulated offset (due to
node i′s offset values) in the system is zero. Note that for
notational convenience we take ui[k] = 0 for all time steps k
at which node i is not selected to update its value.

Protocol Description: We now describe the distributed
protocol from the perspective of node i. When selected,
nodes following the protocol run the linear iteration in (8)
or (9) (depending on whether they follow the protocol or
not). Each time a link is activated, each node among the
selected pair of nodes is aware of the identity of the other
node involved; thus, nodes are able to identify when they
have communicated at least once with all the nodes in the
network. We refer to Li as the iteration (k = Li) at which
node i is first selected after it has communicated at least once
with all other nodes. A node not following the protocol sets
ui = 0 and ui[k] = 0 for k = 0,1,2, ..., which is the standard
gossip protocol for reaching average consensus. Node i that
follows the privacy-preserving protocol executes (8), with
x′i[0] = xi +ui and

i) Chooses a pseudo random offset ui[k], k = 0,1, ...,Li−1
for integer Li, (ui[t] = 0 for iteration steps t for which
node i is not selected);

ii) Sets

ui[Li] =−
Li−1

∑
t=0

ui[t]−ui; (11)

iii) Sets ui[k] = 0 for k > Li.
Note that Li is an integer number of steps that becomes
known to each node i following the protocol. This number
is a random variable since the pairs are selected randomly at
each iteration.

Lemma 1: Following the iteration in (1) and in combi-
nation with the constraint in (11) the network will reach
asymptotic average consensus.

Proof: It is not hard to see that, if we let Lmax =
maxi{Li}, then

N

∑
i=1

x′i[Lmax +1] =
N

∑
i=1

xi;

then, using the fact that from this point onward nodes follow
a standard gossip protocol, we conclude that

lim
k→∞

x′i[k] =
1
N

N

∑
i=1

x′i[Lmax +1] =
1
N

N

∑
i=1

xi = x,

for all i ∈ X (i.e., average consensus has been reached).

B. Deterministic Distributed Stopping Protocol

In the proposed deterministic distributed stopping algo-
rithm, each node makes a decision on how to update and/or
transmit its value, based on the difference between its
calculated value and the value it receives from its selected
neighbor at each iteration that the node is activated. In the
algorithm, the iterative process ends when all nodes cease
transmitting their values, in which case they can be shown
to have reached approximate average consensus, i.e., the

Algorithm 1 Privacy-Preserving Gossip Protocol
1: Consider a fully connected graph G= {X ,E} with N = |X |
nodes. Each node i has initial value as xi.
2: If node i is following the protocol, it sets its initial value
to x′i[0] = xi+ui (where ui is some random offset); otherwise,
x′i[0] = xi.
3: Let Li be the time step at which node i is next activated
after it communicates at least once with all the other nodes
in the network). During the first Li− 1 steps, if node i is
selected, it adds a random offset value to its transmitted
value. At time-step Li, node i cancels out the injected noise
in the system by setting ui[Li] = −∑

Li−1
t=0 ui[t]− ui, and for

k > Li, it sets ui[k] = 0.
4: Specifically, for k = 0,1,2, ..., each node i∈ X , if selected
with node j, does the following (ui[k] = 0 for all k if i is not
following the protocol)
5: if k < Li then: x′i[k+1] =

(x′i[k]+x′j [k])
2 +ui[k]

6: if k = Li then: x′i[k+1] =
(x′i[k]+x′j [k])

2 −∑
Li−1
t=0 ui[t]−ui

7: if k > Li then: x′i[k+1] =
x′i[k]+x′j [k]

2
8: End

absolute difference between the final value of each node and
the exact average x of the initial values is smaller than an
error bound ε (small real value).
In terms of the definition below we are interested in reaching
ε-approximate average consensus and also in identifying
(in a distributed manner) when such approximate average
consensus has been reached.

De f inition 2 (ε −Approximate Average Consensus) : At
the end of the iterative process, the nodes have reached ε-
approximate average consensus if the value xi[ f ] of each
node i ∈ X satisfies |xi[ f ]− x̄| ≤ ε , ∀i ∈ X , where x̄ is the
average of the initial values.

Protocol Description: We now describe the distributed
stopping protocol from the perspective of node i. Nodes
following the protocol run the linear iteration in (8) and (9),
depending on whether or not they run the privacy-preserving
protocol, in order to reach average consensus. Nodes running
the privacy-preserving protocol wait until they communicate
at least once with each other node and then start executing
the distributed stopping protocol below. The protocol has
two phases. During phase 1, each time node i is activated
(say with node j) checks whether the absolute difference
|xi[k]− x j[k]|< ε; if the condition is satisfied then the flags
f ji and fi j that represent the closeness of the values between
the two nodes become 1; if the condition is not satisfied then
the nodes proceed to perform local averaging of their values
and set all their flags to zero. Once node i has all its flags
{ f ji | j ∈ X}−{ fii} equal to 1, it enters the second phase. In
this phase, node i does not initiate any exchanges but, if it
is selected by another node j, it checks whether the absolute
difference |xi[k]−x j[k]|> ε holds; in such case, all the flags
of node i become 0 and node i goes back to phase 1.

Theorem 2: Consider a network described by a fully
connected undirected graph G = {X ,E}, where nodes run



Algorithm 2 Distributed Stopping for Average Consensus
1: Input: Each node i initializes xi[0] = xi and if node i

follows the privacy protocol, then it starts to implement
the distributed stopping protocol described below, after
time step Li.

2: Initialize all flags { f ji | j ∈ X−{i}} to zero.
3: For each k > Li when a pair of nodes i and j is randomly

selected, nodes i and j do the following.
4: If | xi[k]− x j[k] |< ε

5: Flagsi j = Flags ji = 1
6: else
7: xi[k+1] = x j[k+1] = xi[k]+x j [k]

2
8: Flags∗i = Flags∗ j = 0 (set all flags to zero)
9: End

10: If all f ji = 1 node i does not initiate any gossip
interactions (unless contacted by another node j).

11: End
12: End

the enhanced gossip algorithm in order to reach average
consensus. Following the deterministic distributed stopping
protocol, nodes reach ε-approximate average consensus after
a finite number of iterations.

Proof: Due to space limitations, we only provide
a sketch of the proof. We can first establish, by con-
tradiction, that the nodes will stop after a finite number
of iterations f . Suppose that the iteration runs forever;
this means that at each iteration k at least two neigh-
boring nodes are active (transmitting nodes). Let A =
{(i1, j1),( j1, i1),(i2, j2),( j2, i2), . . . ,(iκ , jκ),( jκ , iκ)} ⊆ E be
the non-empty set of edges that are active infinitely often.
Also, let ` be the latest iteration at which an edge in the
set E − A is active (note that ` is finite). We have that
the active edge at iteration k > l denoted by e[k] satisfies
e[k] ∈ A (i.e., after time step ` each active edge belongs in
the set A). Since each e[k] results in an undirected graph
G[k] = {X ,{e[k}}, the graph {X ,A} is also an undirected
graph and can be partitioned into connected components.
Then, from [15], it follows that the nodes in each connected
component asymptotically reach the same value. This implies
that the edges in the connected component would cease to
be active, which is a contradiction. Since the nodes stop at
some iteration f , we have ε-approximate local consensus
[24]. Using Proposition 2 from [24], we also have (D× ε)-
approximate global consensus, and since we have a fully
connected graph (D = 1), the absolute difference between
any pair of node values after they stop transmitting is at
most ε . Moreover, we have

xmin[ f ]≤
1
N

N

∑
l=1

xl [ f ]≤ xmax[ f ]

(where xmin[ f ] = mini {xi[ f ]} and xmax[ f ] = maxi {xi[ f ]}),
which implies that

xmin[ f ]≤ x̄ =
1
N

N

∑
l=1

xl =
1
N

N

∑
l=1

xl [ f ]≤ xmax[ f ] .

Since | xmax[ f ]− xmin[ f ] |< ε this completes the proof.

C. Conditions for Privacy-Preservation

Theorem 3: Let us consider a fully connected graph G =
{X ,E} of N nodes. The set of private nodes Xp follow
the predefined privacy-preserving gossip strategy in (2) with
random offsets chosen as in (8) and (11). The set of curious
nodes Xc will not be able to identify the initial value x j of
node j ∈ Xp, as long as

1) there is at least one node l ∈ Xp in the network that
also follows the proposed privacy-preserving protocol;

2) there is at least one node l ∈ Xn in the network which
first exchanges information with node j (at the first
iteration it is involved in a selected pair).

Note that, if the conditions in Theorem 2 are also satisfied,
the network will reach approximate average consensus in
finite time, while the privacy of the initial values of the nodes
following the protocol will be preserved during the process.

Proof: The proof of Theorem 3 analyzes the following
simple scenarios.

1) If all nodes i ∈ X−{ j} in the network are curious and
they communicate with each other, it is not possible
for j to maintain the privacy of its initial value x j.
Specifically, at the initialization of our algorithm, the
curious nodes will know the value x j + u j (recall that
u j is the value that j injected to its initial value in (7)).
During the iteration of our algorithm, curious nodes in
Xc will get to learn the values u j[k] for k = 0,1, ...,L j,
that j injects to x′j[k] (since curious nodes collude with
each other and exchange information, they can compare
each pair of consecutive values node j announces to
determine u j[0], then u j[1], and so forth up to u j[L j]).
This means that the curious nodes i ∈ Xc will be able
to compute the total amount of injected offsets u j +

∑
L j−1
t=0 u j[t] = −u j[L j] and, from that, u j and therefore

the initial value x j of node j. As a result, the privacy of
node j is not preserved and at least one node (other than
j) that is not curious is needed in the network. It is also
worth highlighting that no privacy-preserving protocol
can protect node j in this case (since x becomes known
and the curious nodes know their own value).

2) Let us consider the case for which there exists at least
one node l ∈ Xn in the network (i.e., node l is neither
curious nor following the privacy-preserving protocol).
Also, i ∈ Xc, ∀ i ∈ X \ {l, j} (i.e., all other nodes in
the network are curious). At the initialization of our
algorithm, node j will inject an initial offset to its value
x′j[0] = x j +u j as in (7) while l will maintain its value
xl , i.e., x′l [0] = xl . Let us assume that at the first time
step k = 0, j and l are the selected pair. Then, they will
update their values as

x′j[1] =
(
x′j[0]+ x′l [0]

)
/2+u j[0], and

x′l [1] =
(
x′j[0]+ x′l [0]

)
/2. (12)

When nodes j and l are paired with curious nodes at
time steps k = 1,2, ..., their values x′j[1] and x′l [1] will



become known (along with (x′j[0]+x′l [0])/2 and u j[0]).
Later on, curious nodes could determine u j[1], u j[2] and
eventually u j[L j] = −u j −∑

L j−1
t=1 u j[t]. Thus, they can

determine u j and compute the exact sum of the initial
values of nodes j and l as x j + xi = 2x′l [1]− u j (the
value of x′l [1] becomes known at iteration k = 1, whereas
u j can be calculated after iteration L j, once u j[L j] is
available).

3) Let us consider the case for which there exists at least
one node l ∈ Xp in the network that also follows the
proposed privacy-preserving protocol. Also, i∈ Xc, ∀ ∈
X \ { j, l} (i.e., all other nodes in the network are
curious). At the initialization of our algorithm, j and
l will inject initial offsets to their values x′j[0] = x j +u j
and x′l [0] = xl + ul , respectively, as in (7). During the
iteration of our algorithm, each time j or l are paired
with another curious node i ∈ Xc at time steps k =
1,2, ..., they will inject offsets to their values u j[k], and
ul [k] as

x′j[k+1] =
(
x′j[k]+ x′i[k]

)
/2+u j[k], or

x′l [k+1] =
(
x′l [k]+ x′i[k]

)
/2+ul [k]. (13)

Let us assume that at time step k′, nodes j and l are
selected as a pair. Both nodes will inject offsets u j[k′]
and ul [k′] to their values as

x′j[k
′+1] =

(
x′j[k

′]+ x′l [k
′]
)
/2+u j[k′], and

x′l [k
′+1] =

(
x′l [k
′]+ x′j[k

′]
)
/2+ul [k′]. (14)

The sum of values of u j[k′− 1] and ul [k′− 1], which
were injected after the previous exchange of each node
and are known only to nodes j and l, additively affect
both x′j[k

′+ 1] and x′i[k
′+ 1]. As a result, the privacy

of both nodes j and l is preserved (curious nodes can
only resolve the sum of u j[k′− 1] + ul [k′− 1], but not
the individual values). As we mentioned in the previous
scenario, since only nodes j and l are following the
proposed protocol, curious nodes i ∈ Xp will be able to
compute the exact sum of the initial values x j + xl of
nodes j and l.

From the above scenarios, we have that node j is able to
preserve the privacy of its initial value if (i) there exists
at least one node l ∈ Xn in the network and node l first
exchanges information with node j among them, or (ii) there
exists at least one other node l ∈ Xp, l 6= j, that also follows
the proposed privacy-preserving protocol. In both cases, the
privacy of the initial value of node j ∈ Xp is preserved.
This completes the proof.

V. ILLUSTRATIVE EXAMPLE

In this section, we present an example to illustrate the
behavior and potential advantages of our proposed algo-
rithm. We analyze the case of a fully connected graph of
20 nodes with the initial value xi for each of the nodes
chosen independently and uniformly in [0,1]. For this case,
each node i ∈ X executes Algorithm 1 and Algorithm 2,
i.e., it utilizes (i) the privacy-preserving protocol described

Fig. 1. Convergence of gossip-based privacy-preserving protocol in finite
time.

in Section IV-A, and (ii) the distributed stopping protocol
described in Section IV-B. Specifically, during the operation
of Algorithm 1, in order to ensure privacy-preservation, each
node i infuses pseudo random offsets ui[k] chosen uniformly
in [−1,1], for k = 0,1, ...,Li− 2 where Li is the number
of steps elapsed at the first activation of node i after it has
communicated at least once with all the other nodes in the
network (note that u j[k] is zero when node j is not selected).
For distributed stopping guarantees, each node i initially sets
its flag to 0 and takes the value of ε = 0.0001.

In Fig. 1, the average of the initial states of the nodes
is equal to x̄ = 0.3699. We show the value of each node i
plotted against the required time steps for convergence. We
observe that each node calculates the approximate average of
the initial states after 2140 time steps. When the nodes stop,
the error bound between the absolute difference of the value
of any node in the system from the exact average value x is
smaller than ε .

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we have considered the problem of privacy-

preserving average consensus in finite time in the presence of
curious nodes. We presented a distributed privacy-preserving
average consensus algorithm that enables all of the compo-
nents of a distributed system, each with some initial value, to
reach (approximate) average consensus on their initial values
after executing a finite number of iterations. We proposed
an enhancement of the standard gossip protocol that can
be followed by each node that does not want to reveal its
initial value to curious nodes with which it might interact.
We characterized the conditions on the information exchange
that guarantee privacy-preservation for a specific node. Fur-
thermore, we also provided a criterion that allows the nodes
to determine, in a distributed manner, when to terminate
their operation because approximate average consensus has
been reached, Finally, we presented simulation results of our
proposed protocol.

In the future we plan to extend the results of this paper to
the case where the proposed protocol operates over arbitrary
directed graphs (not necessarily fully connected). Further-
more, achieving distributed stopping for finite time average



consensus with privacy guarantees is to be investigated in
our future work.
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