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Abstract— This paper addresses safety verification of nonlin-
ear systems through invariant set computation. More precisely,
our goal is verifying if the state of a given discrete time
nonlinear system will keep evolving within a safe region,
starting from a given set of initial conditions. To this purpose,
we introduce a conformant PieceWise Affine (PWA) abstraction
of the nonlinear system, which is instrumental to computing
a conservative approximation of its maximal invariant set
within the safe region. If the obtained set covers the set
of initial conditions, safety is proven. Otherwise, subsequent
refinements of the PWA abstraction are performed, either on
the whole safe region or on some appropriate subset identified
through a guided refinement approach and containing the set
of initial conditions. Some numerical examples demonstrate the
effectiveness of the approach.

I. INTRODUCTION

This paper addresses the problem of verifying if the state
of a nonlinear discrete time system keeps evolving within a
safe region when initialized in a given set. The problem can
be rephrased as that of checking if there exists an invariant set
within the safe region including the set of initial conditions.

Invariant set computation has attracted the interest of many
researchers since it plays an essential role in model predictive
control where recursive feasibility can be granted by properly
choosing an invariant set for the terminal state constraint,
[1], [2]. In the case of a nonlinear system, the complexity
of the problem dramatically increases and approaches that
exploit the regularity of the system dynamics [3], [4], or
apply some localization procedure [5] have been proposed
in the literature.

We propose an alternative approach that relies on the
abstraction of the nonlinear system to a PieceWise Affine
(PWA) model with additive disturbance so as to exploit an
efficient procedure for robust invariant set computation for
PWA systems, [6]. If the abstraction is conformant (i.e., it can
generate all possible trajectories of the original system), then,
an inner approximation of the invariant set for the nonlinear
system is obtained.

A counterexample guided abstraction refinement (CE-
GAR) scheme is adopted in [7], [8] for safety verification of
hybrid systems, where a finite ([7]) or infinite ([8]) confor-
mant abstraction on which it is easier to verify safety is built
and progressively refined when spurious counterexamples
of unsafe behaviors are found. In this work, instead, the
abstraction is constructed to the purpose of computing an
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invariant set within the safe region that contains the set
of initial states: if such an invariant is found, then the
safety property is proven for the original nonlinear system,
otherwise the abstraction is refined to get a more accurate
(larger) approximation of the invariant set within the safe
region. We derive the sequence of PWA abstractions by
means of the hybridization procedure in [9], which, differ-
ently from those in [10] and [11], guarantees that all the
trajectories that are generated by a finer PWA abstraction
can also be generated by the previous rougher one in the
sequence while still including all the trajectories of the
original nonlinear system. This property, called refinement
inclusion, allows to progressively get a tighter approximation
of the nonlinear system invariant set by subsequently refining
the PWA approximant.

In [12], verification of linear temporal logic specifications
(including safety) is addressed for PWA systems subject to
additive disturbance. An approach for finding the largest set
of initial conditions such that the corresponding PWA trajec-
tories satisfy a given specification is proposed. This approach
could be adopted for verifying safety of our progressively
refined PWA abstractions instead of using them for invariant
set computation. However, the admittedly computationally
intensive nature of the approach in [12] makes this alternative
solution not convenient.

Differently from CEGAR approaches, we do not need
to identify and analyze counterexamples to the purpose of
refining our model. We in fact adopt a refinement strategy
that is based on the abstraction error. However, throughout
our procedure, we still search for counterexamples and we
do it by simulating within a preassigned finite time horizon
the nonlinear system, initialized at a finite number of states
extracted uniformly from the subset of initial conditions
outside the current invariant estimate. Refinement stops as
soon as we are either able to assess safety/unsafety for
the nonlinear system or a certain threshold value of the
abstraction error is reached. In the latter case, we mitigate
undecidability by providing probabilistic finite horizon safety
guarantees.

To relieve the combinatorial explosion of the number
of modes in the abstraction refinement, we propose an
abstraction-based scheme that performs only local guided
refinements while searching for the invariant set. We further
reduce the computational load by refining the mode partition
only outside the currently computed invariant set, since this
set remains invariant also for finer abstractions due to the
refinement inclusion property.



II. PROBLEM FORMULATION

Consider a discrete time nonlinear system described by:

xk+1 = f(xk), (1)

where x ∈ Rn denotes the state and function f : Rn → Rn

is continuously differentiable up to the second order. Given
a compact set Xs ⊂ Rn and a set X0 ⊆ Xs, our goal is
to determine if system (1) is safe, i.e., if it keeps evolving
within Xs when initialized in X0.

In order to verify safety, we propose a computational ab-
straction and refinement approach to determine an invariant
set I for system (1) satisfying X0 ⊆ I ⊆ Xs. The approach
requires that Xs is a convex polytope and X0 is convex.
In order to satisfy this assumption, an inner and an outer
approximation of Xs and X0, respectively, can eventually
be adopted.

III. PROPOSED ABSTRACTION AND REFINEMENT
ITERATIVE SCHEME

Our scheme for safety verification starts with the compu-
tation of the robust invariant set of a rough PWA abstraction
of system (1) over Xs to obtain an inner-approximation
of the invariant set of system (1). If this approximation
includes X0, then safety is proven for system (1), otherwise a
refinement of the PWA abstraction that reduces the maximal
abstraction error over the relevant region is performed,
and the procedure of computing a robust invariant set and
checking for inclusion of X0 is repeated for the resulting
finer PWA model. We adopt the hybridization proposed
in [9] to reduce system (1) to a PWA abstraction where
the introduced approximation error is accounted for via an
additive disturbance. The refinement inclusion property in
[9] makes the resulting inner approximation of the invariant
set of the original nonlinear system progressively more and
more accurate as its PWA abstraction is refined.

While progressively refining, we also look for a counterex-
ample falsifying safety so as to possibly avoid further useless
invariant set computations. To this purpose, we extract a
finite number of samples uniformly from X0 and compute the
corresponding trajectories of the nonlinear system over some
finite horizon [0, N ]. If any of them exit Xs, then, we can
declare the system unsafe and halt the iterations. Indeed, the
described procedure is repeated until one of the following
three termination conditions occurs: an invariant including
X0 is found, a witness of unsafety is retrieved, none of the
previous conditions is satisfied but the maximal abstraction
error gets below a user-chosen threshold. In this last case,
we are not able to give a definite answer to the safety
verification problem and can only provide a probabilistic
finite-time assessment of safety based on the overall number
of extracted (safe) trajectories.

The computationally attractive procedure proposed in [6]
to determine a polyhedral inner approximation of the max-
imal robustly positively invariant set inside a polyhedral
region for a PWA system is integrated in the iterative scheme.

A key point of the proposed safety verification method is
the refinement policy adopted while generating finer PWA

models. We propose a global refinement strategy where the
current PWA abstraction is refined over the entire safe region
Xs, and a local one where the refinement is confined to a
subset of Xs that is an outer bound containing X0 of the
robust invariant set for the current PWA abstraction.

The latter strategy can be implemented using the outer
bound computed in the iterative procedure of [6] while
determining the invariant set. This may result in a significant
reduction of the computational effort, but at the risk of
excessively restricting the search domain. A quantitative
comparison of the two strategies in terms of computational
complexity is hard to obtain, since the size of the outer bound
strongly depends on the dynamics at hand. However, numer-
ical examples show the superiority of the local refinement
strategy with respect to the global one.

Regardless of the adopted refinement strategy, in order to
relieve the computational load, we avoid refining the PWA
abstraction within the current estimate of the invariant, since
it is an invariant (although not maximal) set also for the
original nonlinear system.

We next describe in some detail each step of our scheme.

A. PWA abstraction

Given system (1), evolving within a compact set X ,
the hybridization process starts considering an outer hyper-
rectangle of X with sides parallel to the coordinate axes.
Then, X is divided into r closed hyper-rectangles {Xi}ri=1,
and dynamics (1) is approximated through a PWA model
given by:

xk+1 = Aixk + vi + ek, xk ∈Mi = X ∩Xi, i = 1, . . . , r,

where e ∈ Rn is an additive error term taking values in a
compact set Ei ⊂ Rn that depends on Xi and Mi = X ∩Xi

denotes mode i, i = 1, . . . , r.
Remark 1: Note that at the boundary of each mode Mi

multiple dynamics may be activated. However, this is not an
issue since the hybridization process proposed in [9] guaran-
tees that if x ∈Mi, then, f(x) ∈ {Aix+ vi + e, e ∈ Ei}, so
that if x is a point at the boundary between two modes Mi

and Mj , then, this property holds for each activated mode. It
is then irrelevant which affine dynamics is actually applied
for the PWA model to be a conformant abstraction of the
original nonlinear system.

We next define matrix Ai, vector vi, and set Ei.
Let c(i) denote the center of the hyper-rectangle Xi, which

is given by c(i) = 0.5(x(i) + x(i)), where x(i) and x(i)

are, respectively, the vertices with minimal and maximal
components of Xi. Then, the j-th column of matrix Ai

associated with mode Mi is computed as:

A
[j]
i =

f(c
(i)
1 , . . . , x

(i)
j , . . . , c

(i)
n )− f(c(i)1 , . . . , x

(i)
j , . . . , c

(i)
n )

L
(i)
j

where L(i)
j = x

(i)
j − x

(i)
j is the size of Xi along coordinate

j. The affine term vi, instead, is computed as vi = f(c(i))−
Aic

(i), so that the PWA and the nonlinear functions take the
same value in the center of Xi. The error support set Ei



associated with mode Mi is characterized in [9] as Ei =
[−e(i), e(i)], where e(i) ∈ Rn satisfies elementwise

|f(x)− (Aix+ vi)| ≤ e(i), x ∈ Xi,

and is given by

e(i) =
1

8
m

(i)
H

n∑
j=1

n∑
k=1

L
(i)
j L

(i)
k , (2)

with m(i)
H ∈ Rn a vector whose l-th component, l = 1, . . . , n,

is defined as:

m
(i)
Hl = max

j,k
max
x∈Xi

∣∣∣∣∂2fl(x)∂xj∂xk

∣∣∣∣ (3)

We shall refer to the components of m(i)
H as the Lipschitz

factors1 of f associated with Xi and to the components of
e(i) as the error bounds of f over Xi.

Figure 1 shows an example of the described hybridization
procedure applied to a scalar quadratic function with r = 2.
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Fig. 1. (a) The nonlinear function f(x1, x2) = (x1 − x2)2. (b) Its
hybridization over X = [−2, 1]× [−1, 3] for r = 2. In green the nonlinear
function, in red the PWA approximant, in orange and blue the error bounds.

B. PWA abstraction refinement

The refinement procedure consists in making the rect-
angular grid of the current PWA abstraction finer, halving
some hyper-rectangles along axis-aligned directions and re-
computing the affine dynamics and error bounds over the
obtained modes as explained in the previous subsection.
By applying such a procedure, we increase the accuracy
of the PWA abstraction, getting progressively closer to the
original nonlinear dynamics as the grid gets finer, due to the
refinement inclusion property discussed in the introduction
(see [9] for a proof), with the error bounds in (2) tending to
zero as the size of the grid elements decreases.

To obtain an efficient safety verification algorithm, we de-
vise a smart refinement procedure where the hyper-rectangles
to halve and the axis-aligned directions along which halving
are chosen sequentially so as to uniformly reduce the approx-
imation error over the domain of interest, which can either be
the safe region Xs or an outer bound of the robust invariant
set for the current PWA abstraction.

To this aim, we first select a hyper-rectangle with maximal
error bound, which can be interpreted as a measure of the

1Note that m
(i)
Hl is well defined since the second order derivative of

function f(·) is assumed to be continuous and Xi is compact.

Algorithm 1 Safety counterexample generation

1 Extract ns samples {x[k]in }
ns
k=1 from Xin according to the

uniform distribution
2 for k = 1, . . . , ns do
3 x

[k]
0 ← x

[k]
in

4 for t = 1, . . . , N do
5 x

[k]
t ← f(x

[k]
t−1)

6 if x[k]t /∈ Xs then
7 System (1) is unsafe
8 return
9 end if

10 end for
11 end for

worst combination of its Lipschitz factors and dimensions
(see (2)). Once the target hyper-rectangle has been chosen,
rather than simply selecting the halving direction that leads
to the largest reduction in size, we compute the error bounds
associated with the sub-regions obtained by halving the
hyper-rectangle in all possible axis-aligned directions and
choose the one attaining the overall lowest maximal error
bound, so as to guarantee that the abstraction error is reduced
as much as possible with a single refinement (recalling
equation (2), the error is affected by both the Lipschitz
factors and the hyper-rectangle sizes).

C. Robust invariant set computation and safety verification
via PWA abstraction and refinement

Two algorithms for safety verification are formulated,
which differ for the adopted refinement strategy:

1) Safety verification through global error-based refine-
ment: A rough PWA abstraction of system (1) is introduced
by gridding an outer hyper-rectangle containing Xs. If the
robust invariant set within Xs computed for the current PWA
abstraction does not contain X0, the refinement is performed
over the portion of the safe region outside the latest invariant
I . This approach is summarized in Algorithm 2.

2) Safety verification through local error-based guided
refinement: The algorithm in [6] applied within a region of
interest computes an outer bound Ĉ of the maximal robust
invariant set within that region. Differently from Algorithm
2, we then refine the PWA abstraction over the set Ĉ \ I in
place of Xs \ I , as long as Ĉ contains X0.

Algorithm 3 summarizes the proposed local error-based
refinement approach, which proceeds analogously to the
global one except for the fact that the refinement domain Ĉ,
initialized at Xs (line 2), is progressively updated every time
an outer bound C0 that includes X0 is computed (lines 5-6).
We highlight that, due to the local nature of the invariant
search region according to the proposed guided refinement
strategy, it may happen that the computed outer bound is
too small to get an invariant set covering the set of initial
conditions. In this case, when we reach the maximum (local)
accuracy without being able to prove or disprove safety, we
can still resort to the global refinement strategy.

In both safety verification methods, we try to find a safety
counterexample every time we fail at proving that the system



Algorithm 2 Safety via global error-based refinement
Require: emax > 0, 0 < α < 1, N > 0, ns > 0.

1 Apply Algorithm 1 setting Xin ← X0

2 I ← ∅
3 Compute an affine abstraction for system (1) over Xs, and

retrieve its maximal error bound ‖ē(1)‖∞.
4 r ← 1, emax ← α ‖e(1)‖∞, Xd ← Xs

5 while max{‖e(i)‖∞}ri=1 > emax do
6 while max{‖e(i)‖∞}ri=1 > emax do
7 Refine the current PWA grid (Section III-B) choosing

among the modes covering Xd and retrieve the new
maximal error bounds {‖ē(i)‖∞}r+1

i=1 .
8 r ← r + 1
9 end while

10 Compute an outer bound Co for the maximal robust invariant
set within Xs for the current abstraction, [6]

11 if X0 ⊆ Co then
12 Compute a robust invariant set I ⊆ Co for the current

abstraction, [6]
13 if X0 ⊆ I then
14 System (1) is safe
15 return
16 else
17 Collect the maximal error bounds {‖ē(i)‖∞}li=1 asso-

ciated with the modes covering Xs \ I .
18 Xd ← Xs \ I , r ← l.
19 end if
20 end if
21 Apply Algorithm 1 setting Xin ← X0 \ I
22 emax ← α emax

23 end while
24 Retrieve the number m of samples extracted from X0 \ I
25 ε← 1− β

1
m

26 With confidence 1 − β, the set of initial conditions that can
drive system (1) outside Xs within [0, N ] has a size smaller
than or equal to ε times the measure of X0 \ I

is safe. We repeat this process until we are able to prove
that the system is either safe or unsafe, or until the PWA
abstraction reaches the user-chosen accuracy level within
the currently explored modes. In this latter case, we provide
probabilistic safety guarantees over X0 \ I , with I denoting
the last computed invariant set.

3) Probabilistic safety certificate: Consider all the sam-
ples extracted from X0 according to the uniform distribution
while applying Algorithm 2 or Algorithm 3, and remove the
ones included within the last computed invariant set I . The
remaining, say m, samples are independent and uniformly
distributed in X0 \ I . For all these samples the behaviour of
the system is safe over [0, N ], which allows us to provide a
probabilistic safety certificate as follows.

Let p be defined as the probability of extracting from X0\I
an unsafe initialization over [0, N ] and assume that we per-
form ne extractions. Then, the random variable representing
the number of unsafe extractions is binomially distributed
with parameters p and ne. Given some confidence parameter
β ∈ (0, 1), we impose that the probability (1 − p)ne of
extracting from X0 \ I no unsafe initialization out of ne
samples while having p greater than a threshold ε ∈ (0, 1)
is smaller than or equal to β, which implies, being such
probability a decreasing function of p, that (1 − ε)ne ≤ β.

Algorithm 3 Safety via local error-based refinement
Require: emax > 0, 0 < α < 1, N > 0, ns > 0.
1 Run lines 1-3 in Algorithm 2
2 r ← 1, emax ← α ‖e(1)‖∞, Xd ← Xs, Ĉ ← Xs

3 while max{‖e(i)‖∞}ri=1 > emax do
4 Run lines 6-9 in Algorithm 2
5 Compute an outer bound Co for the maximal robust invariant

set within Ĉ for the current abstraction, [6]
6 if X0 ⊆ Co then
7 Collect the maximal error bounds {‖ē(i)‖∞}qi=1 associ-

ated with the modes covering Co

8 Ĉ ← Co, r ← q
9 Compute a robust invariant set I ⊆ Ĉ for the current

abstraction, [6]
10 if X0 ⊆ I then
11 System (1) is safe
12 return
13 else
14 Collect the maximal error bounds {‖ē(i)‖∞}li=1 asso-

ciated with the modes covering Ĉ \ I .
15 Xd ← Ĉ \ I , r ← l.
16 end if
17 end if
18 Run lines 21-22 in Algorithm 2
19 end while
20 Run lines 24-26 in Algorithm 2

Turning back again to the uniformly distributed sample of
m points within X0 \ I obtained at the end of Algorithm
2 or Algorithm 3, since none of these m extractions led to
unsafe trajectories, we can state that p is less than ε with
confidence larger than or equal to 1− β, thus implying that
the fraction of the set of initial conditions leading to an
unsafe behavior over [0, N ] does not exceed the minimum ε
satisfying (1− ε)m ≤ β, i.e.:

ε = 1− β 1
m .

IV. NUMERICAL RESULTS

We consider a numerical example presented in [4], where
a nonlinear system of the form (1) is considered with f :
R2 7→ R2 given by

f(x) =

[
1 + 0.1x1 + 0.5x2 − e0.1x

2
1

0.1 + 0.9x1 − 0.1x2 − 0.1 cos(x2) + 0.05x22

]
(4)

Given the region Xs = [−5, 5]2 ⊂ R2, our goal is to verify
that the state of the system never exits Xs, starting from
some set of initial conditions X0 ⊂ R2.

To this purpose we apply the algorithms in Section III-C,
which have been implemented in MATLAB, using the Multi-
Parametric Toolbox (MPT), [13], for representing convex
polyhedra, and CPLEX, [14], to solve the linear programs
required for the procedure in [6].

Results have been obtained on a calculator with processor
AMD Ryzen 7 PRO 4750U with Radeon Graphics, 8 Core(s)
(1.7 GHz), 16 Logical Processor(s), and 32 GB of RAM.

We present results on safety verification for different sets
X0 and compare global and local refinement strategies,
setting in both of them the maximal accuracy parameter
emax = 10−3 and the coefficient rescaling the accuracy



at each iteration of the refinement α = 0.5. As for the
parameters required for probabilistic assessment, we set ns =
7000 and β = 10−3, and we choose N = 50 as finite horizon
length while searching for counterexamples.

For each case, the following performance criteria are
considered:
• The maximal error bound max{‖e(i)‖∞}ri=1 associated

to the last obtained PWA abstraction, which represents
the final approximation accuracy.

• The number h of region halvings performed to obtain
the final mode partition.

• The computing time in seconds, indicative of the com-
putational effort required by each method.

When applying the local refinement strategy, we shall also
consider the number q of updates of the outer bound Ĉ.

As for the computation of the Lipschitz factors of f in (3),
in this example it is possible to compute them analytically
for each region generated during the refinement.

1) X0 = [−4,−2]2: in this case, running any of our two
algorithms for safety verification, we are immediately able
to find a counterexample. System (4) is thus deemed unsafe.
Figure 2 depicts an unsafe trajectory of system (4) starting
from X0.

2) X0 = [−1, 1]2: this set is around the origin, where
function (4) is close to be linear. The plots in Figure 3
depict the obtained solutions, whereas Table I provides more
quantitative data. While a global refinement leads to a wide
invariant set with respect to X0, with a higher computational
load, the local refinement leads very efficiently to an invariant
set that is more restricted around X0 but yet compatible with
the safety specification, also retrieving a PWA abstraction
that is more accurate.

3) X0 is a large polytope around the origin: we consider
a significantly enlarged initial set X0, which is now the
polytope with vertices {vi}4i=1 given by v1 = (−2,−3),
v2 = (−3, 4), v3 = (4, 4), v4 = (2,−4). Through this choice
of X0 we implicitly enforce the local refinement algorithm to
compute an invariant set close to the one resulting from the
global refinement in the previous example, but with a lower
computational effort. The related meaningful information is
depicted in Figure 4 and collected in Table II.

4) X0 = [2, 4]2: the considered initial set X0 is in a
region where the nonlinear function in (4) has a stronger
nonlinearity. Figure 5, together with Table III, further high-
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Fig. 2. Unsafe trajectory (black) of system (4), computed within [0, N ]
by means of Algorithm 1 starting from X0 = [−4,−2]2 (blue).
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Fig. 3. Global (a) and local (b) refinement for X0 = [−1, 1]2: in yellow the
outer approximation of the invariant, in red the most recent mode partition
over Xs (a) and over the latest Ĉ (b), in green the computed invariant and
in cyan the set X0.

TABLE I
PERFORMANCE INDICES WHEN X0 = [−1, 1]2

Refinement strategy max{‖e(i)‖∞}ri=1 h q Time (s)
Global 0.6077 392 - 129
Local 0.3418 122 5 4
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Fig. 4. Global (a) and local (b) refinement for a large polytopic set X0:
in yellow the outer approximation of the invariant, in red the most recent
mode partition over Xs (a) and over the latest Ĉ (b), in green the computed
invariant and in cyan the set X0.

TABLE II
PERFORMANCE INDICES FOR A LARGE POLYTOPIC X0

Refinement strategy max{‖e(i)‖∞}ri=1 h q Time (s)
Global 0.6077 392 - 129
Local 0.3197 241 5 83
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Fig. 5. Global (a) and local (b) refinement for X0 = [2, 4]2: in yellow the
outer approximation of the invariant, in red the most recent mode partition
over Xs (a) and over the latest Ĉ (b), in green the computed invariant and
in cyan the set X0.

lights the computational advantages of a guided refinement
with respect to a global refinement.



TABLE III
PERFORMANCE INDICES WHEN X0 = [2, 4]2

Refinement strategy max{‖e(i)‖∞}ri=1 h q Time (s)
Global 0.6077 392 - 114
Local 0.3197 260 4 75

5) X0 = [−2.5,−0.5]× [−3.5,−1.5]: we consider a final
example with the goal of comparing the performance ob-
tained by running our safety verification algorithms with two
alternative refinement domains, i.e., refining also the modes
within the latest invariant not including X0, and refining
only the modes not contained within such an invariant. The
obtained results are pictorially shown in Figures 6 and 7, as
well as in quantitative form in Table IV.
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Fig. 6. Variants of Algorithm 2 obtained by refining the modes in Xs (a)
and refining the modes in Xs\I (b) for X0 = [−2.5,−0.5]×[−3.5,−1.5]:
in yellow the outer approximation of the invariant, in red the most recent
mode partition over Xs, in green the computed invariant and in cyan the
set X0.
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Fig. 7. Variants of Algorithm 3 obtained by refining the modes in Ĉ (a) and
refining the modes in Ĉ \ I (b) for X0 = [−2.5,−0.5]× [−3.5,−1.5]: in
red the most recent mode partition over the latest Ĉ, in green the computed
invariant and in cyan the set X0.

TABLE IV
PERFORMANCE INDICES WHEN X0 = [−2.5,−0.5]× [−3.5,−1.5]

Refinement domain max{‖e(i)‖∞}ri=1 h q Time (s)
Xs 0.2667 800 - 901
Ĉ 0.2409 277 6 73

Xs \ I 0.2667 731 - 515
Ĉ \ I 0.2409 244 6 62

V. CONCLUSIONS AND FUTURE WORK

In this paper we presented a method for safety verifica-
tion of nonlinear systems. The proposed approach rests on

the introduction of a PieceWise Affine (PWA) conformant
abstraction of the nonlinear system, and on the computation
of a robust invariant set by means of an efficient algo-
rithm for PWA systems. A refinement procedure allows to
progressively improve the estimate of the invariant set, by
exploiting the refinement inclusion property of the adopted
PWA abstraction method.

In order to mitigate the computational burden associated
with a global error-based refinement, we devised a guided
refinement procedure that improves the abstraction accuracy
locally.

An interesting direction of future work is the extension of
the proposed invariant set computation method to the class
of nonlinear controlled systems, and its application to model
predictive control. Also, scalability of the approach needs to
be investigated.
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