
ar
X

iv
:2

10
7.

01
69

4v
1

 [
ee

ss
.S

Y
]

 4
 J

ul
 2

02
1

Model Predictive Control for Electron Beam Stabilization in a

Synchrotron

Idris Kempf∗, Paul J. Goulart∗, Stephen R. Duncan∗ and Michael Abbott∗∗

Abstract— Electron beam stabilization in a synchrotron is a
disturbance rejection problem, with hundreds of inputs and
outputs, that is sampled at frequencies higher than 10 kHz.
In this feasibility study, we focus on the practical issues
of an efficient implementation of model predictive control
(MPC) for the heavily ill-conditioned plant of the electron
beam stabilization problem. To obtain a tractable control
problem that can be solved using only a few iterations of
the fast gradient method, we investigate different methods for
preconditioning the resulting optimization problem and relate
our findings to standard regularization techniques from cross-
directional control. We summarize the single- and multi-core
implementations of our control algorithm on a digital signal
processor (DSP), and show that MPC can be executed at the
rate required for synchrotron control. MPC overcomes various
problems of standard electron beam stabilization techniques,
and the successful implementation can increase the stability of
photon beams in synchrotron light sources.

Index Terms— Model predictive control, fast gradient method,
embedded systems, synchrotron

I. INTRODUCTION

A synchrotron light source is a special type of particle

accelerator in which charged particles, typically electrons,

travel around a circular path called the storage ring. When

the electrons’ paths are bent around the storage ring at

relativistic speeds, they lose kinetic energy and emit it in

the form of exceptionally bright light, which is used for

microscopic experiments. An assembly of magnets produces

a magnetic field that confines the electrons in the storage

ring. Large magnets steer and focus the electron beam whilst

smaller corrector magnets attenuate vibrations induced by

disturbances and reduce the trajectory error of the electrons

down to a few µm. These disturbances are caused by

internal devices, such as the beam light extraction devices,

or transmitted through the girders on which the magnet

arrays are attached. The position of the electron beam is

measured using beam position monitors (BPMs) and the

corrector magnets are controlled in a feedback loop that is

sampled within a frequency range of 10−100 kHz. The beam

trajectory error must be minimized in order to produce high

brilliance synchrotron light. This control system is referred to

as fast orbit feedback and typically has a few hundred BPMs

(outputs) and few hundred corrector magnets (inputs).

Diamond Light Source (DLS) is the UK’s national syn-

chrotron facility, and its 560 m circumference storage ring

∗Corresponding author: idris.kempf@eng.ox.ac.uk. The authors
are with the Department of Engineering Science, University of Oxford,
Oxford, UK. This research is supported by the Engineering and Physical
Sciences Research Council (EPSRC) with a Diamond CASE studentship.

∗∗Diamond Light Source, Didcot, UK.

accommodates over 20 experimental stations. DLS has com-

pleted the conceptual design phase of a significant upgrade

(DLS-II), which will increase the brightness of the syn-

chrotron light by raising the electron beam energy from

3 GeV to 3.5 GeV [1] and the number of sensors and

actuators from 172 to 252 and 173 to 396, respectively. In

the current facility only one type of corrector magnet is used,

but DLS-II will instead use separate types for high and low

bandwidth correction. In addition, the sampling frequency

will be increased from 10 kHz to 100 kHz.

The consequences of introducing two types of corrector

magnets are twofold. First, the widely used modal decompo-

sition [2] that diagonalizes the input-output transfer function

matrix using a singular value decomposition can no longer be

applied. Second, amplitude and slew-rate actuator constraints

must be considered.

Model predictive control (MPC) allows for an arbitrary

number of actuator arrays and provides a systematic way

to handle actuator constraints while achieving the same or

better disturbance attenuation [3] as linear control methods.

However, the MPC algorithm uses real-time optimization and

considerably increases the computational complexity of the

fast orbit feedback system. Formulating MPC for the electron

beam stabilization problem results in a constrained quadratic

program with hundreds of decision variables, and the highly

ill-conditioned plant negatively affects the convergence prop-

erties of the solver. A tailored MPC implementation is

therefore required to obtain an MPC scheme that operates

at frequencies higher than 10 kHz. In anticipation of the

upcoming DLS-II upgrade, it was decided to assess the

feasibility and performance of installing MPC on the existing

DLS-I storage ring. This paper describes an assessment of

the design and conception of the future DLS-II fast orbit

feedback architecture and allows for an optimal dimension-

ing of the required controller hardware.

The paper is organized as follows. The process model is

introduced in section Section II and a state-space model and

observer introduced in Section III. We use standard mod-

elling techniques for setpoint tracking and observer design,

but include these details for the benefit of practitioners in the

synchrotron community who may be unfamiliar with these

methods. We formulate our MPC problem in Section IV,

which we solve using the fast gradient method, and ana-

lyze the solver convergence with respect to preconditioning.

Finally, Section V details the parallel implementation of

MPC on a multicore digital signal processor (DSP). The

developments presented in this paper apply to DLS-I and

II, but the implementation has been tailored to DLS-I.

http://arxiv.org/abs/2107.01694v1

II. PRELIMINARIES

A. Process Model

For DLS-II, the relationship between the ny = 252 beam

displacements yk ∈ R
ny measured around the ring, the ns=

252 slow corrector magnets inputs us,k ∈ R
ns and the nf =

144 fast corrector magnets inputs uf,k ∈ R
nf at time t =

k∆t is given by

yk = Rsgs(z
91)us,k +Rfgf(z

91)uf,k + dk, (1)

where ∆t = 10 µs is the sampling time, z91 represents

the backward shift operator and dk the disturbances. The

matrix R := [Rs Rf] ∈ R
ny×nu with nu = ns + nf is

called the orbit response matrix and typically has a condition

number on the order of 104. The scalar transfer functions g(·)
model the corrector magnet dynamics plus a transport delay

that accounts for unmodeled elements between the central

computing node and the power supply of the magnets, and

take the form

g(·)(z
91) = z9(µ+1) 1− e9a(·)∆t

1− z91e9a(·)∆t
, (2)

where µ = 10 is the delay in terms of time steps. The slow

magnets have a small bandwidth as = 2π × 100 Hz but

strong a magnetic field, while the fast magnets have a high

bandwidth af = 2π × 10 kHz but a weak magnetic field.

In contrast, the DLS-I storage ring has ny = 172 position

measurements and nu = 173 corrector magnets. Most of the

corrector magnets have a medium bandwidth am = 2π ×
700 Hz, but ns = 3 slow and nf = 2 fast magnets have been

installed for testing purposes in anticipation of the DLS-II

upgrade. The DLS-I feedback is sampled at ∆t = 100 µs

with a delay of µ = 7 time steps.

Note that the vector yk describes the displacement in either

horizontal or vertical direction perpendicular to the motion of

the electron beam. These directions are independent and the

electron beam stabilization problem includes two different

systems of the form of (1). In the following, we will focus

on the vertical direction, which is more difficult to control.

B. Cross-Directional Control

The plant model (1) is usually referred to as a cross-

directional system, and similar models are obtained for web

forming processes [2] such as those encountered in paper

manufacturing or plastic film extrusion. For cross-directional

systems, the response can be split into a spatial component

(R(·)) and a temporal component (g(·)(z
91)). The design of

feedback systems for electron beam stabilization has many

parallels to cross-directional control [4]. In the case of only

one type of actuator, a standard approach is to decompose the

orbit response matrix using a singular value decomposition

(SVD) as R = UΣVT, where Σ may contain blocks of

zeros depending on the shape of R,. By defining the modal

outputs and inputs as ŷk = UTyk and ûk = VTuk, the

multi-input multi-output system is decoupled into a set of

single-input single-output (SISO) systems. The control input

can then be calculated as uk = −VK̂c(z91)Uyk , where the

gain matrix K̂ :=
(

ΣTΣ+ λI
)

91
ΣT with λ > 0 is diagonal

and c(z91) is often chosen to be identical for each mode and

given by a Dahlin [5] or PID [6] controller. Regularizing the

inverse of Σ is essential to prevent large control gains in the

direction of small singular values.

When the system has more than one actuator array, such as

in (1), the modal decomposition can no longer be applied

because the SVDs R(·) = U(·)Σ(·)V
T
(·) with (·) = {s,f}

do not share the same matrix of left singular vectors U(·).

In this case, the orbit response matrices can be simul-

taneously decomposed using alternative methods [4], [7].

Other approaches introduce a frequency deadband between

slow and fast actuators and setup two independent control

loops [6], which is a suboptimal approach because it prevents

control action in the frequency deadband. To handle actuator

constraints, the standard controllers must be extended with

an anti-windup scheme.

C. Symmetries

In most synchrotrons the monitors and magnets are placed

in repeated patterns around the storage ring. These patterns

produce a circulant and centrosymmetric structure in R [8].

In contrast to the modal decomposition, which requires

the outputs and inputs to be multiplied by dense matrices,

the symmetric transformations can be carried out using the

computationally efficient Fast Fourier Transformation (FFT).

In our previous work, we have shown how these symmetries

can be exploited for cross-directional [8] and MPC [3] to

increase the computational speed of the controller and reduce

the memory requirements. These symmetries stand out in the

DLS-II orbit response matrix, but have been corrupted in

the current orbit response matrix after adding modifications

in anticipation DLS-II. Because our MPC algorithm will be

tested on the DLS-I storage ring, the structural symmetries

are not considered further. However, our implementation

could be extended to consider symmetries and would produce

significant performance improvements.

III. MODEL AND OBSERVER

A. State-Space System

The standard linear MPC formulation requires a state-space

model, and we choose to define the states x(·),k ∈ R
n(·) as

x(·),k = z−1 1− e9a(·)∆t

1− z91e9a(·)∆t
u(·),k, (3)

where (·) = {s,f}. Applying the backward shift operator to

x(·),k and u(·),k yields a state-space representation of (1) as

(

xs,k+1

xf,k+1

)

=

[

As 0
0 Af

](

xs,k

xf,k

)

+

[

Bs 0
0 Bf

](

us,k

uf,k

)

,

yk=
[

Rs Rf

]

(

xs,k9µ

xf,k9µ

)

+ dk,

(4)

where A(·) = Ie9a(·)∆t and B(·) = I−A(·). In the form (4),

the states xs,k and xf,k are proportional to the magnetic

fields of the slow and fast correctors acting on the electron

beam. We will use the more compact notation

xk+1 = Axk +Buk, yk = Cxk−µ + dk, (5)

where xk :=(xT
s,k,x

T
f,k)

T and uk :=(uT
s,k,u

T
f,k)

T. A widely

used control approach for (5) is the linear quadratic regula-

tor (LQR) that computes a control law as uk = −Kxk and

can be interpreted as an unconstrained version of MPC.

In practice, the actuator inputs (currents) us,k and uf,k are

subjected to slew-rate constraints and amplitude constraints,

respectively. The constraints can be modeled as

Ua = {uf,k ∈ R
nf | 9α ≤ uf,k ≤ α} , (6a)

Ur = {us,k,us,k91 ∈ R
ns | 9ρ ≤ us,k 9 us,k91 ≤ ρ} , (6b)

where the inequalities are to be read component-wise. The

magnitude of the amplitude limit α depends on the nor-

malization of the inputs and the slew-rate constant ρ is

chosen as ρ = α/10, which reflects results obtained from

preliminary simulations of the fast corrector magnets. We

consider symmetric limits on both slew-rate and amplitude,

but the algorithm is easily modified to allow asymmetric

limits. Analogous to the shorthand notation (5), we will

abbreviate (6) as uk ∈ U . Note that in our implementation

we will assume that slow and fast actuators are constrained

by both slew-rate and amplitude constraints, but the limits

for each actuator type are adjusted accordingly.

B. Setpoint Calculation

The aim of the control system is to reject the disturbances dk

in (1). In response to a constant disturbance, a zero steady-

state output yk requires the open-loop transfer function of (1)

to have integrating behavior [9]. Because the plant transfer

functions g(·)(z
91) lack integrating behavior, the controller

must implement the integrator. For an LQR approach, there

exist several methods to add integrating behavior. One way

is to augment the system with a set of output integrators.

However, this method would slow down the subsequent

MPC algorithm by increasing the number of optimization

variables. Alternatively, one can compute the setpoints ū and

x̄ and use the feedback law uk = ū + u⋆
k [10], where u⋆

k

is obtained from u⋆
k = 9Kxk in the case of LQR or as the

solution to an optimization problem in the case of MPC. The

setpoints should be calculated such that limk→∞ yk = 0,

which using (5) yields

(

0
d̄k

)

=

[

I −A −B

−C 0

](

x̄k

ūk

)

=: S

(

x̄k

ūk

)

, (7)

where S ∈ R
nu+ny×2nu and d̄k ∈ R

ny is a disturbance

estimate that is obtained from the observer. The coefficient

matrix S ∈ R
nu+ny×2nu has more columns than rows and

the Moore-Penrose pseudoinverse S† =
(

STS
)

91
ST can be

used to solve for x̄k and ūk. Note the zeros in the left-

hand side vector of (7), so that in practice, only the last ny

columns of S† need to be considered.

C. State and Disturbance Observer

Standard methods from cross-directional control use output

feedback to control (1), whereas LQR and MPC use state

feedback to control the equivalent state-space system (5).

The states xk and disturbances dk are not measurable and

these values must be inferred from the measured outputs

using an observer. The observer continuously computes the

state-transition equation in (5) and adds the term L(yk −
Cxk), where we chose the observer gain L as the steady-

state Kalman filter gain [11].

For modelling the disturbance, a first-order model that is

driven by zero-mean independent and identically distributed

white noise [10] is used, i.e.

dk+1 = Addk + vk, (8)

where vk ∼ N (0, σ2
v) and we choose Ad = I . Alternatively,

the matrix Ad can be obtained from a first-order autoregres-

sive fit from the measurement data.

All measurements of system (5) are delayed by µ time steps

and the incoming measurement yk at time t = k∆t contains

information about the state xk9µ at time t = (k − µ)∆t.
One possibility to integrate the delayed measurements is to

formulate a delay-free system by augmenting (5) with µ ×
(ns + nf) states, i.e. defining zik := xk−i, i = 1, . . . , 7 and

adding z1k+1 = xk and zi+1
k+1 = zik and rewriting the state

transition equations as

x̂k+1

ẑ1k+1
...

ẑ
µ
k+1

d̂k+1

=

A

I 0

0
. . .

. . .
. . . I 0

0 Ad

x̂k

ẑ1k
...

ẑ
µ
k

d̂k

+

B

0
...

0

uk

+ L
(

yk −Cẑ
µ
k − d̂k

)

,

(9)

where variables with a hat denote estimated quantities and

the state-space system (5) has been combined with the

disturbance model (8).

The observer (9) requires a matrix-vector multiplication with

a dense L ∈ R
((µ+1)nu+ny)×ny , which is a computationally

expensive operation that can be avoided as follows. First,

partition the observer gain as L = [LT
x, L

T
z1
, . . . LT

zµ , L
T
d]

T,

where the partitioning of L matches the partitioning of the

vector on the left-hand side of (9). Then, update the most

delayed state ẑµ and the disturbance estimate d̂ using Lzµ

and Ld, respectively, and reserve ∆ŷk := Lzµ(yk −Cẑ
µ
k −

d̂k). Finally, update the states ẑi, i = 1, . . . , µ 9 1 by adding

Aµ9i∆ŷk and in particular x̂ using Aµ∆ŷk . Note that the

matrices Ai are diagonal and can be pre-computed offline.

IV. MODEL PREDICTIVE CONTROL

A. Problem Formulation

At time t = k∆t, the MPC scheme computes a control

input by predicting the future evolution of the system and

minimizing a quadratic objective function over the planning

horizon N , while considering inputs that lie in the constraint

set (6) only. This can be achieved via repeated solution of

the following constrained quadratic program (CQP):

min

N91
∑

i=0

‖xi − x̄‖2Q + ‖ui − ū‖2R + ‖xN − x̄‖2P

s.t. xi+1 = Axi +Bui, x0 = x̂k, ui ∈ U ,

yi = Cxi,

(10)

for i = 0, . . . , N 9 1, where the optimization variables

are x(·) and u(·). Even though the solution of (10) is a

sequence of inputs u⋆
0, . . . ,u

⋆
N91, only the first input u⋆

0

is applied to the plant and the optimization repeated at the

next time step t+∆t. The matrices Q := CTC and R are

the state and output weighting matrices, respectively, while

P = PT ≻ 0 is the terminal cost matrix. The optimization

problem (10) has a unique solution if R ≻ 0, Q � 0
and if the pairs (A,B) and (A,Q

1
2) are controllable and

observable, respectively [12, Ch. 12]. Because the system (5)

is stable and there are no state constraints, the MPC scheme

is guaranteed to be feedback stable if the terminal cost

matrix P is obtained from the discrete-time Riccati equation

(DARE) associated with the unconstrained LQR,

ATPA−ATPB
(

BTPB+R
)−1

BTPA+Q = P, (11)

where we choose the matrices Q and R to be the same as

in (10).

By defining x = (xT
0 , . . . ,u

T
N)T and u := (uT

0 , . . . ,u
T
N91)

T,

the state-transition equations xi+1 = Axi + Bui can be

rewritten as x = Gu+Hx0, where

G =

0 . . .
B

AB B
...

. . .

AN91B AN92B . . . B

, H =

I
A

A2

...

AN

.

By substituting x = Gu + Hx0, the states x can be

eliminated from (10), producing the equivalent condensed

problem

min
u∈RNnu

1

2
uTJu+ qTu s.t. u ∈ UN , (12)

where UN = U × · · · × U and J and q are obtained as

J := GT ((IN ⊗Q)⊕P)G+ (IN ⊗R), (13a)

q := GT ((IN ⊗Q)⊕P)Hx0 −GT

[

1N ⊗Q

P

]

x̄

− (1N ⊗R)ū,

(13b)

with ⊗ and ⊕ denoting the Kronecker product and block-

diagonal concatenation, respectively, IN the identity matrix

of size N ×N and 1N a vector of ones of length N . Note

that the slew-rate constraints couple the inputs across horizon

stages and the set UN depends on the previously calculated

input u⋆
k91. After finding a solution to (12), the set UN must

therefore be updated as well as the vector q on the arrival of

a new measurement. In practice, we substitute (7) in (13b)

to avoid computing the setpoints x̄ and ū.

Off IMC IMC constr.

MPC (1) MPC (2) MPC (8)

101 102 103
0

0.5

1

1.5

2

Frequency [Hz]

IB
M

[µ
m

]

76 80

0.173

0.175

Fig. 1: Integrated beam motion (IBM) for the uncon-

trolled beam, IMC without and with applied constraints and

MPC (N) with N denoting the horizon.

B. Synchrotron Performance Metric

The performance of the control algorithm can be evaluated

using the integrated beam motion (IBM), which is defined

as the square root of
∑F

f=0
2
F 2 |yi(f)|2, where yi(f) is the

discrete Fourier transform (DFT) of monitor output i and F
the frequency in Hz. The IBM is the discrete integral of the

DFT of Si(z
91)dk, where Si(z

91) is the sensitivity transfer

function matrix of output i. Fig. 1 shows the IBM averaged

over all monitors for different horizons N and for a particular

choice of Q and R that will be discussed in Section IV-D.

The figure also shows the uncontrolled beam, the simulated

IMC for the unconstrained system and IMC for the case that

the computed inputs are clipped using (6). It can be seen

that there is little performance improvement N larger than

1 or 2. Compared to the unconstrained IMC, MPC performs

slightly better for lower frequencies but slightly worse for

higher frequencies. This “waterbed” effect can be controlled

by tuning the weighting matrices. Because the computation

time is limited to 100 µs and we see little improvement for

larger horizons, we consider only N ≤ 2 in the following.

C. Fast Gradient Method

Suitable algorithms for solving the CQP (12) can be split into

first-order methods, such as the fast gradient method (FGM)

and the alternating direction method of multipliers (ADMM),

and second-order methods, such as the interior-point method.

First-order methods use only the first derivative of the

objective function, while second-order methods also use the

second derivative. First-order methods typically converge

quickly to a low-accuracy solution with a low per-iteration

computational cost, but need far more iterations to achieve

a high-accuracy solution. By contrast, second-order methods

need fewer iterations to achieve a high-accuracy solution,

but also have a higher per-iteration computational cost. A

low-accuracy solution produced by a first-order algorithm

is sufficient for an MPC problem [13]. In [14], we showed

how FGM outperforms ADMM in terms of computational

speed for our particular constraint set. The convergence of

ADMM is less affected by ill-conditioned problem data

than the FGM, but the algorithm augments the vector u

in (12) to accommodate the constraints, which slows down

the implementation on the DSP.

The FGM is summarized in Alg. 1 (lines 5-10) with a

constant step size β = (λ
1/2
max−λ

1/2
min)/(λ

1/2
max+λ

1/2
min), where

λmin and λmax are the minimum and maximum eigenvalues

of the Hessian J [15, Ch. 2.2]. In contrast to ADMM, the

FGM does not require augmentation of the decision variables

but applies the projection operator PUN
onto UN instead.

For N = 1, the projection simply limits each component

of u to a minimum and maximum value given by (6a)

or (6b). For N = 2, the projection onto (6b) is more

complicated and consists of projecting the pairs (ui
0,u

i
1),

where i denotes the ith actuator, onto a hexagon with corner

points that depend on the input ui
91 calculated at time step

k−1 [14]. Note that on line 5, we warm-start by initializing

the FGM using the input calculated at time (k − 1)∆t,
which considerably improves the convergence properties of

the algorithm [16]. Lines marked with the circled arrow

denote synchronization steps of the parallel implementation

(Section V-B) and we will consider the fixed iteration number

Imax in Section IV-D.

Algorithm 1 MPC for electron beam stabilization

Input: yk

Output: uk

1: Transfer yk

2: Update observer ⇒ x̂k, d̂k

3: Update q = q(x̂k, d̂k)
4: Update UN = UN (uk91)
5: Set vi = uk91 and pi = 0
6: for i = 0 to Imax do

7: ti = (I − Jλ91
max)vi − qλ91

max

8: pi+1 = PUN
(ti)

9: vi+1 = (1 + β)pi+1 − βpi

10: end for

11: Transfer uk = pImax+1

D. Preconditioning of the Hessian

In Alg. 1, we have chosen a fixed number of iterations Imax

rather than using a stopping criterion, which would increase

the computational complexity. This is common in embedded

systems applications, and an upper iteration bound can be

obtained [16] from

Imax=max

0, min

ln ǫ9ln∆

ln(19
√

1
κ)

,

⌈

2

√

∆

ǫ
92

⌉

, (14)

where ǫ = 1093 is the desired solution accuracy, κ := κ(J)
is the condition number of the Hessian and ∆ is a constant

that depends on the constraint set UN . From (14), it can

be seen that if κ is large, then Imax tends to be large. For

N =1, Q = CTC and R = I , κ(J) ≈ 6000, which is far

IMC saturated

50 150

10−3

101

105

Modes

Weights q̂i

50 150

10−3

101

105

Modes

Weights r̂i

1 2
101

102

Horizon N

Iterations

(a) (b) (c)

Fig. 2: (a) State and (b) input weights and (c) corresponding

average FGM iteration number.

too large to solve Alg. 1 at 10 kHz. The condition number of

the Hessian can be reduced by setting R = rI with r ≫ 1,

but the performance of the controller then rapidly degrades.

Alternatively, the Hessian can be preconditioned using an

invertible transformation matrix E ∈ R
nu×nu such that the

condition number of the Hessian (IN ⊗E)
9T

J (IN ⊗E)
91

is minimized. The matrix E can be found using semidefinite

programming methods [17, Ch. 3.1]. However, choosing a

dense E significantly increases the computational complexity

of the FGM as the projection is complicated. If E is

instead restricted to be a diagonal matrix, then κ(J) is not

improved substantially. A well-conditioned Hessian can also

be obtained from choosing appropriate Q and R. For N=1,

the Hessian is J = BTPB + R and the analysis can be

greatly simplified by transforming system (5) into modal

space, i.e. by approximating A ≈ aI , B ≈ bI and using

C = UΣVT to diagonalize (5). In modal space, the matrix

P̂ = diag(p̂1, . . . , p̂nu
) := VTPV is diagonal and the

DARE (11) is solved by

p̂i =
1

2b2

(

−ξi +
√

ξ2i + 4b2q̂ir̂i

)

, (15)

where ξi = r̂i − a2r̂i − b2q̂i and q̂i and r̂i are the diagonal

elements of Q̂ := ΣTΣ and R̂ := diag(r̂1, . . . , r̂nu
). For

fixed r̂i, the low-order modes (large q̂i) have a large cost

(large p̂i), which in turn yields a large LQR control gain

k̂i = abp̂i/(r̂i+b2p̂i) [9, Ch. 9.2]. The DLS-I internal model

controller (IMC) is closely related to LQR [18] and computes

the open-loop gains as
(

ΣTΣ+ λI
)

91
ΣT, where λ > 0 is

a regularization parameter. The modal input weights r̂i can

be chosen such that the LQR controller gain matches the

IMC open-loop gain for each mode i, which is depicted in

Fig. 2 (a) and (b) (IMC, red). For IMC with λ = 0, the

open-loop gain is proportional to Σ91, so the higher order

modes must be detuned, whereas for LQR, the open-loop

gain is “proportional” to Σ, so the low order modes must

be detuned. However, this choice of input weights does not

decrease the condition number of the Hessian. For N = 1,

the condition number of the resulting Hessian is 7, 485 and

N = 1
543 µs (1.8 kHz)

N = 2
3550 µs (0.3 kHz)

N = 1
69 µs (14.4 kHz)

N = 2
272 µs (3.7 kHz)

Observer (line 2)

Update q (line 3)

Update UN (line 4)

Gradient step (line 7)

Projection (line 8)

β step (line 9)

(a) (b)

21%

7%

66%

4% 3%

8%3%

85%

11%

18%

9%

2%

47%

13%

5%
2%

6%

69%

4%14%

Fig. 3: Computation times for (a) single-core and (b) parallel implementations. Unnumbered slices contribute with 1%.

11, 616 for N=2.

A simple way to significantly decrease the condition number

of the Hessian is to choose R̂ = I and to limit the diagonal

elements of Q̂ to a minimum and maximum value, which

is depicted in Fig. 2.a (saturated, blue). This approach has

also been chosen in Fig. 1, where it can be seen that there

is no decrease in controller performance compared to IMC.

For N=1, the condition number of the resulting Hessian is

21, while it is 31 for N = 2. Note that the state weighting

matrix in the original space can be recovered by setting Q =
VQ̂VT.

The required number of iterations for Alg. 1 is illustrated in

Fig. 2.b, which shows the number of iterations averaged over

10,000 MPC problem instances. For each instance we count

the number of iterations required for the algorithm’s iterates

to satisfy ‖pi+1 − pi‖∞ < ǫ and ‖pi+1 − pi‖∞ < ǫ‖pi‖∞
with ǫ = 1093. As expected from the upper bound (14),

significantly more iterations are required when the condition

number is large.

V. IMPLEMENTATION

DLS-I has implemented the network topology shown in

Fig. 4 for transmitting the BPM measurements across the

storage ring. At each time instant, the BPMs (gray dots)

inject new measurements into the network, which are syn-

chronized and forwarded to each of the 24 nodes that

compute the control inputs for the neighboring corrector

magnets. DLS-II will considerably simplify the topology

of Fig. 4 and implement a centralized network, where the

BPM signals from each cell will be sent to one central

computing node. For testing our algorithm on DLS-I, we

connect the new hardware to the communication network

as illustrated in Fig. 4. The computed control signals will

then be “disguised” as BPM signals again and each of the

24 distributed nodes will select the corresponding signal to

pass to the neighboring magnets. The new central computing

node is a VadaTech AMC540 board [19] that embeds a

Xilinx Virtex-7 FPGA and two Texas Instruments (TI) C6678

1

7

13

19

2

8

14

20

3

9

15

21

4

10

16

22

5

11

17

23

6

12

18

24

AMC 540

Fig. 4: Diamond-I communication network topology.

digital signal processors (DSPs) [20] with 8 cores each. For

our tests, the control algorithm will be implemented on the

DSPs, which are more flexible to program, while the FPGA

will be responsible for signal routing. A PCIe link is used

to transfer BPM and control input data between the FPGA

and the DSPs, which takes roughly 5 µs (6.6 Gbps) when

executed by the direct memory access (DMA) engine of the

DSP. The DSPs are clocked at 1.4 GHz and the sampling

frequency of 10 kHz allows for 140,000 processor cycles

(100 µs). One core of each DSP is used to communicate with

the control room through a gigabit ethernet link. The control

problems for the vertical and horizontal beam directions are

independent and one DSP is used for each direction.

A. Single-Core Implementation

The TI C6678 is a floating point processor with single-

instructions multiple-data (SIMD) capabilities that can be

programmed in C. It has two levels of core-local memory

(L1, 32 kB and L2, 512 kB) and a third level of shared

memory (L3, 4 MB) with the L1 memory being configured as

cache. Accessing the L2 memory is twice as fast as accessing

the L3 memory [20].

For the gradient step of Alg. 1, we have implemented a

highly optimized routine that exploits the core architecture

and uses SIMDs. Analogous to standard row-major matrix-

vector multiplication, the routine implements two nested

for-loops, where the first loop iterates over rows and the

second over columns. To minimize memory transactions and

maximize the use of SIMD, the inner loop computes 8 rows

and 4 columns at once. To maximize the efficiency of the

cache, the arrays are aligned to cache line boundaries, zero-

padded to multiples of 4 or 8 floats and rearranged such that

the unrolled rows are contiguous in memory.

For N =1, the algorithm can be implemented as shown in

Alg. 1 and all the problem data, such as the Hessian J, can be

saved in L2 memory. For N=2, the Hessian uses almost the

whole L2 memory, so some data must be moved to the slower

L3 memory. The cache efficiency for the projection can be

increased by permuting the data using a perfect shuffle, so

that the inputs for magnet i and horizon stages 0 and 1
are contiguous in memory. The computational complexity

of the gradient step could be reduced by considering the

sparsity patterns in the definition of the Hessian (13a), i.e.

by separating the multiplications by G and (IN ⊗Q)⊕P.

The single-core performance with Imax = 20 and horizon

N = {1, 2} is shown in Fig. 3.a. It requires 543 µs for

N=1 and 3550 µs for N=2 to compute the control inputs,

which is more than the desired 100 µs. The most expensive

operation is the gradient step, which takes 357 µs for N=1
and 3000 µs for N = 2. As the algorithm is dominated by

the gradient step, one would expect the computation time

to quadruple when doubling the problem size. However,

transferring problem data that lies in the L3 memory and

additional cache inefficiencies incur substantial overheads.

The single core performance could certainly be increased

by configuring the L2 memory as cache, but our parallel

implementation uses the L2 memory for saving core-local

data and this approach was not pursued further.

B. Parallelization

All steps of Alg. 1 can be parallelized using a standard

manager-worker framework, but variable dependencies re-

quire core communication and cache operations that are

denoted by circled arrows. The same executable is used

for all cores and the code is branched off based on the

core ID. Note that the observer operations ŷk := Cẑ
µ
k and

L(yk − ŷk − d̂k) are computed separately and require two

synchronization steps.

For the problem size of the MPC problem (12), the cost

of parallelization is not negligible. Fig. 5 shows the over-

head introduced by interprocessor communication measured

by the elapsed time between a manager request and the

acknowledgement of nw worker cores without worker pay-

load. Three different implementations are compared: The TI

Notify scheme, which is a library provided by TI and used

by the TI open multi-processing (openMP) toolbox, the TI

multicore navigator (NAV), which is implemented through

a separate on-chip processor, and our custom interrupt-free

Notify NAV Custom

1 2 3 4 5 6 7

10−1

100

101

Number of cores

O
v
er

h
ea

d
[µ

s]

Fig. 5: Interprocessor communication overhead.

implementation. The TI notification schemes are flexible, but

introduce a considerable delay. Note that with 20 synchro-

nization points, the TI Notify scheme alone would introduce

200 µs of overhead. For our custom approach, we chose to

implement a simpler scheme using integer flags that are saved

in the L3 memory. For further speed-up, the L1 cache is by-

passed by creating a non-cacheable virtual memory section.

In practice, at each communication step it is also required to

invalidate or write-back the cache, which can be manually

triggered using TI’s chip support library.

Alg. 1 is sliced into 6 × 32 row-blocks with 192 columns

each and deployed on 6 worker cores and 1 manager core.

The length of the slices must be a multiple of the cache line

size (64 B) and using 7 worker cores would not yield any

speed up. The master core coordinates the various steps of

Alg. 1, communicates with the adjacent FPGA and triggers

the DMA. A breakdown of the computation time of Alg. 1

with Imax = 20 is shown in Fig. 3.b. For N=1, the algorithm

uses 69 µs, which is well below the allowed 100 µs, but for

N=2, the computation time of 272 µs is far above the time

limit.

Comparing Fig. 3.a and b, the parallelization reduces the

computation time by a factor between about 8 and 13.

In theory, one would expect the computation time to be

reduced by a factor smaller than nw when deployed onto

nw worker cores. We suspect that this discrepancy is due to

memory and cache bandwidth limitations on the single core

implementation.

VI. CONCLUSION

In this feasibility study, we have focused on the practical

issues of implementing MPC for the DLS-I electron beam

stabilization problem. To obtain an implementation that

runs at the desired speed, we tailored the MPC algorithm

to the application. Firstly, we avoided removing the time

delay by augmenting the system with additional states and

designed an observer for the delayed states instead. The

delayed measurement updates were then projected into the

future, which exploited the diagonal structure of the state-

space system. Secondly, because standard preconditioning

techniques with diagonal preconditioning matrices were un-

able to reduce the condition number of the Hessian, we

used the modal decomposition to choose appropriate state-

and input-weighting matrices that led to a Hessian with a

small condition number. Finally, we showed that standard

parallelization toolboxes, such as openMP, introduce over-

heads that would prohibit the algorithm from running at the

desired speed, and we therefore implemented a customized

core-synchronization framework. Our investigation showed

that MPC is applicable to the electron beam stabilization

problem, but requires investment of significant effort into the

theoretical and practical implementation as well as paying

particular attention to details, such as overheads introduced

by the CQP initialization or parallelization, which are often

neglected in theoretical investigations. Our practical tests

also showed that assumptions on computational complexities

can be inaccurate, e.g. doubling the CQP problem size does

not necessarily result in quadruple computation time nor

does parallelizing the algorithm on nw cores increase the

computation speed by a factor of nw.

In anticipation of our tests, we demonstrated the feasibility

for the DLS-I storage ring, but we have not considered a

number of additional changes that DLS-II will introduce.

The number of actuators will be increased from 173 to

396 for Diamond-II, which will significantly increase the

computational complexity of the algorithm and further slow

down the controller. However, in contrast to the current

system the DLS-II system will have a block-circulant and

centrosymmetric symmetry, which can be exploited to in-

crease the computational speed of the controller by a factor

of 10 [8].

For DLS-I, all corrector magnets are actuated at 10 kHz,

whereas at Diamond-II, the 144 fast actuators will be actu-

ated at 100 kHz and the slow actuators at 1 kHz. This would

give rise to another MPC scheme in which the control inputs

for the slow actuators are computed every 100 time step and

the control inputs for the fast actuators are computed every

other time step. For such an MPC scheme, the closed-loop

stability would need to be assessed separately.

A communication controller in the DLS-I storage ring

manages the communication between computing nodes and

BPMs. At DLS-II, the BPM measurements will be sent

to one central node and not all measurements will be

synchronized. In this paper, we designed an observer that

receives measurements that have the same time delay and

projects the measurement update to the current state. If the

measurement have different delays, this could be considered

in the observer.

All our simulations used measurement data from DLS-I

and it is expected that the power spectrum of the DLS-II

disturbances will change. A disturbance model was used to

compute the feedforward setpoint, and it was assumed that

the disturbances are independent and identically distributed.

For DLS-II, the disturbances might be correlated, in which

case a different disturbance model could be used. Consider-

ing correlated disturbances could increase the performance

of the controller in terms of disturbance attenuation.

REFERENCES

[1] C. Abraham et al., “Diamond-II: Conceptual design report,” Diamond
Light Source Ltd., Didcot, UK, Tech. Rep., May 2019.

[2] W. Heath, “Orthogonal functions for cross-directional control of web
forming processes,” Automatica, vol. 32, no. 2, pp. 183–198, Feb.
1996.

[3] I. Kempf, P. J. Goulart, and S. R. Duncan, “Alternating direction of
multipliers method for block circulant model predictive control,” in
IEEE 58th Conf. Decis. Control (CDC), Nice, France, Dec. 2019, pp.
4311–4316.

[4] S. Gayadeen, S. R. Duncan, and W. P. Heath, “Design of multi-array
controllers for electron beam stabilisation on synchrotrons,” in Proc.
American Control Conf. (ACC), Washington, DC, Jun. 2013, pp. 1201–
1206.

[5] S. Gayadeen and S. R. Duncan, “Discrete-time anti-windup compen-
sation for synchrotron electron beam controllers with rate constrained
actuators,” Automatica, vol. 67, pp. 224–232, May 2016.

[6] C. Schwartz and L. Emery, “Compensating the frequency deadband
of the APS real-time and DC transverse orbit correction systems,” in
Proc. Part. Accel. Conf. (PAC), Chicago, IL, Jun. 2001, pp. 1234–
1236.

[7] I. Kempf, S. R. Duncan, P. J. Goulart, and G. Rehm, “Multi-array
electron beam stabilization using block-circulant transformation and
generalized singular value decomposition,” in Proc. IEEE 59th IEEE

Conf. Decis. Control (CDC), Jeju Island, Republic of Korea, Dec.
2020.

[8] I. Kempf, P. J. Goulart, S. R. Duncan, and G. Rehm, “Symmetry ex-
ploitation in orbit feedback systems of synchrotrons for computational
efficiency,” IEEE Trans. Nucl. Sci., vol. 68, no. 3, pp. 258–269, Mar.
2021.

[9] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control:
Analysis and Design. New York, NY, USA: Wiley, 2005.

[10] K. R. Muske and T. A. Badgwell, “Disturbance modeling for offset-
free linear model predictive control,” J. Proc. Control, vol. 12, no. 5,
pp. 617–632, Aug. 2002.

[11] D. Simon, Optimal State Estimation: Kalman, H∞, and Nonlinear

Approaches. New York, NY, USA: Wiley, 2006.

[12] F. Borrelli, A. Bemporad, and M. Morari, Predictive Control for Linear
and Hybrid Systems. Cambridge, UK: Cambridge University Press,
2017.

[13] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP:
an operator splitting solver for quadratic programs,” Math. Prog.

Comp., vol. 12, pp. 637–672, Feb. 2020.

[14] I. Kempf, P. J. Goulart, and S. R. Duncan, “Fast gradient method for
model predictive control with input rate and amplitude constraints,” in
Proc. Int. Fed. Automat. Control Conf. (IFAC), Berlin, Germany, Jul.
2020.

[15] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic

Course, 1st ed. Boston, MA, USA: Springer, 2003.

[16] S. Richter, C. N. Jones, and M. Morari, “Computational complexity
certification for real-time MPC with input constraints based on the
fast gradient method,” IEEE Trans. Automat. Control, vol. 57, no. 6,
pp. 1391–1403, Jun. 2012.

[17] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix
Inequalities in System and Control Theory. Philadelphia, PA, USA:
SIAM, 1994.

[18] C. E. Garcia and M. Morari, “Internal model control. A unifying
review and some new results,” Ind. Eng. Chem. Process Des. Develop.,
vol. 21, no. 2, pp. 308–323, Apr. 1982.

[19] Xilinx Virtex-7 FPGA AMC with Dual TI DSP (AMC540), Vadatech,
2019, 4FM737-12.

[20] Multicore Fixed and Floating-Point Digital Signal Processor

(TMS320C6678), Texas Instruments, 2010, sPR5691E.

	I Introduction
	II Preliminaries
	II-A Process Model
	II-B Cross-Directional Control
	II-C Symmetries

	III Model and Observer
	III-A State-Space System
	III-B Setpoint Calculation
	III-C State and Disturbance Observer

	IV Model Predictive Control
	IV-A Problem Formulation
	IV-B Synchrotron Performance Metric
	IV-C Fast Gradient Method
	IV-D Preconditioning of the Hessian

	V Implementation
	V-A Single-Core Implementation
	V-B Parallelization

	VI Conclusion
	References

