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Abstract— This paper introduces the quadratically-
constrained quadratic programming (QCQP) framework
recently added in HPIPM alongside the original quadratic-
programming (QP) framework. The aim of the new
framework is unchanged, namely providing the building
blocks to efficiently and reliably solve (more general classes of)
optimal control problems (OCP). The newly introduced QCQP
framework provides full features parity with the original QP
framework: three types of QCQPs (dense, optimal control and
tree-structured optimal control QCQPs) and interior point
method (IPM) solvers as well as (partial) condensing and other
pre-processing routines. Leveraging the modular structure of
HPIPM, the new QCQP framework builds on the QP building
blocks and similarly provides fast and reliable IPM solvers.

I. INTRODUCTION

In the field of optimal control, Quadratic Programs (QP)
are well established and arise in many contexts, both directly,
e.g., in linear Model Predictive Control (MPC), and indi-
rectly as subproblems in Sequential Quadratic Programming
(SQP) algorithms for Nonlinear Programming (NLP). In
consequence, many efficient solver implementations exist.
However, as QPs admit only affine constraints, they lack
some important expressiveness. Quadratic inequality con-
straints occur naturally in many problems, e.g., in MPC for
power electronics [1], electric drives [15], [31], or ellipsoidal
corridors in robotics [27], to name just a few. Furthermore,
MPC formulations with desiderable theoretical properties
such as stability guarantees via ellipsoidal terminal sets [19]
or robustness against modeling errors and noise in a tube
MPC framework [20] define quadratic inequality constraints
alike. If the equality constraints remain linear, this leads to
the class of Quadratically Constrained Quadratic Programs
(QCQP) [4]. For some of the mentioned applications, the
sampling times are in the three digit microsecond range,
creating the need for highly efficient solvers. One approach
leading to satisfactory results in praxis may be to approx-
imate the ellipsoidal constraints by an inner polytope via
affine inequalities in order to obtain a QP. As we will
demonstrate on a numerical example, already for a moderate
number of affine constraints it can be faster to directly solve
the QCQP.
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Since roughly the 2000s, some interest has developed
in using Sequential QCQP (SQCQP) methods for NLPs,
which sequentially solve QCQP approximations, see [16]
for an overview. While this idea is certainly older, it was
initially not of practical interest due to the lack of efficient
solvers for the QCQP subproblems [13]. Intuitively, QCQP
can provide better approximations of an NLP than a QP
would, as they are able to capture the constraint curvature
also beyond their Hessian contribution at the linearization
point. Therefore, one would expect SQCQP methods to
require fewer iterations than SQP methods, although each
iteration will be more expensive. However, if an efficient
QCQP solver is employed, this may tip the balance in favor
of SQCQP. Additionally, SQCQP methods can partially avoid
the Maratos effect [18], which is a consequence of the con-
straint linearization inherent to SQP methods [14]. If the NLP
is generally nonconvex but exhibits convex-over-nonlinear
structures, convexity of the QCQP subproblems may be
assured via generalized Gauss-Newton Hessian approxima-
tions [21]. For quadratic convexities, this is equivalent to
Sequential Convex Programming (SCP), cf. [22], [26], which
in this case also leads to convex QCQP subproblems. While
QCQPs are often formulated and solved as Second Order
Cone Programs (SOCP) [4], we believe and illustrate via
numerical experiments that important efficiency gains can
be made by treating them directly as QCQP.

Besides the availability of general large scale sparse SOCP
solvers, the interest over QCQPs has led to the development
of some software packages specifically targeting embedded
applications, and possibly tailored to the optimal control
problem structure. ECOS [6] is a sparse SOCP solver
targeting embedded applications. The commercial software
FORCES [7] provides a QCQP solver tailored to multistage
problems arising in optimal control. More recently, in [5] two
algorithms for QCQP are presented, which are built on the
basis of the open-source QP solvers OSQP [25] and HPIPM
[9] respectively, although tailored to a specific MPC problem.

In this paper, we present an extension of the convex QP
framework of HPIPM [9] to the class of convex QCQP.
This choice, in contrast to the more general class of SOCP,
allows us to provide full feature parity with the existing QP
framework, e.g. supporting (partial) condensing for QCQP
too. The HPIPM software package has been extended by
building blocks for the efficient solution of QCQP-based
problems in MPC, similar to the existing QP framework.
The QCQP formulation and framework on purpose resemble
their QP version to provide a familiar interface to existing
users and higher-level algorithms.
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II. QCQP FORMULATIONS

As a direct extension to the QP framework described
in [9], HPIPM currently defines three QCQP types: a dense
QCQP, an OCP QCQP and tree-structured OCP QCQP. As
a distinctive feature inherited from the QP framework, all
QCQP formulations define a special type of variable, the
slacks, which do not enter the dynamics equality constraints
and which give a diagonal contribution to Hessian and
inequality constraint matrices. The exploitation of this struc-
ture allows their elimination from the QCQP formulation
in computational complexity linear in the number of slack
variables, making it computationally cheap to use them. The
slack variables can be used to efficiently implement soft
constraints with L1 and L2 penalties on all constraint types,
comprising the quadratic constraints, as done extensively in
Section IV.

A. Dense QCQP

The dense QCQP type describes a generic QCQP where
Hessian and constraint matrices are assumed to be dense.
This formulation can handle the QCQP sub-problems aris-
ing in single-shooting discretization schemes or in state-
condensing schemes in OCP and MPC frameworks. The
formulation is stated as
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where the quadratic constraint index k takes values in the
set Hq = {1, . . . , nq}. The dense QCQP formulation closely
resembles the dense QP formulation with the addition of
quadratic constraints. The primal variables comprise generic
variables v and slack variables sl (su) associated to the lower
(upper) constraints. The Hessian matrices of the slacks Z l

and Zu are diagonal. The matrices J ·,· are made of rows
from identity matrices, and are employed to select only
some components in box and soft constraints. The constraint
matrices are the same for the upper and the lower constraints,
meaning that all linear constraints in the formulation are two-
sided. On the other hand, the quadratic constraints are only
one-sided in order to ensure convexity, since the matrices

Hk are assumed to be positive semi-definite. Also, they are
scalar, i.e. d̄k is a real number and Js,qk a row vector. A mask
(not represented in the above dense QCQP formulation) can
be employed to dynamically activate or deactivate the single
upper and/or lower constraints. The considerations in this
paragraph apply also to the OCP and tree OCP QCQP.

B. Optimal Control Problem (OCP) QCQP

The OCP QCQP type describes a QCQP formulation
handling many OCP and MPC problems such as constrained
linear MPC problems and QCQP sub-problems in SQCQP
and SCP algorithms for non-linear OCP and MPC prob-
lems [21]. The formulation is stated as
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where the stage index n takes values in the set H =
{0, 1, . . . , N} and the quadratic constraint index k takes
values in the set Hq = {1, . . . , nq}. This problem has a
multi-stage structure, with cost and inequality constraints
defined stage-wise, and with dynamics equality constraints
coupling pairs of consecutive stages. All data matrices and
vectors can vary stage-wise. The primal variables are divided
into state variables xn, control (or input) variables un and
slack variables associated to the lower (upper) constraints sl

n

(su
n). The size of all variables (number of states nxn , number

of controls nun
and number of slacks nsn ), as well as the

number of box constraints nbn , general polytopic constraints
ngn and quadratic constraints nqn can freely vary stage-
wise, as required e.g. to solve QCQP sub-problems arising in
multi-phase multiple-shooting discretization schemes, simi-
larly to QP sub-problems in [3].



Note that the current formulation does not explicitly define
equality constraints other than the dynamics equations, and
therefore other types of equality constraints have to be
reformulated as inequality constraints with equal upper and
lower limits. Currently the HPIPM framework provides some
functionality (not represented in the above OCP QCQP
formulation) to explicitly mark which of the inequality
constraints should be considered as equalities, and routines
to remove simple types of equality constraints (as e.g. the
constraint on the initial state value x0 = x̂0) from the
problem formulation in a pre-solve step.

C. Tree OCP QP

The tree OCP QCQP type can handle a large number of
common robust and scenario-based OCP and MPC problems,
see [17] and references therein. The formulation is stated as
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where N is the set of nodes in the tree and N̂ is its
cardinality. The set L contains the leaves of the tree, while
C(n) denotes the set of the children of node n. All data
matrices and vector as well as their size can vary node-wise.

III. ALGORITHM

As outlined in [9], HPIPM provides all algorithmic build-
ing blocks needed to implement many variants of a primal-
dual IPM in a modular fashion. In the current paper, these
building blocks are used to implement efficient algorithms
for QCQP.

A. Primal-dual IPM

This section contains some basic notion about primal-
dual IPM algorithms, with the only purpose of giving some
intuition on the algorithm derivation. It is implicitly assumed
that all the necessary regularity conditions and constraint
qualifications hold. The algorithm derivation is at first tar-
geting a generic optimization problem, and is subsequently
tailored to the QCQP case. The IPM algorithm is derived
from the KKT conditions, and not from the barrier methods
theory. The interested reader can find more detailed and
rigorous presentations in [24], [30].

Let us consider an optimization problem (OP) in the form

min
y

f(y)

s.t. g(y) = 0

h(y) ≥ 0.

(1)

The Lagrangian function for this OP reads

L(y, π, λ) = f(y)− πT g(y)− λTh(y)

where π and λ are the Lagrange multipliers of the equal-
ity and inequality constraints, respectively. The first order
necessary KKT optimality conditions read

∇yL(y, π, λ) = ∇f(y)−∇g(y)π −∇h(y)λ = 0 (2a)
− g(y) = 0 (2b)
− h(y) + t = 0 (2c)
λiti = 0 i = 1, . . . , ni (2d)
(λ, t) ≥ 0 (2e)

where the slack variables t = h(y) ≥ 0 have been
introduced, and ni denotes the total number of inequality
constraints.

Equations (2a)-(2d) are a system of nonlinear equations
F (y, π, λ, t) = 0. In a nutshell, a primal-dual IPM is Newton
method applied to the system of equations Fµ(y, π, λ, t) = 0
with equation (2d) relaxed as

λiti = µ, i = 1, . . . , ni.

The homotopy parameter µ is related to the barrier parameter
in barrier methods, and it is shrunk toward zero as the itera-
tions approach the solution of (2). A line search procedure is
used to ensure the strict satisfaction of the inequalities (2e)
on the sign of Lagrange multipliers and slacks of inequality
constraints. Furthermore, in general a line search or a trust-
region algorithm can be employed to ensure a sufficient
progress along the search direction (although this is not
employed in the HPIPM implementation described in the
current paper).

At every iteration k of the Newton method, the Newton
step (∆yaff ,∆πaff ,∆λaff ,∆taff) is found by solving the
linear system

∇Fµ(yk, πk, λk, tk)
[
∆yTaff ∆πTaff ∆λTaff tTaff

]T
= −Fµ(yk, πk, λk, tk)
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and where ne is the number of equality constraints. The
diagonal matrices Λk and Tk have on their diagonal the
elements of the vector λk and tk respectively. The function
Fµ(yk, πk, λk, tk) at the right hand side (RHS) is denoted as
the residual function.

In order to tailor the results to the QCQP case, let us con-
sider the simple QCQP with linear equality constraints and
only quadratic inequality constraints (the linear inequality
constraints being a special case)
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The linear system (6) resembles the one solved in the QP
case in [9], with the notable differences that the matrices
H(λk) and C(yk) depend on the value of the variables yk

and λk at iteration k. Therefore, an IPM for a QCQP can
be implemented by using the building block provided by the
same linear system factorization already present in the QP
framework in HPIPM, provided that the matrices H(λk) and
C(yk) are updated beforehand at each iteration k.

B. Implementation choices

This section discusses some of the main choices in im-
plementing the QCQP framework in HPIPM. Most of these
choices are directly inherited from the QP framework so are
only briefly mentioned here and mostly to highlight possible
differences or similarities. More details can be found in the
original QP framework description in [9].

1) Barrier parameter and step length selection: Similarly
to the QP IPM solver, the barrier parameter µ is chosen adap-
tively using a Mehrotra’s predictor-corrector based strategy.
More precisely, this is implemented using the so called con-
ditional predictor-corrector variant proposed in [23], in which
the corrector step is employed only if it does not increase
the duality measure too much, therefore safeguarding against
its possible harmful effects. The conditional Mehrotra’s
predictor-corrector is shown to provide robust convergence
also in case of nonlinear programming and trivial initial
point strategies, even when globalization strategies are not
employed [23].

The primal and dual step lengths are computed as the
longest steps such that the constraint on the sign of the slacks
and the Lagrange multipliers of the inequality constraints are
not violated. Two different strategies, one based on separate
steps for the primal and the dual variables and one based on
a single step for all variables can be employed depending on
the speed/robustness trade-off. An adaptive fraction to the
boundary parameter τ is employed, which is chosen in a
conservative fashion when the step is short, while it allows
for a fast progress towards the solution when the step is close
to a full step. Thanks to the robustness of the conditional
Mehrotra’s predictor-corrector strategy, further globalization
strategies are currently not implemented, but they will be
investigated in future research.

2) Newton system solution and iterative refinement: The
Newton system solution and the optional iterative refinement
steps are directly inherited from the QP framework and
leverage the efficient building blocks implemented therein.

In summary, the slacks ∆taff and the Lagrange multipliers
of the inequality constraints ∆λaff are eliminated before the
actual factorization is performed: this takes the linear system
in the form of the KKT system of an equality constrained QP
(usually named ‘augmented system’), allowing efficient fac-
torization procedures where the pivot sequence is fixed and
the problem structure is fully exploited using computations
on the dense sub-matrices. The drawback of this procedure is
that the elimination of slacks and Lagrange multipliers causes
ill-conditioning, since as the iterates approach the solution
some of their components converge to finite quantities while
others converge to zero, and therefore their ratio diverges.

All currently implemented QP types are treated using
dense or structured (where the overall sparsity is ex-



ploited by a hand-crafted algorithm operating on dense
sub-matrices) factorization procedures. No arbitrary sparsity
patterns whithin the problem data are exploited. In the
dense QCQP case, the augmented system is solved using
either null-space or Schur-complement methods [24]. In the
case of fully condensed MPC problems there are generally
no equality constraints, so simply a Cholesky factorization
is used. In the case of the OCP QCQP, the augmented
system is factorized using either a classic or a square-
root Riccati recursion [8], possibly implemented using QR-
based array algorithms for improved numerical accuracy and
stability; the factorization has a computational complexity of
O(N(nx + nu)3) flops. In the case of the tree OCP QCQP,
the augmented system is factorized using a Riccati recursion
modified to exploit the tree structure without introducing fill-
in outside the data matrices [10]. All Riccati variants in the
OCP QCQP type have a corresponding tree-tailored variant,
and their computational complexity is of O(N̂(nx + nu)3)
flops.

In case of unstable or ill-conditioned systems, especially
at late IPM iterations, it can happen that the accuracy of the
Newton step is too low to be useful for the IPM algorithm.
In such cases, it may be useful to perform a few iterative
refinement steps, where the same linear system factorization
is employed to solve for the residuals of the linear system
to compute a correction term and iteratively improve the
accuracy of the Newton step. Note however that in case the
numerical factorization is a too poor approximation of the
exact one, iterative refinement may get unstable and further
degrade the accuracy of the solution, so it should be used
with care. Iterative refinement can also be useful to compen-
sate for the effect of regularization, that may be needed to
successfully complete the linear system factorization.

3) Delta and absolute IPM formulations: In the QP case,
there is a computational advantage in reformulating the
linear system (3) such that it directly computes the new
iterate instead of the step. This exploits the linearity of
equations (2a)-(2c) in the QP case by replacing the residuals
computation at the RHS (which has a quadratic cost in
the number of stage variables) with a vector difference
(which has a linear cost in the number of stage variables),
at the cost of increased numerical instability and possibly
severe cancelation errors at late IPM iterations. Nonetheless,
for small and well conditioned QPs in applications where
only low accuracy is required, this can give a noticeable
performance boost.

In the QCQP case, equations (2a) and (2c) are not linear
any longer, so the computational advantage of using an
absolute IPM formulation is strongly reduced, while the
drawbacks remain. Therefore, the absolute formulation is
not considered any longer in this paper and all algorithmic
variants are based on the standard delta formulation.

4) Other implementation choices: The standard
infeasible-start Mehrotra’s predictor-corrector IPM algorithm
is tweaked by several additional parameters whose different
choice gives rise to a family of algorithms with different
trade-offs between computational speed and reliability. In

particular, a ‘mode’ argument is introduced in order to
select pre-defined sets of parameters tailored to a particular
purpose. In the QCQP solver, the speed, balance and
robust modes are available, while the speed abs is
not, as previously discussed. All modes work similarly
to their analogues in the QP solver. Just to mention one
notable feature, in the balance mode, in case the accuracy
of the linearized KKT system factorization is too low,
the factorization is repeated by replacing all Cholesky
factorizations of normal matrices in the form A · AT by
array algorithms based on QR factorizations, which have
better numerical properties as they never explicitly form the
worse-conditioned normal matrix A · AT . In the robust
mode, the more accurate (but slower) QR factorization
based array algorithms are always employed. See [9] for
a more descriptive list of other implementation choices
directly inherited from the QP framework.

5) Dense linear algebra: Algorithms in HPIPM are ex-
plicitly designed to exploit the overall block-sparse structure
of the optimization problems. Sparsity within data and work-
ing matrices is not considered. Therefore, computations are
cast in terms of operations on matrices with fixed structure,
like e.g. dense, symmetric, triangular or diagonal.

In HPIPM, the KKT and the (partial) condensing modules
contain the most computationally expensive routines, which
have cubic (linearized KKT system factorization, condensing
of LHS) or quadratic (linearized KKT system solution,
residuals computation, condensing of RHS) complexity in the
number of (stage) variables. In case of all currently imple-
mented QP and QCQP types, these modules are implemented
using the structure-based interface in the high-performance
linear algebra library BLASFEO [12]. These routines are
designed to give close-to-peak performance for matrices of
moderate size (assumed to fit in cache) and are optimized
for several hardware architectures (e.g. exploiting different
classes of SIMD instructions).

All other HPIPM modules are completely self-contained
and independent of the matrix type or linear algebra library
employed in the KKT modules.

C. (Partial) condensing of quadratic constraints

One key advantage of directly targeting QCQPs instead
of reformulating them as more general problems such as
SOCPs is the possibility to extend in a straightforward way
all the rich and efficient existing framework for QPs. In
particular, one powerful tool in the HPIPM QP framework
is certainly state condensing, both in the full and the partial
condensing variants. In a nutshell, full condensing exploits
the dynamics equality constraints to remove all superflous
state variables and only keep the true degrees of freedom
in the condensed problem formulation, namely the initial
state (if not previously eliminated) and the control variables.
Partial condensing is a more recently developed technique [2]
that performs condensing in Nc blocks of consecutive stages,
resulting in a problem that still has the form of an OCP but
with shorter horizon Nc and larger control vector size per
stage. The size of the blocks (and therefore the horizon length



of the partially condensed problem Nc) is a tuning parameter
that can be used to trade off horizon length with control
vector size to e.g. minimize the flop count or the solution
time for every specific QP solver. Furthermore, the size of
the dense sub-matrices in the OCP formulation is increased,
generally resulting in improved performance of the dense
basic linear algebra routines [11]. In case of OCPs with many
more states than controls and rather long horizon (which is a
fairly common case in practice), partial condensing can result
in multiple times faster solution times compared to both the
original full space formulation and the fully condensed one.

In the QCQP case, the only new bit is the condensing of
the quadratic constraints. This is analogue to the condensing
of the quadratic cost, with the key difference that the cost
is a sum of quadratic terms (one per stage), while each
quadratic constraint is a single quadratic function of controls
and states at a certain stage. Therefore, out of the three
possible Hessian condensing algorithms [8], the ‘classical’
one (i.e. the one with complexity O(N3) and O(n2

x)) is
the most efficient variant in case of quadratic constraints,
since it allows one to only perform the computations for
that certain stage and it does not require recursions involving
other stages. The computational cost to condense a quadratic
constraint depends on the specific stage n the constraint
belongs to. It is of

n2n2
unx + 2nnun

2
x

flops if the initial state is not an optimization variable, and

n2n2
unx + 4nnun

2
x + 3n3

x

flops if the initial state is an optimization variable (such
as in partial condensing of middle blocks). Notice that the
cost increases with the stage index n and it is therefore
largest at the last stage where n = N . As a comparison,
the cumulative cost of condensing one quadratic constraint
per stage is roughly equivalent to the cost of condensing
the Hessian using the ‘classical’ algorithm. This cost can
be reduced in the (rather common) case of diagonal or zero
quadratic constraint matrices, therefore some functionality to
handle such cases efficiently is implemented in HPIPM.

IV. NUMERICAL RESULTS

The dynamical system used throughout in this numerical
results section is the linear mass-spring system described
in [29]. More precisely, we consider a linear chain of masses
of 1 kg connected to each other and to the walls on either side
with springs of spring constant 1Nm−1. The states are the
relative position and the velocity of each mass, and therefore
nx is twice the number of masses. As controls we consider
the actuator forces acting on the first nu masses. This simple
example allows one to easily scale the number of states,
controls and the horizon length, as well as imposing different
types of constraints: for example it is straightforward to
define quadratic constraints that describe the total energy
(sum of masses kinetic and springs potential energies) of
the system.

TABLE I
TOTAL SOLUTION TIMES (IN SECONDS, FOR FIXED 7 IPM ITERATIONS

PLUS x0 REMOVAL AND CONDENSING) FOR THE MASS-SPRING QP AND

QCQPS WITH DIFFERENT NUMBER OF QUADRATIC CONSTRAINTS

problem QP 0 QCQP 1 QCQP N

baseline 9.82 · 10−5 1.30 · 10−4 1.60 · 10−4

x0 removal 9.78 · 10−5 1.28 · 10−4 1.55 · 10−4

x0 removal + full cond 3.14 · 10−5 3.44 · 10−5 6.71 · 10−5

x0 removal + part cond 3.80 · 10−5 4.28 · 10−5 6.72 · 10−5

All numerical experiments are run on a laptop equipped
with a Intel Core i7 4810MQ processor.

A. Comparison of QP and QCQP frameworks in HPIPM

In this section, we compare the QP and the QCQP
frameworks in HPIPM in order to analyze the intrisic ef-
ficiency differences between equivalently implemented QP
and QCQP solvers.

In Table I, there is the comparison of a QP with two QCQP
where a different number of box constraints is replaced with
quadratic constraints. All problems have N = 15 horizon,
nx = 4 states, nu = 1 controls; additionally they have:
• QP 0: 1 control bound per stage; 4 terminal softed state

bounds
• QCQP 1: same 1 control bound per stage; 1 terminal

softed state quadratic constraint (replacing the 4 termi-
nal softed state bounds)

• QCQP N: 1 control quadratic constraint per stage (re-
placing the 1 control bound per stage); same 1 terminal
softed state quadratic constraint

The solution times for the QCQPs are within roughly a
factor 2 of the solution time for the QP for all algorithmic
combinations. QCQP with (partial) condensing shows some
additional overhead compared to the QP counterparts but still
gives very noticeable speedups, in excess of a factor 2 for
these problems. In QCQP problems with only one terminal
quadratic constraint, the overhead compared to an analogue
QP is rather limited and in the range of 15-30% for the
considered problems.

B. Solving different approximations of quadratic constraints

In Table II, there are the computation times for solving
a baseline QCQP, respectively QPs approximating the same
quadratic constraints with a different number of affine con-
straints. More precisely, in this case there are two masses, a
bounded force acts on the first mass while there is a softed
quadratic constraint (per stage) on the total energy of the
second mass. There is no penalty on the states of the system,
with the controller only aiming at reducing the second mass
energy to within the (initially infeasible) constrained level.
All problems have N = 6 horizon, nx = 4 states, nu = 1
controls, nbu = 1 control bounds; additionally they have:
• QCQP ∞: 1 softed state quadratic constraint per stage
• QP 4: a softed square approximation (implemented us-

ing 2 two-sided softed state bounds) per stage



TABLE II
TOTAL SOLUTION TIMES (IN SECONDS, FOR FIXED 9 IPM ITERATIONS

PLUS x0 REMOVAL) FOR THE MASS-SPRING QCQP AND QPS WITH

DIFFERENT AFFINE APPROXIMATIONS OF THE QUADRATIC CONSTRAINTS

QCQP ∞ QP 4 QP 6 QP 8

9.60 · 10−5 7.76 · 10−5 9.37 · 10−5 9.93 · 10−5

• QP 6: a softed hexagon approximation (implemented
using 3 two-sided softed general affine bounds) per
stage

• QP 8: a softed octagon approximation (implemented
using 4 two-sided softed general affine bounds) per
stage

In order to focus on the effect of the different affine
approximations, the problems are solved without (partial)
condensing. From the table, we can see that the QCQP
with the exact quadratic formulation can be solved using
the QCQP IPM solver in a time in between the cases of
hexagon and octagon affine approximations solved using a
QP IPM solver. On the other hand, the square approximation
implemented using the cheaper box constraints is more
noticeably faster, but still only in the order of 20%.

C. Comparison with additional software

We now compare the presented QCQP solver implemen-
tation within HPIPM with and without (full) condensing to
ECOS, a sparse, open-source IPM for SOCP with a focus
on embedded applications [6]. The mass-spring OCP QCQP
is solved to convergence for different number of masses,
nu = 1 controls and a horizon of N = 15. The computation
times are compared in Figure 1. The results show that using
the presented efficient OCP QCQP framework can result in a
computation time reduction of up to two orders of magnitude
compared to an efficient state-of-the-art SOCP solver. For
nx = 4, using HPIPM (without condensing) compared to
ECOS results in a speed up of roughly factor 10. For nx =
12, using HPIPM with full condensing is approximately two
orders of magnitude faster compared to ECOS. One can
observe that, compared to ECOS, the computation time of
HPIPM grows slower when increasing the state dimension,
since the flops count increase is partially offset by the
increased performance of the underlying BLASFEO routines,
which reach close to peak performance for matrices of
sizes of multiple tens. The performance of the BLASFEO
routines also gives a typical stairs-like figure, following the
granularity of its computational kernels (in this case of width
4).

V. CONCLUSION & OUTLOOK

We have shown a significant performance increase of the
presented IPM tailored to QCQP compared to a state of
the art SOCP solver for embedded optimization. Moreover,
the computational effort is of the same order of magnitude
compared to solving a comparable QP. When also the pro-
posed efficient (partial) condensing algorithms for QCQP
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Fig. 1. Computation time comparison ECOS and HPIPM.

are taken into account, we are confident that the proposed
QCQP framework in HPIPM can prove itself successful
in many applications. In that regard, future work includes
a convenient interface into the higher-level MPC software
framework acados, [28]. The efficient SQP methods therein
can be extended to SQCQP, which would simplify a thorough
comparison of the two when regarding real-world MPC tasks.
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