arXiv:2204.02120v1 [cs.RO] 5 Apr 2022

Event-based Navigation for Autonomous Drone Racing
with Sparse Gated Recurrent Network

Kristoffer Fogh Andersen*, Huy Xuan Pham*, Halil Ibrahim Ugurlu and Erdal Kayacan

Abstract— Event-based vision has already revolutionized the
perception task for robots by promising faster response, lower
energy consumption, and lower bandwidth without introducing
motion blur. In this work, a novel deep learning method based
on gated recurrent units utilizing sparse convolutions for detect-
ing gates in a race track is proposed using event-based vision
for the autonomous drone racing problem. We demonstrate the
efficiency and efficacy of the perception pipeline on a real robot
platform that can safely navigate a typical autonomous drone
racing track in real-time. Throughout the experiments, we show
that the event-based vision with the proposed gated recurrent
unit and pretrained models on simulated event data significantly
improve the gate detection precision. Furthermore, an event-
based drone racing datase(ﬂp consisting of both simulated and
real data sequences is publicly released.

I. INTRODUCTION

The use of event cameras represents a paradigm shift in
the way we capture and process visual information in robot
vision [1]. Unlike conventional cameras, each pixel in an
event camera responds asynchronously to local brightness
changes, generating a sparse stream of individual events with
very low latency. Furthermore, the amount of data generated
by an event camera depends on the scene dynamics. If
the scene is static, no event is generated. This implies
that the event camera generally generates less redundant
data, therefore speeding up processing algorithms. Moreover,
pixels have logarithmic response to the brightness signal,
resulting in a very high dynamic range. This makes event-
based sensors extremely fast, enabling them to avoid motion
blur and can see dark and bright regions simultaneously. The
aforementioned characteristics are appealing for a large num-
ber of systems and applications, including event-triggered
control [2, 3], autonomous driving [4], surveillance [5, 6, 7],
and vision-based robot navigation [8, 9].

Event-based vision can be utilized to solve the challenging
benchmark problem of navigation in autonomous drone rac-
ing. In this task, a flying robot is set to complete an unknown
course at high speeds through a sequence of racing gates
without collision [10, 11]. A crucial aspect of this challenge
is to accurately and robustly detect the drone racing gates
to enable successful motion planning [12, 13]. The difficulty
of perceiving a particular object under aggressive and jerky

K.F. Andersen, H. X. Pham, H. I. Ugurlu, and E. Kayacan are
with Artificial Intelligence in Robotics Laboratory (AiR Lab), De-
partment of Electrical and Computer Engineering, Aarhus University,
8000 Aarhus C, Denmark 201510430@post.au.dk, {huy,
halil, erdal} at ece.au.dk

(*) These authors contributed equally to this work.

IThe code and data will be available at https://github.com/
open-airlab/neuromorphic_au_drone_racing.git

Recurrent gate detector network

[Race
planner

Event Low-level
camera,

oller R
controller .
Tmage-plane

controller

‘

Fig. 1. An illustration of the proposed event-based autonomous navigation
and control framework. The temporal data streamed from the event camera
are processed and fed into the gate detection network, which consists of
a sparse backbone convolutional neural network (CNN), a gated recurrent
unit, and a YOLO detection output. The predicted bounding box center of
the gate is used by an image-based tracking controller to guide the drone
past the gate safely. The area of the bounding box is used by a race planner
to determine the next gate to pass.

maneuvers often limits the speeds and angular rates of the
autonomous drone and also places a burden on controllers
to ensure optimal conditions for perception [14].

In this study, we address the gate detection task in the
autonomous drone racing problem using a single onboard
event camera. The motivation is to demonstrate the feasibility
of using an event camera for navigation tasks and eventually
heading to create agile systems with increased robustness in
challenging lighting conditions and aggressive ego-motion.
The contributions of this study are summarized as follows:

« A novel recurrent deep learning architecture based on
sparse convolutions and gated recurrent units for gate
detection is proposed. We show that the recurrent unit
and pretraining the network with simulation data signif-
icantly improve gate detection accuracy.

o A publicly available dataset using an event-based cam-
era for the gate detection task is released, consisting of
hours of both simulated and real data.

o The effectiveness of the event-based perception method
for the autonomous drone racing problem is demon-
strated in varying light conditions and high speeds
through real-time experiments.

The rest of this work is organized as follows. Section
reviews the event-based vision methods and algorithms.
Section summarizes our method for gate detection. Sec-
tion compares the proposed method with a state-of-the-
art baseline and presents extensive real-time experiments to
demonstrate the efficiency of the proposed novel framework.
Finally, some conclusions are drawn from this study in
Section [V]

https://github.com/open-airlab/neuromorphic_au_drone_racing.git
https://github.com/open-airlab/neuromorphic_au_drone_racing.git

II. RELATED WORK

In order to process event-based sensor data, one method
is the use of spiking neural networks (SNNs) [15] [16]
that implicitly incorporate time into neuron models. These
methods preserve the temporal resolution of the data and
exploit the information encoded in the timing of events.
However, there are difficulties in training SNNs as well
as applying them to complex tasks. Furthermore, SNNs
generally achieve lower accuracy when compared to dense
networks [17]. Another approach fundamentally alters the
working principle of layers of traditional convolutional
neural networks (CNNGs) to efficiently process asynchronous
events [18] [19], but this approach is difficult to implement.
An alternative paradigm considers accumulating the event
stream into a dense representation, constructing a more
common input for traditional deep learning and computer
vision methods. This approach tends to partially discard the
temporal resolution and information but it improves spatial
accuracy. Many works in this paradigm focus on developing
a handcrafted or learned input representation that preserves
and enhances the salient features encoded in the event data
[20] [21] [22].

Since event-based object detection is a relatively new
research direction in robotics, there is limited amount of
studies in the literature. Canicci et al. [18] present two
network architectures inspired by the “you only look once”
(YOLO) [23] method. One network operates synchronously
on dense representations of event data, and the other operates
asynchronously on raw events using a novel formalization of
layers. Messikommer et al. [19] improve the results of [18]
by redefining the working principle of convolutional layers
to preserve the spatial and temporal sparsity better. Perot
et al. [17] propose a novel recurrent architecture operating
on dense input representations that learns an end-to-end
memory mechanism using long short-term memory (LSTM)
units. The network is demonstrated to have performance
comparable to highly-tuned frame-based object detectors.

One reason for the limited number of papers in event-
based object detection is the lack of datasets containing
event data and ground truth annotations. Some frame-based
datasets have been converted to event-based datasets, but
they only correspond to short sequences with synthetic
motions [24]. Recently, large-scale datasets for autonomous
driving have been published [25, 17] but they do not contain
data collected with complex 6-DOF motions necessary for
aerial robots. For this reason, in this work, we propose
a novel event-based dataset intended for gate detection in
autonomous drone racing.

A few papers also demonstrate the use of event cameras
in aerial systems. Vemprala et al. [26] present an event-
based reinforcement learning network utilizing variational
autoencoder for simulated quadrotors in obstacle avoidance
scenarios. Salvatore et al. [27] use both SNN and conven-
tional CNN architectures to train a reinforcement learning
network with simulated event sensors obtained at high-

speed for collision avoidance tasks. These results are only
demonstrated through simulations, however there exists a big
gap between simulations and real-world applications.

III. METHODOLOGY

In this section, our approach towards event-based gate
detection is presented. When one single pixel of an event
camera detects a brightness change (i.e. due to robot motions
or scene dynamics) in the scene, it immediately outputs an
event ey, that is a tuple containing the image plane location
Tk, Yk, the time in microseconds ¢, and the one-bit polarity
Py representing the positive or negative direction of the
change. The overall pipeline (see Flg first aggregates
N asynchronous events £ = {ek}k , into two dense 2D
histograms, one for each event polarity. We empirically
select a fixed window N = 10,000 events to construct the
histograms. Since event-based data are inherently spatially
sparse, feeding the histograms directly into a traditional CNN
is fundamentally inefficient. As the frame propagates deeper
into the network, the number of active sites increases rapidly,
further decreasing the network efficiency. To address this
problem and preserve the spatial sparsity of event data, we
utilize submanifold sparse convolutions [28] to redefine a
wide set of CNN layers and operations optimized for sparse
input data. It has been shown that these sparse convolutions
achieve lower theoretical computation bound than traditional
convolutions for sparse data [19]. To make use of the new
sparse CNN, the two dense histograms are converted into a
sparse tensor. This tensor consists of two vectors: a feature
vector v containing the values of dense histograms and a
location vector u containing the spatial locations of each
corresponding value. This process can be expressed as a
mapping M:

M€ = {erhisy = {(@hye tho pi) ooy = T = (v,0),
(D
This sparse histogram 7 in is then propagated into
the backbone sparse CNN utilizing a recurrent unit. We
use a YOLO [29] detection output of a 5 x 7 x 11 tensor
containing predicted bounding boxes for each grid cell in the
frame. Each bounding box is of the form B = (¢, ¢, 0, ﬁ),
representing the center location (¢, ¢,) and the size w x h of
a gate on the image plane. The overall network architecture
can be seen in Fig. [3]

vou

Sg;‘;” = (c,cpwh)

Fig. 2. Illustration of the detection pipeline. The pipeline aggregates
asynchronous events into dense histograms using a fixed window and
converts them into a sparse tensor of a feature vector v and a location
vector u. They are then fed into a sparse CNN network with a GRU, and
regressed to obtain predictions of the center location and shape of a gate
on the image plane.

A. Backbone CNN architecture and regression head

In this paper, a lightweight variation of the VGG11
network [30] is adopted as the backbone network for feature
extraction, similar to [19]. The motivation behind this choice
is that a deep neural network with small filters can learn more
complex features and outperform a shallow network with
large filters in many scenarios. The histogram input tensor
has a spatial size of 255x 191 x 2. The network consists of 11
convolutional layers structured into blocks of two separated
by a max pooling layer. All convolutions use a filter kernel
size of 3 x 3. The first convolution layer has 16 channels,
and the number of channels is doubled at each convolution
block. The output of this feature extractor is a tensor of size
5 x 7 x 256.

After the last convolutional layer, the resulting tensor is
flattened and fed into the regression head consisting of two
fully connected layers, producing the final detection results.
We apply a Rectified Linear Unit (ReLU) activation function
and use batch normalization after each convolution layer to
speed up training convergence. Unlike [19], a recurrent unit
is appended in-between the regression head and the backbone
network in the later phase of the training.

B. Gated recurrent units

The primary reason for utilizing recurrency is to exploit
the implicit relationships among event-based data at different
time steps. By continuously preserving the sequential or
temporal information internally as hidden states, the network
can learn long-term dependencies and temporal correlations
from training samples. Recurrent networks for event-based
processing have earlier been utilized with success [31, 32,
17], with [17] being the closest to this work as they tackle
object detection using LSTM cells. In this paper, we choose
to utilize a recent variation of a long-term recurrent cell,
called the gated recurrent unit (GRU) [33]. GRUs have been
shown to achieve similar performance as LSTM cells [34] at
a smaller computational cost since they only consist of two
gates instead of three in LSTM [35].

The GRU (see Fig.) takes the feature extractor output
tensor at the current time step x; and the hidden state from
the previous time step h,—; as inputs. The update gate z;
consists of a convolution with a sigmoid activation layer to
determine how much information from the previous hidden
state should be transferred into the new hidden state. The
reset gate r; with a similar structure is used to determine how
much of the past state should be forgotten. The equations
governing a convolutional GRU can be expressed as:

zp = o(Wy % [he—1, x4]),
re = o(Wy % [he—1, 24]),
hy = tanh (W), * [ry @ he_1,24]),
hi=(1—=2)®hi1+2 O h,

where W, W,.. W}, denote trainable weights, * denotes con-
volution, and ® denotes the Hadamard product. Equation
is implemented as a stand-alone convolutional layer,
also using submanifold sparse convolutions, and incorporated

2

into the overall CNN architecture (Fig. E]), after the feature
extractor, and before the regression head. It is designed to
concatenate the output of the last convolutional layer with the
hidden state of the previous timestep both having dimensions
7 x 5 x 256, and therefore operates on a 7 X 5 x 512
tensor. By placing the GRU here, we aim to model the
temporal characteristics of high-level features, and at the
same time, reduce the computational complexity and memory
requirements of the network.

C. Dataset generation

Collecting and annotating data from a real event camera
is a tedious and expensive process. This work aims to
reduce the use of real event data by generating event data
from simulations. AirSimf] a simulation environment based
on Unreal Engineﬂ is utilized to provide a physically and
visually realistic simulation (Fig.). The event generation
process begins with collecting RGB images from the camera
of a simulated quadrotor tracking randomized trajectories at
different linear and angular velocities in our simulated lab
environment at the highest possible frame rate (120 fps).
When a fixed number of images has been collected, the event
generator ESIM [36] is employed to produce event data with
a fixed sampling rate. Segmentation images collected from
the simulation are used to automatically annotate bounding
boxes around each gate. The simulation dataset contains 3.5
hours of simulated event data captured with a 240 x 180
sensor with over 450,000 annotated bounding boxes.

To evaluate the performance of the gate detection pipeline
realistically, a small dataset of real event sequences is col-
lected. We set up a quadrotor mounted with an iniVation
DAVIS24(event camera. The sensor provides a resolution
of 240 x 180 pixels, with high bandwidth of 12 million events
per second.

The dataset contains sequences with varying linear and
angular velocities, lab lighting, and gate placement. After-
wards, bounding boxes are manually annotated. The real
dataset contains half an hour of event data captured with
a real event camera and 15,000 bounding boxes. The final
dataset consisting of both simulated and real sequences is
named N-AU-DR and is made publicly available.

D. Network training

In order to ensure that the recurrent network learns long-
term temporal dependencies, the training procedure must
be carefully designed. We use truncated backpropagation
through time [37] with k£ = 20 forward passes implying that
the network can learn from events that happened up to 20
steps ago. The value of 20 time steps roughly corresponds
to remembering 1-2 seconds back in time and was chosen
empirically as it provided a decent trade-off between what
memory is relevant to retain while not making training too
computationally expensive.

Zhttps://microsoft.github.io/AirSim/

3https://www.unrealengine.com/en-US/

4https://inivation.com/wp-content/uploads/2019/
08/DAVIS240.pdE

https://microsoft.github.io/AirSim/
https://www.unrealengine.com/en-US/
https://inivation.com/wp-content/uploads/2019/08/DAVIS240.pdf
https://inivation.com/wp-content/uploads/2019/08/DAVIS240.pdf

Feature extractor

Conv. Layers Conv. Layers
3x3x16 3x3x32
3x3x16 3x3x32
Maxpool Layer Maxpool Layer
3x3 s:2 3x3s:2

Conv. Layers
3x3x64
3x3x64

Maxpool Layer

3x3s:2

Conv. Layers
3x3x128
3x3x128

Maxpool Layer

3x3s:2

Conv. Layers
3x3x256
3x3x256

Maxpool Layer

3x3 s:2

Recurrent Unit Regression head

hyy

o

ConveRU Y

o
=

S8

Conv. Layer
3x3x256 s:2

Flatten Fully Conn. Layers
8960 -> 1024
1024 -> 385

&y A GRU Unit

Fig. 3. Proposed event-based gate detection network architecture. The network consists of (1) a backbone CNN utilizing sparse convolution as the feature
extractor, (2) a GRU as the recurrent unit, and (3) a YOLO output layer as the regression head. The recurrent unit operates on both the output of last
convolutional layer and the hidden state h;—1 from the previous timestep visualized by the vertical arrows. The final vector of size 385 is reshaped into a
5 X 7 x 11 tensor containing bounding boxes according to the YOLO regression method.

Fig. 4. Simulated and real environment. (a) An image from the simulation
environment. (b) Simulated event data. (c) A photo of the real lab. (d) Real
event data.

In practice we feed input samples to the network one
time step at a time, and use a batch size of 15, meaning
that we stream 15 videos simultaneously, resulting in input
tensors of size 15 x 255 x 191 x 2. We do 20 forward
passes while maintaining the graph and gradients, and finally
do one backward pass through the entire graph to update
the weights. The loss function of YOLO [29], the Adam
optimization algorithm [38], and a learning rate of le — 4
are employed in the training.

In the initial experiments, the simulated data are found
to be not representative enough for real-time experiments,
yielding low precision scores. Instead, we use the simulated
data in a transfer learning scheme aiming to help the detector
generalize to different contexts. It is particularly suitable
when only a small real dataset is available. The procedure
for training the network is summarized in Algorithm [I]

Algorithm 1 - Recurrent neural network training procedure
Input: Datasets Xy, Xreq; and initialized model Mg
Output: Trained model M

1. Train feature extractor on simulated dataset.
My + train-model(Xsim, Mo)
2. Train feature extractor on real dataset.
My + train_model(Xyeqr, M1)
3. Add GRU and train on real dataset.
M3z add,GRU(MQ)
M <« train_model(X,car, M3)
return M

IV. EXPERIMENTS

A. Real dataset experiment

In this part, the proposed method is evaluated for gate
detection on the collected real-time dataset with various
lighting and gate placements. We quantitatively compare our
performance with the baseline method [19], as it is the only
open-source state-of-the-art method that has similarities with
our approach. Essentially, four different detection models are
compared as follows:

1) VGG Real data only: a baseline non-recurrent VGG [19]
that is trained only on the real dataset.

2) VGG transfer learning: a baseline non-recurrent
VGG [19] that is pretrained on simulated data and fine-
tuned on the real dataset.

3) RNN Real data only: the proposed recurrent network
that is trained only on the real dataset.

4) RNN transfer learning: the proposed recurrent network
that is pretrained on simulated data and fine-tuned on
the real dataset.

The metric used is the average precision (AP), which
measures precision (the number of true positives over the
number of true positives and false positives) averaged across
all unique recall levels.

As can be seen from Table [compared to the baseline
method, our transfer learning method has an overall sig-
nificant improvement in average precision for all real data
sequences across different illumination settings. The memory
mechanism of the GRU helps reduce the number of false
positives (see Table [l). We do notice a significantly worse
average precision when using our model on real data only,
indicating that the recurrent network is more sensitive to the
negative effects of only having a small train dataset. Direct
sim-to-real weight transfer did not yield good results, as
ESIM cannot sufficiently provide realistic event responses
for the gates as its simulated output generally lacks features
(e.g the checker patterns of the gates) and ambient noise,
and it is generated with a much lower temporal resolution
compared to a real event camera. However, simulation data
helps the networks learn useful features, e.g. the outer edges
of the gates.

TABLE I
AVERAGE PRECISION FOR SPARSE RNN METHODS AND THE BASELINE
METHODS FOR DIFFERENT SEQUENCES OF THE REAL DATASET WITH
DIFFERENT ILLUMINATION PERCENTAGES.

Light .
‘ m ‘ 100% 50% Varied
VGG Transfer learning [19] 0.455 0.280 0.117
VGG Real data only [19] 0.206 0.127 0.079
RNN Transfer learning (Ours) | 0.684 0.388 0.275
RNN Real data only (Ours) 0.108 0.040 0.028
TABLE II

TRANSFER LEARNING RESULTS ON AVERAGE PRECISION (AP), NUMBER
OF TRUE POSITIVES (TP), FALSE POSITIVES (FP) AVERAGED OVER ALL
REAL SEQUENCES.

\ Model \ AP TP FP \
VGG Transfer learning [19] 0.391 5,569 5,854
VGG Real data only [19] 0.274 4,044 5,062
RNN Transfer learning (Ours) | 0.567 5,505 2,442
RNN Real data only (Ours) 0.087 4,787 35,718

B. Real-time drone racing experiment

Unlike some recent works in event camera-based naviga-
tion for aerial robots that show results in simulations [26, 27],
the viability of the proposed recurrent network method is
demonstrated for a small quadrotor system to navigate in
a typical real-time autonomous drone racing scenario. The
quadrotor is equipped with one DAVIS240 event camera
and an NVIDIA Jetson TX2E| onboard computer. It has a
Pixhawk 4 Autopilot boar(ﬂ to handle low-level attitude and
thrust control of the drone. The race track is formed by four
square gates (Fig. [5}(a)) with different heights but identical
inner dimensions of 1.5 x 1.5 m. As the drone with propellers
has a tip-to-tip diameter of 0.5 m, it is challenging for the
drone to pass the gates.

Shttps://developer.nvidia.com/embedded/jetson—tx2
Ohttps://docs.px4.io/master/en/

(@ (b)

Fig. 5. (a) A typical racing gate used in the experiments. (b) A detection
result and its bounding box based on event data.

TABLE III
SUCCESS RATES (IN PERCENTAGE) FOR GATE DETECTION WITH
DIFFERENT ANGULAR RATES AND SCENE ILLUMINATION LEVELS.

N} 100% 70% 40% 10%
Spin rate
0.5 rad/s 95 100 100 70
1.0 rad/s 100 100 80 60
2.0 rad/s 100 100 75 20
3.0 rad/s 80 70 62 20

Due to the difficulties in implementing the sparse convolu-
tion network on the GPUs of the Jetson TX2, the perception
pipeline inference rate is clocked at 2 Hz onboard. While
this onboard system can perform some simple tasks (e.g. gate
passing at slow speeds), we mostly use an offboard computer
(Intel Core-i7, GPU: NVIDIA GeForce RTX 2080 Max-Q)
to run the network and attain an inference rate of 40 Hz for
our experiments.

In the first part of the real-time experiments, the gate
detection task is demonstrated in difficult conditions. In order
to recreate similar conditions in drone racing, the drone is
rotated with an increasingly faster yaw rate and varying
lighting conditions. A typical detection of the gate and the
bounding box can be seen in Fig. [5}(b). Table [[TI] presents
the successful detection rate at different speeds and scene
illumination. The detection network performs well at low
speeds and high illumination, except for 0.5 rad/s and 100%
illumination the network sometimes misses a gate because
slow movements cause the event camera to generate less data.
The performance degrades at very high speeds and extreme
illumination levels, which is expected due to more noisy data
returned from the camera when background ambient light
sources become more dominant.

In the second part, the drone is tasked to autonomously
navigate through multiple unknown gates in a race track,
using a single event camera onboard. The overall architecture
of the system can be seen in Fig. [T} Events streaming from
the DAVIS camera are processed by the perception node. The
outputs of this node are the predicted center of the bounding
box and the size of the bounding box for each detected gate
on the scene. In this work, we assume that the next gate is
always visible within its field of view. The race planner node

https://developer.nvidia.com/embedded/jetson-tx2
https://docs.px4.io/master/en/

calculates the area of each bounding box and assumes the
gate with the maximum area is the next gate.

To control the drone passing through a gate’s center
safely, we employ an image-based linear control method:
as the prediction does not depend on a particular non-
linear camera calibration setting, the control inputs can be
considered to follow linear relationships with the lateral and
vertical difference between the drone’s image center I. and
the predicted center of the gate [¢;,¢,] on an image plane.
Therefore, our controller can be expressed as:

u = (Ug, Uy, Uy),

Uz = Viong, 3)

Uy = f(Ic,m - CAz) = klatAza
Uy = f(Ic,y - CAy) = k'uerAy;

where u is the control input vector with component
Uy, Uy, U, along the drone’s body frame axes (see Fig. |§[),
(Az, Ay) are differences in pixels, and kjq¢, kyer are tunable
gains. In the experiments, we choose a constant forward
longitude velocity v;ong = 1 (m/s) and only calculate lateral
and vertical velocities of the drone. One advantage of this
method is that the drone only requires local information from
its camera and velocities on its body frame. An example
of the resulting trajectories of our drone navigating a race
track can be seen in Fig. [7] Thanks to the accuracy of
the gate detection, the drone mostly tracks the gate center
when passing a gate. Because of the narrow field of view
of our event camera (60° horizontal x 50° vertical), the
drone may lose sight of the gate when it is getting close.
Although this does not affect the performance in practice,
as the predicted bounding boxes generally do not change
in the last second before passing, the drone should have
other supplement sensors to ensure safe gate passing in more
complex scenarios. Readers are encouraged to see the video
of the real-time experiments available on the following link:
https://youtu.be/aFhtpOzczrc

Fig. 6. An illustration of the image-based linear control method.

Fig. 7. An example trajectory (in red color) of the drone passing multiple
gates (in green color) in a race track. The video for the real-time experiments
is available on the following link: https://youtu.be/aFhtpOzczrc

V. CONCLUSION

This paper demonstrates the use of an event camera for a
typical navigation and control task of an autonomous racing
drone. The proposed method that relies on a sparse CNN and
a GRU with sim-to-real transfer learning is shown to signif-
icantly improve the gate detection accuracy and outperforms
a baseline method in our dataset experiments. Although the
simulated event camera data do not realistically capture the
scene information with sufficient temporal resolution, it is
still helpful to pretrain the network to learn useful appearance
features. The used data are organized and publicly released
as a comprehensive dataset consisting of both simulated
and real data for gate detection problem. The proposed
method generally performs well in real-time at high speeds
and under varying illumination, although it should be noted
that background ambient light does negatively affect the
performance at high speeds and extreme dark illumination.
Finally, the closed-loop system tests demonstrate the viability
of safe navigation using a single event camera not only for
autonomous drone racing, but also for other vision-based
control applications. For future work, we will extend the
method to predict the depth information of the gates for im-
proved control and planning algorithms in more complicated
settings, and also increase the efficiency of the network for
a faster inference rate, that could allow higher drone speeds.

ACKNOWLEDGMENT

The authors are grateful to Daniel Gehrig, Nico Mes-
sikommer, and Davide Scaramuzza for the fruitful scientific
discussions and profound comments. This work is sup-
ported by Aarhus University, Department of Electrical and
Computer Engineering (28173) and the European Union’s
Horizon 2020 Research and Innovation Program (OpenDR)
under Grant 871449. This publication reflects the authors’
views only. The European Commission is not responsible for
any use that may be made of the information it contains.

https://youtu.be/aFhtpOzczrc
https://youtu.be/aFhtpOzczrc

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

G. Gallego, T. Delbruck, G. M. Orchard, C. Bartolozzi, B. Taba,
A. Censi, S. Leutenegger, A. Davison, J. Conradt, K. Daniilidis, and
et al., “Event-based vision: A survey,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, p. 1-1, 2020. [Online]. Available:
http://dx.doi.org/10.1109/TPAMI.2020.3008413

D. V. Dimarogonas and K. H. Johansson, “Event-triggered cooperative
control,” in 2009 European Control Conference (ECC). 1EEE, 2009,
pp. 3015-3020.

M. Jost, M. S. Darup, and M. Monnigmann, “Optimal and suboptimal
event-triggering in linear model predictive control,” in 2015 European
Control Conference (ECC). 1EEE, 2015, pp. 1153-1158.

P. F. Lima, M. Trincavelli, J. Martensson, and B. Wahlberg, “Clothoid-
based model predictive control for autonomous driving,” in 2015
European Control Conference (ECC). IEEE, 2015, pp. 2983-2990.
I. Bozcan, J. L. F. Sejersen, H. X. Pham, and E. Kayacan, “Gridnet:
Image-agnostic conditional anomaly detection for indoor surveillance,”
IEEE Robotics and Automation Letters, 2021.

I. Bozcan and E. Kayacan, “Au-air: A multi-modal unmanned aerial
vehicle dataset for low altitude traffic surveillance,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA), 2020,
pp. 8504-8510.

——, “Context-dependent anomaly detection for low altitude traffic
surveillance,” in 2021 The IEEE International Conference on Robotics
and Automation (ICRA), 2021, p. In Print.

E. Camci and E. Kayacan, “End-to-end motion planning of quadrotors
using deep reinforcement learning,” arXiv preprint arXiv:1909.13599,
2019.

E. Camci, D. Campolo, and E. Kayacan, “Deep reinforcement learning
for motion planning of quadrotors using raw depth images,” in 2020
International Joint Conference on Neural Networks (IJCNN), 2020,
pp. 1-7.

P. Foehn, D. Brescianini, E. Kaufmann, T. Cieslewski, M. Gehrig,
M. Muglikar, and D. Scaramuzza, “Alphapilot: Autonomous drone
racing,” Autonomous Robots, pp. 1-14, 2021.

H. X. Pham, H. I. Ugurlu, J. Le Fevre, D. Bardakci, and E. Kayacan,
“Deep learning for vision-based navigation in autonomous drone rac-
ing,” in Deep Learning for Robot Perception and Cognition. Elsevier,
2022, pp. 371-406.

H. X. Pham, 1. Bozcan, A. Sarabakha, S. Haddadin, and E. Kayacan,
“Gatenet: An efficient deep neural network architecture for gate
perception using fish-eye camera in autonomous drone racing,” in 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2021, pp. 4176-4183.

T. Morales, A. Sarabakha, and E. Kayacan, “Image generation for
efficient neural network training in autonomous drone racing,” in 2020
International Joint Conference on Neural Networks (IJCNN), 2020, pp.
1-8.

K. Lee, J. Gibson, and E. A. Theodorou, “Aggressive perception-aware
navigation using deep optical flow dynamics and pixelmpc,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 1207-1214, 2020.
A. Sironi, M. Brambilla, N. Bourdis, X. Lagorce, and R. Benosman,
“Hats: Histograms of averaged time surfaces for robust event-based
object classification,” 2018.

X. Lagorce, G. Orchard, F. Galluppi, B. E. Shi, and R. B. Benos-
man, “Hots: A hierarchy of event-based time-surfaces for pattern
recognition,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 39, no. 7, pp. 1346-1359, 2017.

E. Perot, P. de Tournemire, D. Nitti, J. Masci, and A. Sironi, “Learning
to detect objects with a 1 megapixel event camera,” 2020.

M. Cannici, M. Ciccone, A. Romanoni, and M. Matteucci, “Asyn-
chronous convolutional networks for object detection in neuromorphic
cameras,” 2019.

N. Messikommer, D. Gehrig, A. Loquercio, and D. Scaramuzza,
“Event-based asynchronous sparse convolutional networks,” 2020.

D. Gehrig, A. Loquercio, K. G. Derpanis, and D. Scaramuzza, “End-
to-end learning of representations for asynchronous event-based data,”
2019.

Y. Deng, Y. Li, and H. Chen, “Amae: Adaptive motion-agnostic
encoder for event-based object classification,” IEEE Robotics and
Automation Letters, vol. 5, no. 3, pp. 45964603, 2020.

M. Cannici, M. Ciccone, A. Romanoni, and M. Matteuccii, “A
differentiable recurrent surface for asynchronous event-based data,”
2020.

(23]

[24]

[25]

[26]

[27]

(28]
[29]
[30]
(31]
[32]

[33]

[34]

[35]
[36]

[37]

[38]

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779—
788.

G. Orchard, A. Jayawant, G. Cohen, and N. Thakor, “Converting
static image datasets to spiking neuromorphic datasets using saccades,”
2015.

P. de Tournemire, D. Nitti, E. Perot, D. Migliore, and A. Sironi, “A
large scale event-based detection dataset for automotive,” 2020.

S. Vemprala, S. Mian, and A. Kapoor, “Representation learning for
event-based visuomotor policies,” arXiv preprint arXiv:2103.00806,
2021.

N. Salvatore, S. Mian, C. Abidi, and A. D. George, “A neuro-inspired
approach to intelligent collision avoidance and navigation,” in 2020
AIAA/IEEE 39th Digital Avionics Systems Conference (DASC). IEEE,
2020, pp. 1-9.

B. Graham, M. Engelcke, and L. van der Maaten, “3d semantic
segmentation with submanifold sparse convolutional networks,” 2017.
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” 2016.

K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2015.

J. Hidalgo-Carri6, D. Gehrig, and D. Scaramuzza, “Learning monoc-
ular dense depth from events,” 2020.

H. Rebecq, R. Ranftl, V. Koltun, and D. Scaramuzza, “High speed and
high dynamic range video with an event camera,” 2019.

K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” 2014.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, p. 1735-1780, Nov. 1997. [Online]. Available:
https://doi.org/10.1162/neco0.1997.9.8.1735

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” 2014.

H. Rebecq, D. Gehrig, and D. Scaramuzza, “ESIM: an open event
camera simulator,” Conf. on Robotics Learning (CoRL), Oct. 2018.
G. Puskorius and L. Feldkamp, “Truncated backpropagation through
time and kalman filter training for neurocontrol,” in Proceedings of
1994 IEEE International Conference on Neural Networks (ICNN’94),
vol. 4. IEEE, 1994, pp. 2488-2493.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

http://dx.doi.org/10.1109/TPAMI.2020.3008413
https://doi.org/10.1162/neco.1997.9.8.1735

