
Fast and accurate method for computing non-smooth solutions to
constrained control problems

Lucian Nita1, Eduardo M. G. Vila1, Marta A. Zagorowska1, Eric C. Kerrigan1,
Yuanbo Nie2, Ian McInerney1, Paola Falugi1

Abstract— Introducing flexibility in the time-discretisation
mesh can improve convergence and computational time when
solving differential equations numerically, particularly when
the solutions are discontinuous, as commonly found in control
problems with constraints. State-of-the-art methods use fixed
mesh schemes, which cannot achieve superlinear convergence in
the presence of non-smooth solutions. In this paper, we propose
using a flexible mesh in an integrated residual method. The
locations of the mesh nodes are introduced as decision variables,
and constraints are added to set upper and lower bounds on
the size of the mesh intervals. We compare our approach to
a uniform fixed mesh on a real-world satellite reorientation
example. This example demonstrates that the flexible mesh
enables the solver to automatically locate the discontinuities
in the solution, has superlinear convergence and faster solve
times, while achieving the same accuracy as a fixed mesh.

I. INTRODUCTION

The differential equations that model a physical system
fully describe the dynamical behavior of the system and
enable development of control strategies to make the system
achieve a desired behavior. Due to the complexity of physical
systems, the differential equations describing the dynamics
are often impossible to solve analytically, necessitating the
use of numerical solvers. The challenge in numerically
solving complex differential equations lies in accurately
capturing the nature of the solution while using a discrete
number of time points, called the time mesh. In this paper,
we propose a new method for solving differential equations
subject to inequality constraints to a user-specified accuracy
by using a flexible time mesh with an integrated residual
method.

Differential equations, together with initial values for the
states, form an Initial Value Problem (IVP), which can be
efficiently solved using explicit [1] or implicit methods [6].
When the differential equations contain boundary conditions,
they are called Boundary Value Problems (BVPs), and are
customarily solved using collocation methods that compute
a polynomial approximation to the solution [12]. Recently,

*This work has received funding from the Engineering and Physical
Sciences Research Council under a Doctoral Training Grant (reference
number: EP/T51780X/1), the Active Building Centre project (reference
number: EP/V012053/1) and the Centre for Doctoral Training in High
Performance Embedded and Distributed Systems (HiPEDS, Grant Reference
EP/L016796/1).

1 Department of Electrical & Electronic Engineering, Imperial College
London, SW7 2AZ London, UK, email: {lucian.nita16,
emg216, m.zagorowska, e.kerrigan,
i.mcinerney17, p.falugi}@imperial.ac.uk

2 Department of Automatic Control and Systems Engineer-
ing, University of Sheffield, S1 3JD Sheffield, UK, email:
y.nie@sheffield.ac.uk

the authors of [10] proposed revisiting the use of integrated
residual methods for solving dynamic optimization problems,
and they highlighted the advantages an integrated residual
method has when used to solve complex ordinary differential
equations in optimal control.

The quality of the numerical solution of differential equa-
tions depends on the refinement strategy the solver uses
to improve the accuracy of the numerical solution. There
are three main refinement methods used for improving the
solution accuracy [2]: (i) h-methods that focus on adjusting
the size of the time intervals (i.e. the time mesh), (ii) p-
methods that focus on adjusting the polynomial degree, and
(iii) hp-methods that attempt simultaneous refinement of
the time mesh and the degree of the polynomial. State-of-
the-art refinement methods are mainly based on adaptive
time mesh refinement [8], [11], but most of the existing
approaches are unable to achieve superlinear convergence
when discontinuities are present in the solution, and in some
cases the numerical solvers may fail to converge to a solution.

The main contribution of this paper is a new method
for solving differential equations and control problems. The
method is based on an integrated residual method with a
flexible time mesh, which allows one to accurately capture
potential discontinuities in the solution. Our approach intro-
duces the time-mesh nodes as variables in an optimisation
problem while numerically integrating the residual function
over each time interval. Using a least squares approach to
compute the residuals enables us to solve a wide range of
problems including ordinary differential equations (ODEs)
and differential algebraic equations (DAEs), BVPs, and con-
sistently over-determined systems. This new method can also
be used to handle the dynamic constraints in optimal control
problems (OCPs), which often have discontinuous solutions.
Additionally, the proposed method can handle differential
inclusions or discontinuities that may appear in the dynamics.
The proposed flexible time mesh provides better performance
than a fixed time mesh, with a numerical example showing
superlinear convergence and an improved solution accuracy,
while also decreasing the computational time.

In Section II, we present an overview of the integrated
residual method for solving differential equations and extend
the method to the solution of control problems. We introduce
our flexible time mesh scheme in Section III. In Section IV,
we use our proposed flexible mesh scheme to solve a
minimum-time satellite reorientation problem. Section V
concludes the paper and presents an outline for future works.

ar
X

iv
:2

20
5.

08
61

3v
1

 [
m

at
h.

O
C

]
 1

7
M

ay
 2

02
2

II. PROBLEM DEFINITION

A. Differential Equations and Control Problems

Many control problems can be formulated as finding the
solution to one or more feasibility problems of the form

find x(·), u(·) (1a)
s.t. F (ẋ(t), x(t), u(t), t) = 0, ∀t ∈ T (1b)

G(ẋ(t), x(t), u(t), t) ≤ 0, ∀t ∈ T , (1c)

where T := [t0, tf] ⊂ R is the time interval over which the
problem is defined, x : R → RNx are the state differential
variables and are forced to be continuous, ẋ : R → RNx

are the time derivatives of the state, u : R → RNu

are the algebraic variables, which can model the control
inputs, and are allowed to be discontinuous. The function
F : RNx × RNx × RNu × R → RNF , which is typically
called the dynamics function, defines a set of NF equality
constraints that the controlled system have to satisfy and
G : RNx×RNx×RNu×R→ RNg defines Ng path inequality
constraints. Moreover, the problem may include boundary
constraints

ΨE(x(t0), x(tf), t0, tf) = 0, (1d)
ΨI(x(t0), x(tf), t0, tf) ≤ 0, (1e)

where ΨE : RNx ×RNx ×R×R→ RNE are the boundary
equality constraints, and ΨI : RNx × RNx × R× R→ RNI

are the boundary inequality constraints.
Differential equations are usually included in problem (1)

as equality constraints in (1b). Note that solutions to (1) are
non-unique and non-smooth, in general, even if F , G ΨE

and ΨI are all smooth functions.
Of particular interest is to note that problems of the

form (1) need to be solved in certain classes of direct
methods for solving optimal control problems [10].

B. Discretisation and Numerical Solution

The problem introduced in Section II-A is an infinite-
dimensional problem because of the dependence on time. To
numerically solve an infinite-dimensional feasibility problem
using finite-dimensional optimisation methods, the problem
is discretized. The goal of the resulting problem is to find
approximating functions x̃ : R → RNxand ũ : R → RNu ,
such that the integrated square of the residual

εR :=
1

(tf − t0) ·NF

∫ tf

t0

∥∥F (˙̃x(t), x̃(t), ũ(t), t)
∥∥2
2

dt (2)

is minimised. The residual ‖F (˙̃x(t), x̃(t), ũ(t), t)‖22 captures
how close the numerical solution (x̃(t), ũ(t)) is to an exact
solution (x(t), u(t)) at each time instant t, since (1b) be-
comes zero at the exact solution. A scaling factor is added
in order to average the residual over the domain T and over
all components of the dynamics equations. A necessary and
sufficient condition for achieving convergence of (x̃(·), ũ(·))
to an exact solution (x(·), u(·)) is to make the integrated
residual go to zero. Since the exact solution (x(·), u(·)) is
non-unique, in general, defining an error metric based on the

Fig. 1. Approximation method and notation used in constructing a
numerical solution to problem (1).

exact solution (such as ‖x̃(t) − x(t)‖22 for example) would
not be practical.

The approximating functions x̃ and ũ are typically rep-
resented using polynomial basis functions [4, Sect. 1.17.1].
Finding these approximating functions consists of determin-
ing a finite number of coefficients for the polynomials. In
order to numerically enforce constraints in (1b), we insert
the approximating functions x̃, ũ into function F . In the least
squares approach we are proposing here, F (·) is replaced
with a function of the coefficients of the polynomials. A
procedure to obtain the approximating function and approxi-
mate solutions to the differential equations will be discussed
in Section II-C.

The choice of the basis functions for (x̃(·), ũ(·)) deter-
mines the possible solution space, which implies that the
exact solution (x(·), u(·)) may not be representable in that
solution space. This means the integrated residual εR may
be non-zero in general, and the only case when εR can be
zero is if the span of the chosen basis functions contains an
element of the solution set. When basis functions span the
solution set, it is then possible to numerically determine the
exact trajectories.

To reduce the approximation error in the numerical com-
putation of (2) while maintaining numerical stability, the
interval [t0, tf] is split into N subintervals

[ti, ti+1] =: Ti ⊂ T ∀i ∈ {0, 1, . . . , N − 1} (3)

delimited by the time-mesh points ti with tN = tf . A
diagram showing the subintervals and the basis functions
can be seen in Figure 1, with each subinterval Ti having
a component of x̃ given by the basis function χ̃i with 5
support points τ ji , j ∈ {0, 1, 2, 3, 4}.

In our implementation, we use a piecewise polynomial of

degree a chosen from the Lagrange basis

x̃(t) = χ̃i(t) ∀t ∈ [ti, ti+1]

χ̃i(t) :=

a∑
j=0

sji ·
a∏

k=0
k 6=j

t− τki
τ ji − τki

, (4)

where τ ji ∈ [ti, ti+1],∀j ∈ {0, . . . , a} are the supports for
the interpolating polynomial in the i-th interval, and sji for
j ∈ {0, . . . , a} are the decision variables that need to be
obtained from the optimisation process for each interval i ∈
{0, . . . , N − 1}. Since the basis function is an interpolating
polynomial, the sji are the χ̃i function values when evaluated
at a finite number of time points τ ji , giving

sji := χ̃i(τ
j
i) = x̃(τ ji), ∀i ∈ {0, . . . , N − 1}, j ∈ {0, . . . , a}.

(5)
To enforce state continuity at mesh nodes, we introduce

the constraints

χ̃i(ti+1) = χ̃i+1(ti+1) ∀i ∈ {0, . . . , N − 2}, (6a)
χ̃0(t0) = x0, (6b)

χ̃N−1(tf) = xf . (6c)

One way of ensuring the constraints in (6) are satisfied
is by placing internal supports at the interval boundaries
τ0i = ti and τai = ti+1 ∀i ∈ {0, . . . , N − 1}. With the
internal supports at the interval boundaries, the same decision
variables sai = s0i+1 can be used to represent both χ̃i(ti+1)
and χ̃i+1(ti+1),∀i ∈ {0, . . . , N − 2}.

A similar strategy is used for transforming a control
input u(·) into a piecewise polynomial ũ(·) based on a finite
number of decision variables cji where i is the index of
the subinterval and j ∈ {0, 1, ..., b} is the jth polynomial
coefficient. Note that the degree of polynomial approxima-
tion may be different for the states and inputs (a 6= b),
so the supports may not overlap. In this case, we will
evaluate all the functions at the supports used by the highest
degree polynomial approximation. For the functions which
do not have a support present at the point of evaluation, we
will use the interpolated value. Finally, ˙̃x(·) is obtained by
differentiating the state approximation function with respect
to time.

A typical design choice is to fix the values ti in the time-
mesh before solving problem (1) to create a fixed mesh.
The most common approach is to place mesh nodes ti at
equidistant locations to create a uniform mesh. However,
there are also other options for selecting the predefined
position of the nodes [5]. A uniform time-mesh is given by

ti = t0 + i · tf − t0
N

, (7)

where ti are the time-mesh nodes and i ∈ {0, . . . , N} is the
time-mesh node index.

The choice of the number of intervals for a fixed mesh
depends on the required solution accuracy with respect to
the error metric εR from (2). An in-depth discussion on
the influence of N on the error metric can be found in
Section III.

C. Integrated Residual Methods

Integrated residual methods (IRMs) can be used to solve
differential equations of the form described in (1b). Addition-
ally, they can be used to solve optimal control problems with
inequality constraints using the method in [10]. Classical
collocation methods enforce constraint (1b) only at a finite
number of points, called collocation points. A drawback of
the collocation approach is that one does not have direct
control over the numerical error encountered in-between
the collocation points. In contrast, IRMs aim to enforce
constraint (1b) by directly minimising the integrated residual
over the entire desired time-span T .

To efficiently solve feasibility and control problems with
discontinuous solutions, which are otherwise difficult to
tackle, we will use an integrated residual method for solving
differential equations that is similar to [7] and [9]. The idea
of this approach is to transform the feasibility problem (1)
into a constrained minimisation problem of the form

min
x̃(·),ũ(·)

εR (8a)

s.t. G(˙̃x(t), x̃(t), ũ(t), t) ≤ 0, ∀t ∈ τ (8b)
ΨE(x̃(t0), x̃(tf), t0, tf) = 0, (8c)
ΨI(x̃(t0), x̃(tf), t0, tf) ≤ 0, (8d)

with the integrated residual (2) as the objective to be min-
imised. To keep the implementation simple, path inequality
constraints are only enforced at the support time points

τ := {τ ji | i = 0, 1, . . . N − 1; j = 0, 1, . . . a}. (9)

In practice, the integrals in (2) and (8a) are solved nu-
merically using quadrature rules. In our implementation we
used Gaussian quadrature with Q quadrature points [13]. The
integral in (2) is computed numerically and since F is a
general nonlinear function, this will introduce an additional
numerical error, namely the quadrature error

εQ :=
∣∣∣εR − N−1∑

i=0

Q∑
k=1

wk
i ·
∥∥F (˙̃x(ρki), x̃(ρki), ũ(ρki), ρki)

∥∥2
2

∣∣∣
(10)

where wk
i for k ∈ {1, . . . , Q} are the Q Gaussian quadrature

weights associated with the integration interval [ti, ti+1]
and ρki are the quadrature nodes for the interval [ti, ti+1]. Af-
ter introducing the quadrature rule, the discretisation method
from Section II-B can be used to turn problem (8) into the
discrete formulation

min
s,c

N−1∑
i=0

Q∑
k=1

wk
i ·
∥∥F (˙̃x(ρki), x̃(ρki), ũ(ρki), ρki)

∥∥2
2

s.t. (6), (8b), (8c), (8d),

(11)

where s ∈ RN(a+1) and c ∈ RN(b+1) are vectors consisting
of all the polynomial coefficients sji , c

j
i . Problem (11) can

now be solved directly using available NLP solvers.
To make sure the quadrature error is negligible, we need to

check that the number of quadrature points Q is sufficiently

high. This can be done after the original solve by recomput-
ing εR (to ensure the numerical integration has converged)
using a larger Q than was used to solve (11) (e.g. with 2Q
quadrature points) and evaluating εQ according to (10). If
the difference between the converged εR and the objective
value obtained from optimization problem (11) is above a
certain tolerance εquad,tol (i.e. εQ > εquad,tol), this implies that
the quadrature error is significant and the solution needs to
be recomputed using more quadrature points Q.

III. IMPROVING ACCURACY THROUGH MESH DESIGN
UPDATES

A. Flexible mesh

When selecting a suitable number of mesh intervals N ,
one should recall that the solution (x(·), u(·)) is in a partic-
ular space, which may be different from the one spanned by
the selected basis functions of the discretisation. Thus, the
residual for the discretisation might be non-zero.

In order to improve the solution accuracy, the conventional
mesh refinement process relies on increasing the number of
time nodes or changing the polynomial degree according to a
predefined algorithm based on error metrics [4]. One popular
strategy is to start with a coarse mesh (small N), evaluate the
solution accuracy with respect to the error metric εR while
ensuring the quadrature error εQ remains below a threshold
εquad,tol, and then recompute a new solution for a finer mesh
(large N) if the error is above a certain tolerance level.

For many classes of problems, mesh refinement can be
ineffective and inefficient. Consider for example a problem
with a discontinuous solution with discontinuities at un-
known locations. Unless it happens by chance for a node to
be placed exactly at a discontinuity, we can consider without
loss of generality that the discontinuity lies inside the interval
(ti, ti+1). This means that one is trying to approximate a
discontinuous function x(·) by a continuous function χ̃i(·).
Increasing the polynomial degree will not help, since a ring-
ing phenomenon will start to occur. Equivalently, increasing
the number of mesh nodes will not improve the solution for
the interior of the interval where the discontinuity is located.

To automate this process of designing the time mesh and
capturing discontinuities and regions of high gradients more
accurately, as well as to improve the overall solution for a
given number N of mesh intervals, we propose to include
the mesh nodes ti as decision variables in our optimization
problem.

To ensure the quadrature error εQ remains insignificant
as the mesh nodes move, we introduce a rule restricting the
allowable change in the individual mesh interval length. Con-
sider a flexibility parameter φ ∈ [0, 1), then the constraints

ti+1 − ti ≤ (1 + φ) · tf − t0
N

, ∀i ∈ {1, . . . , N − 1} (12a)

ti+1 − ti ≥ (1− φ) · tf − t0
N

, ∀i ∈ {1, . . . , N − 1} (12b)

will be included in the optimisation problem. It follows that
if φ ∈ (0, 1) then t0 < t1 < · · · < tN−1 < tN and hence no
overlaps are possible.

Hence, the optimal node locations can be determined
automatically by solving the following optimisation problem

min
s,c,t

N−1∑
i=0

Q∑
k=1

wk
i ·
∥∥F (˙̃x(ρki), x̃(ρki), ũ(ρki), ρki)

∥∥2
2

s.t. (6), (8b), (8c), (8d), (12)

(13)

where t ∈ RN−1 is the vector of mesh points ti ∀i ∈
{1, . . . , N − 1} where the initial and final times (t0 and tf)
are excluded, since they are fixed. Note that quadrature points
ρki and internal supports τ ji become a function of ti and ti+1,
hence they are shifted and scaled versions of the original
values.

B. Error and Performance Considerations

When implementing the flexible mesh together with the
integrated residual approach, we ensure the accuracy for the
trajectories x̃(·) and ũ(·) in-between mesh nodes. Compared
to classical time-marching schemes (shooting methods) or
point-wise residual minimisation (collocation), integrated
residual methods have the benefit of producing a solution
with a more uniform error over the whole time domain.

When comparing the problem formulations in (11)
and (13), note that the only difference is represented by the
variables we are optimising over. Observe also that φ = 0
leads to the fixed uniform mesh solution, i.e. ti+1 − ti =
(tf − t0)/N . As a result, problem (13) includes the fixed
uniform mesh problem (11). By enlarging the solution space,
successfully solving (13) with a flexible mesh should provide
a solution with a residual error that is not worse than the one
obtained using a fixed mesh in (11), provided the quadrature
error is sufficiently small.

For a given value for the flexibility parameter φ, an algo-
rithm that implements (13) simplifies the mesh refinement
procedure, since the mesh node locations are automatically
determined and the main parameters that can be changed
are the number of nodes N and the polynomial degree.
This increases the accuracy of the obtained solution x̃(·)
and ũ(·). Additionally, the proposed strategy speeds up the
computation of a solution, as demonstrated in Section IV.

IV. RESULTS

An integrated residual solver was developed in the Ju-
lia v1.6 programming language, implementing fixed and
flexible mesh schemes for the solution of constrained DAEs.
Dynamic variables were parameterised by Lagrange poly-
nomials in the barycentric form [3]. These were discre-
tised across N time intervals, as illustrated in Figure 1.
Residuals were integrated with Gauss-Legendre quadrature
of a sufficiently high order. Derivatives were evaluated us-
ing forward and reverse automatic differentiation. The least
squares method described in Section II-C was applied using
Ipopt [14] as the NLP solver (relative convergence tolerance
set to 10−8). All tests were performed on an Intel® Core™

i7-1065G7 at 1.3 GHz with 16 GB of RAM.

Fig. 2. Control solution to satellite reorientation using fixed and flexible
meshes with 15 intervals. Dotted vertical lines indicate the location of the
fixed mesh points, blue crosses indicate the location of the flexible mesh
points.

A. Satellite Reorientation Example

The NASA X-ray Timing Explorer spacecraft is modelled
as a 3D rigid body with moments of inertia Ixx > Iyy > Izz .
The orientation is defined by quaternions q = [q1, q2, q3, q4],
where ‖q‖2 = 1 must always hold. The spacecraft must
be reoriented (∆q1 = 150◦) in minimum time, subject
to the saturation of control torques ‖u‖∞ ≤ 50 N m. To
model the dynamics, the least squares method allows for
the DAE formulation to be used to directly enforce the
quaternion magnitude, as opposed to the ODE formulation,
which requires high-accuracy integration, hence we used the
DAE formulation [4, Sect. 6.8].

Despite the fact that the dynamic functions are continuous
(albeit nonlinear), this control problem yields a discontin-
uous solution with switches at non-trivial times. Figure 2
shows a solution to (1) when the final time is set to the
optimum tf = 28.630408 s [4, Sect. 6.8]. To perform the
maneuver in minimum time, control torques 2 and 3 (u2 and
u3, respectively) introduce coupled rotations, reducing the
effective moment of inertia.

As expected, the flexible mesh is able to capture the
discontinuities by shifting the mesh points to the switch
times. On the other hand, the fixed mesh has to compromise
accuracy at discontinuities, with the (accidental) exception of
control torque 1 (u1) where the uniform distribution (7) has
a time node coinciding with the discontinuity at t = tf/2.

B. Convergence

To assess the order of convergence for the proposed
scheme, the problem was solved for an increasing number of
intervals using both flexible and fixed mesh points. The initial

Fig. 3. Log-log plot of integrated residual for solutions to the satellite
reorientation problem for both mesh schemes.

guess for the NLP time-mesh decision variables was set to
be the uniform mesh, while the state and control decision
variables s, c were cold started (matrices full of zeros were
given as the initial guess). Figure 3 shows the value of the
integrated residuals plotted against N . The slopes of linear
fits for N ≥ 5 report orders of convergence of 0.70 and
5.55 for fixed and flexible meshes, respectively. Lagrange
polynomials of degree 4 were used as basis functions, with
a sufficiently high quadrature order, Q = 7.

Once the number of intervals is larger than the number
of discontinuities, the flexible scheme is able to locate the
position of the discontinuities. Hence, for a larger number of
intervals, the flexible mesh is able to achieve a higher order
of convergence than the fixed mesh.

C. Computation time

Adding flexible mesh nodes increases the size of the
resulting NLP, and introduces nonlinearities. On the other
hand, this reduces the number of NLP iterations to achieve a
given integrated residual. Computation time was assessed by
comparing the solution time averaged with 5 repeated solves.
Figure 4 shows that for low accuracy solutions (εR > 10−5),
there is little difference in computational time between the
two schemes. However, the flexible mesh is able to achieve
a significantly better accuracy given the same solve time as
a fixed mesh. Conversely, faster solve times can be achieved
for a given accuracy.

V. CONCLUSIONS AND FUTURE WORKS

Finding discontinuous solutions to constrained control
problems is a challenge, especially if a fixed time-mesh is
used. In this paper, we proposed using a flexible mesh in an
integrated residual method to capture possible discontinuities
in the solution. By including the mesh points as decision
variables in the integrated residual method, we are able
to capture discontinuities in the solution, while preserving
accuracy of the solution. The proposed scheme was tested
on a challenging aerospace satellite reorientation problem

Fig. 4. Log-log plot of performance against integrated residuals for both
mesh schemes with different number of intervals N between 2 and 24 and
φ = 0.5. The solve times are normalised by the highest value.

with nonlinear dynamics and a discontinuous solution. In
contrast to using a fixed mesh, the new method with a
flexible mesh successfully identified the location of the
discontinuities, provided enough mesh intervals were chosen.
The flexible scheme showed super-linear convergence once
all discontinuities are captured, whereas the fixed mesh
scheme plateaued. Compared to a fixed mesh scheme, the
underlying NLP solver converged to a solution in fewer
iterations, resulting in the faster overall computation of a
solution at a higher accuracy, despite the added overhead of
augmenting the underlying optimisation problem.

These preliminary numerical results on order of con-
vergence and computational performance are encouraging.
Future work could include developing formal proofs on the
order of convergence. The use of a flexible mesh should also
be compared numerically against state-of-the-art adaptive
mesh refinement methods, which do not include mesh points
as decision variables, but iteratively add fixed mesh points
to intervals with a large residual. Similar sophisticated mesh
refinement schemes could also be explored when using a
flexible mesh.

The flexible mesh method presented in this paper can be
adapted to solve optimal control problems using an iterative

algorithm. This can be done, for example, by solving a
sequence of feasibility problems (13) with an increasing
number of mesh intervals N until εR is below a given
threshold. The optimal control problem is then solved by
defining and solving another suitable optimisation problem
as in [10].

REFERENCES

[1] R. R. Ahmad, N. Yaacob, and A.-H. Mohd Murid. Explicit methods
in solving stiff ordinary differential equations. International Journal
of Computer Mathematics, 81(11):1407–1415, November 2004.

[2] I. Babuška and B. Q. Guo. The h, p and h-p version of the
finite element method; basis theory and applications. Advances in
Engineering Software, 15(3):159–174, January 1992.

[3] Jean-Paul Berrut and Lloyd N. Trefethen. Barycentric Lagrange
Interpolation. SIAM Review, 46(3):501–517, January 2004.

[4] John T. Betts. Practical Methods for Optimal Control and Estimation
Using Nonlinear Programming, Second Edition. Advances in Design
and Control. Society for Industrial and Applied Mathematics, January
2010.

[5] John T. Betts and William P. Huffman. Mesh refinement in direct tran-
scription methods for optimal control. Optimal Control Applications
and Methods, 19(1):1–21, 1998.

[6] Luigi Brugnano and Cecilia Magherini. Blended implicit methods
for solving ODE and DAE problems, and their extension for second-
order problems. Journal of Computational and Applied Mathematics,
205(2):777–790, August 2007.

[7] Ernest D. Eason. A review of least-squares methods for solv-
ing partial differential equations. International Journal for Nu-
merical Methods in Engineering, 10(5):1021–1046, 1976. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.1620100505.

[8] Fengjin Liu, William W. Hager, and Anil V. Rao. Adaptive mesh
refinement method for optimal control using nonsmoothness detec-
tion and mesh size reduction. Journal of the Franklin Institute,
352(10):4081–4106, October 2015.

[9] Daniele Mortari, Hunter Johnston, and Lidia Smith. High accuracy
least-squares solutions of nonlinear differential equations. Journal of
Computational and Applied Mathematics, 352:293–307, May 2019.

[10] Yuanbo Nie and Eric C Kerrigan. Solving dynamic optimization
problems to a specified accuracy: An alternating approach using
integrated residuals. IEEE Transactions on Automatic Control, 2022.

[11] Luı́s Tiago Paiva and Fernando A. C. C. Fontes. Adaptive time–mesh
refinement in optimal control problems with state constraints. Discrete
& Continuous Dynamical Systems, 35(9):4553, 2015.

[12] R. D. Russell and L. F. Shampine. A collocation method for boundary
value problems. Numerische Mathematik, 19(1):1–28, February 1972.

[13] S. P. Venkateshan and Prasanna Swaminathan. Chapter 9 - Numerical
Integration. In S. P. Venkateshan and Prasanna Swaminathan, editors,
Computational Methods in Engineering, pages 317–373. Academic
Press, Boston, January 2014.

[14] Andreas Wächter and Lorenz T. Biegler. On the implementation of
an interior-point filter line-search algorithm for large-scale nonlinear
programming. Mathematical Programming, 106(1):25–57, March
2006.

	I Introduction
	II Problem Definition
	II-A Differential Equations and Control Problems
	II-B Discretisation and Numerical Solution
	II-C Integrated Residual Methods

	III Improving Accuracy Through Mesh Design Updates
	III-A Flexible mesh
	III-B Error and Performance Considerations

	IV Results
	IV-A Satellite Reorientation Example
	IV-B Convergence
	IV-C Computation time

	V Conclusions and future works
	References

