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Abstract—IEC 61499 Function Blocks is the emerging standard
for distributed control of industrial automation systems. Within
this domain, it is common for devices to need robust timing and
functional guarantees. Unfortunately, many industry-standard
approaches can only provide analysis for functional correctness.
This is primarily because IEC 61499 is usually executed upon
architectures and systems that are not amenable to static timing
analysis, such as those that utilize general purpose processors
or embedded operating systems. Hence, designers must rely
on timing values obtained by measurement-based approaches,
a methodology that will not be able to provide strong timing
guarantees. In this paper, we propose a novel methodology for
instead compiling Function Blocks to FPGA-based hardware,
using synchronous semantics for their execution. To avoid re-
stricting the functionality of these implementations, complex
mechanisms such as software updates and distributed networking
can be provided via on- or off-chip coprocessing. This overall
approach provides for straightforward timing analysis, as well
as a methodology for designing reliable, efficient controllers with
extremely fast response times.

I. INTRODUCTION

Currently, there is a trend within the industrial automation
domain known as “Industry 4.0”. This is pushing for “smarter”
process lines which feature increased levels of mechanization,
networking, and control, with the ultimate goal being the
emergence of digital factories [1], [2].

Within this sphere, IEC 61499 Function Blocks (FBs) [3]
is emerging as a design standard of choice [4]. It allows
for model-driven engineering, where components and their
behaviours can be rigidly defined and encapsulated into their
FB specification. Then, these FBs can be composed into
communicating networks, allowing for complex functionality
to be realised while maintaining the re-usability of each
individual components.
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Figure 1: An example overcurrent protection breaker.

However, contemporary implementations of IEC 61499 FBs
do not fully synergize with the requirements of Industry 4.0.
Take the example of a smart-grid overcurrent breaker, as
depicted in Figure 1. Here, the controller τ must open its
associated breaker to terminate electrical current flow when
an overcurrent event occurs, i.e. an unsafe level of electrical
current has been flowing for an unsafe period of time. This
is an example of a safety-critical system, where the overall
system must adhere to not just strict functional requirements,
but also to precise timing deadlines, i.e. its Worst Case Exe-
cution Times (WCETs) must be known. These are also known
as Precision Timed Industrial Automation (PTIA) systems [5].

Unfortunately, it can be very difficult to obtain timing prop-
erties for common implementations of PTIA systems. This is
because they are most commonly implemented using modern
Programmable Logic Controllers (PLCs) architectures. These
are usually based on general-purpose processors designed by
ARM, Intel, and Freescale, and can also feature complex
runtimes and/or Real-Time Operating Systems (RTOSs). These
underlying architectural decisions can increase performance
and flexibility compared with old-fashioned bare-metal and
analog approaches, but come with a drawback — they greatly
complicate static timing analysis and verification. As a result,
designers must turn to simple measurement-based approaches
to derive their WCET values [6], [7]. Such approaches can
never provide robust guarantees, as it is very difficult to ensure
that all possible execution paths have been examined during
testing.

In this paper, we propose an alternative approach for PTIA.
We derive a methodology for FBs to be synthesized directly
to FPGA-based hardware. This is done by adopting syn-
chronous semantics, which model software components as if
they were concurrently-operating hardware modules, and have
already been used to demonstrate time-predictable behaviour
of IEC 61499 FBs [7]–[9]. Our generated hardware can thus
be analysed to get extremely tight timing bounds, as well as
granting extremely rapid and consistent system responses.

The rest of this paper is organised as follows. Section II
provides an introduction to the IEC 61499 standard via the
overcurrent breaker PTIA example. Section III then provides
an overview of related work and its shortcomings. Then, Sec-
tion IV discusses the methodology of our approach. Section V



then demonstrates the efficacy of our approach via a set
of benchmarks including the overcurrent protection breaker.
Finally, Section VI provides concluding remarks.

II. IEC 61499 FUNCTION BLOCKS (FBS)

In order to introduce IEC 61499 FBs, we will discuss the
operation of the overcurrent breaker from Figure 1. In general,
fault detection via such systems is implemented through an
Inverse Definite Minimum Time (IDMT) curve, covered by the
IEC 60255 standard [10]. The curve is defined by Equation 1.

t =
Kβ( I

Iset

)α

−1
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Here, t is the safe overcurrent operating time, K is a time
multiplier, I and Iset are the measured and nominal currents,
and α and β are two tuning parameters. By changing these
values, different IDMT curves with different slopes can be
generated. They are typically selected as required by the given
application. For this case study, a very inverse type curve is
used, with α = 1.0, β = 13.5, and time-multiplier K = 0.1.
This curve is depicted in Figure 2.

Example II.1. Using Equation 1 with our chosen tuning pa-
rameters and an overcurrent magnitude of 10, i.e. I = 10×Iset ,
we get a safe operating time of 0.15 s. However, for the same
settings, if the overcurrent magnitude is lower, e.g. 5 times,
the safe operating time is longer, 0.34 s.

We can implement the controller for the overcurrent breaker
using the IEC 61499 FBs standard [3]. FBs totally encap-
sulate the memories and behaviours of the components that
they represent, allowing for flexible and re-usable component
definitions. FBs can be composed into networks of blocks
communicating over event-data interfaces, updating variable
data lines when their associated events trigger. There are three
major types of FB, introduced through Figure 3.
• Composite Function Blocks (CFBs) contain networks of

other FBs. In our case, the controller can be represented
by the CFB presented in Figure 3a. This contains within
it the network of FBs presented in Figure 3b.

• Basic Function Blocks (BFBs) contain within themselves
local copies of I/O variables, as well as their own internal
variables. They are managed by an Execution Control
Chart (ECC), which is a state machine that can advance
based on input events and local data variables. Associated
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Figure 2: The IDMT curve for this case study.

test

iSet_change

b_change

i

iSet

b

Event-Data
Association

Events

Data

i_measured

tick

Breaker Controller

set

(a) CFB for the breaker controller τ.

test

unsafe

b_change

b

Setter Resetter

set

iSet_change

unsafe

i

iSet

i_measured

tick

IDMT curve

(b) BFB network contained within the breaker CFB in Figure 3a.

INIT

RESET

SET

settest OR
unsafe

b_change ClearB

b_change SetB

Output
Events Algorithms

States and
Transitions Actions

(c) ECC contained within “Setter Resetter” BFB in Figure 3b.

Figure 3: Overcurrent breaker sample IEC 61499

with each ECC state is a set of actions, which can be
output events and/or data-manipulating algorithms.
Our test/set/unsafe logic for opening and closing the
breaker can be implemented via the ECC in Figure 3c.

• Service Interface Function Blocks (SIFBs) provide
implementation-specific functionality allowing for inter-
action with hardware and peripheral components. In our
case, appropriate SIFBs would provide the source/des-
tinations for the I/O connections on the parent CFB in
Figure 3a.

III. RELATED WORK

There has been plenty of interest in executing time-
predictable IEC 61499 networks in the literature. Primarily,
these all focus on the same issue — addressing the unpre-
dictable nature of current implementations, which rely both on
general purpose processors as well as complex runtimes and/or
RTOS. For instance, neither Forte [11] nor IsaGRAF [12], both
popular IEC 61499 execution frameworks, have had worst-case
timing analysis performed [7].



In part, this is due to the the standard model of computation
for IEC 61499, which is fundamentally event-triggered in na-
ture, and tends to be antithetical to static timing analysis [13].
As a result, the synchronous approach for IEC 61499 is
suggested for use when concrete timing values are required [7].
This is because synchronous languages like Esterel [14] and
SCADE [15] model concurrently-executing software compo-
nents as if they were parallel hardware modules evolving
discretely along with the progression of a logical tick. This
simplifies program flow and analysis, especially in the face of
variable data, which can usually only pass between modules
on tick boundaries.

Many time-predictable methodologies for IEC 61499 thus
focus on using the synchronous approach in conjunction with
time-predictable architectures taking the place of general pur-
pose processors [5]. For instance, in [7], the low-performance
MicroBlaze [16] architecture was used for sequential execution
of code; in [8], the Precision Timed (PRET) architecture
FlexPRET [17] was used as a platform for predictable multi-
threaded execution; and in [9], the time-predictable multi-core
architecture T-CREST [18] had a set of FB tasks distributed
over it.

However, even though synchronous languages are emulated
as if they were hardware, no effort to compile IEC 61499
FBs to hardware with synchronous semantics has yet been
undertaken. Indeed, the only effort to run FBs directly on
FPGAs is presented in [19], where O’Sullivan et al. propose a
custom architecture in VHDL for greatly accelerated execution
of IEC 61499. Their approach however has a key drawback: it
does not formalise the communication or scheduling between
parallel execution of blocks, instead relying on the designer to
ensure that no conflicts can occur. Model driven engineering
should instead rely on correct by construction methodologies,
such as the synchronous approach. Furthermore, they do
not present mechanisms for the blocks to communicate over
network interfaces, nor discuss how the networks could be
maintained or updated.

IV. METHODOLOGY

Adopting synchronous semantics for IEC 61499 means
that the execution model for concurrently executing FBs
is clearly defined. Each FB is an independently executing
unit of hardware, which performs a complete update (i.e
captures inputs, performs computation, and emits outputs) in
every clock cycle. A consequence of this is that FBs must
communicate using delayed synchronous semantics — they
read values which were emitted in the previous tick. This is
common in synchronous languages, such as in Esterel, where
this behaviour is described with the ‘pre’ keyword [20].

A. Compiling IEC 61499 FBs to Verilog

In this paper, we focus on compiling the three main types
of Function Block: BFBs, CFBs, and SIFBs, where the SIFBs
can interface with physical or other digital peripherals, such
as switches, LEDs, motor drivers, or co-processors. They thus
provide connectivity and external functionality to the overall
network.

1) Compiling Basic Function Blocks (BFBs): The gener-
alised hardware architecture for BFBs is depicted in Figure 4.
This can be broken down into three stages, the input capture
(INP), the state and data management (EXE), and the output
emission (OUT).

INP is made up of sets of local data registers combined with
forwarding multiplexors. Forwarding data is used to allow the
rest of the circuit to operate within a single-cycle if the data
is needed this cycle. The registers are updated (and data is
forwarded) using the associated event line as an enable signal.

EXE is built up from a mealy-style finite state machine
derived directly from the ECC within the original BFB. While
it appears that a moore-style machine would be a better fit, as
outputs are associated with states in IEC 61499 ECCs, they
actually only trigger their output events and data algorithms on
entry to a state (i.e. if no state advancement occurs in a given
tick, no outputs are emitted). This is not compatible with a
moore-style machine, which assert their outputs continuously
while in a given state.
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Figure 4: Generalised hardware architecture for IEC 61499 Basic Function Blocks (BFBs).



1 module S e t t e r R e s e t t e r ( . . . ) ; / / i / o o m i t t e d
2

3 . . . / / v a r d e c l a r a t i o n / a s s i g n m e n t o m i t t e d
4

5 always@ ( posedge c l k ) b e g i n
6 / / r e s e t l o g i c o m i t t e d
7

8 / / no i n p u t d a t a v a r i a b l e s t o c a p t u r e
9

10 / / c l e a r o u t p u t e v e n t s
11 b change = 0 ;
12

13 / / c l e a r a l g o r i t h m t r i g g e r s
14 Se tB a lg en = 0 ;
15 C l e a r B a l g e n = 0 ;
16

17 / / ( FB Update F u n c t i o n )
18 / / advance s t a t e , s e t o u t p u t e v e n t s , t r i g g e r a l g o r i t h m s
19 c a s e ( s t a t e )
20 ‘STATE s in i t : b e g i n
21 s t a t e = ‘STATE s rese t ;
22 b change = 1 ;
23 C l e a r B a l g e n = 1 ;
24 end
25 ‘STATE s rese t : b e g i n
26 i f ( s e t ) b e g i n
27 s t a t e = ‘STATE s set ;
28 b change = 1 ;
29 Se tB a lg en = 1 ;
30 end
31 end
32 ‘STATE s set : b e g i n
33 i f ( t e s t | | u n s a f e ) b e g i n
34 s t a t e = ‘STATE s rese t ;
35 b change = 1 ;
36 C l e a r B a l g e n = 1 ;
37 end
38 end
39 e n d c a s e
40

41 / / a l g o r i t h m f u n c t i o n s
42 i f ( C l e a r B a l g e n ) b e g i n
43 b = 0 ;
44 end
45

46 i f ( Se tB a lg en ) b e g i n
47 b = 1 ;
48 end
49

50 / / o u t p u t d a t a r e g i s t e r s
51 i f ( b change ) b e g i n
52 b O = b ;
53 end
54

55 end
56 endmodule

Listing 1: Compiled Verilog for Setter Resetter BFB

Hence, each state in the ECC becomes a state in the new
machine, with a state’s associated actions (event outputs and
algorithm invokations) duplicated over its incoming transi-
tions. Therefore, within any given clock cycle, the internal
state machine can advance, and the associated outputs will be
triggered. This places a restriction on algorithms, which are
represented internally by purely combinatorial functions: they
must not depend on a clock cycle to function.

Finally, OUT is simply a set of output registers for outgoing
events, which update every cycle; and data, which update
according to their associated events (used as enable signals).

Example IV.1. The Setter Resetter BFB for the Overcurrent
Breaker case study from Section II can be compiled to the
Verilog presented in Listing 1. The comments in this listing
link to the blocks in Figure 4. As can be seen, each of

the ECC states in Figure 3c is placed into the F.B. Update
Function in lines 19-29. This block of code is also responsible
for outputting events, as well as triggering the execution of
algorithms (e.g SetB, ClearB).

2) Compiling Composite Function Blocks (CFBs): In the
proposed approach, CFBs are converted to a simple netlist
of modules connected with Verilog ‘wire’s. They contain
no logic nor registers of their own, which means that they
introduce no overhead to the design.

3) Compiling Service Interface Function Blocks (SIFBs):
SIFBs are compiled to special modules which pass their I/O up
to the top level entity within the Verilog codes, allowing for
custom logic to be specified and realised within the design.
Then, the SIFB links can be manually interfaced with any
user-specified peripheral, such as LEDs or switches.

These SIFBs designs can also provide networking support
through interfaces with coprocessors, such as those within an
Altera HPS system as present in the Terasic DE10-Standard
development board [21]. For instance, a remote-request com-
mand delivered over TCP/IP can be exposed to the network
as a single environmental event input line which may trigger
at any time. This allows any networking process to be simply
modelled as general purpose I/O, simplifying local functional
and timing verification.

B. Deriving WCETs via Worst Case Reaction Times (WCRTs)

Synchronous languages, as they operate over logical ticks,
introduce the concept of a Worst Case Reaction Time (WCRT).
This is the maximum execution time taken for any given
tick. As a given program may take multiple logical ticks to
complete an execution, WCET of a synchronous program can
be computed by multiplying WCRT by the maximum number
of logical ticks required.

With our compilation approach, BFBs and SIFBs take one
clock cycle to execute, and CFBs take no cycles (as they
are just connecting wires). Clock cycles map to synchronous
logical ticks exactly. Therefore, the WCET of a given program
is simply the longest single trace of BFB and SIFB that
program flow must pass through in order to produce a given
output.

Example IV.2. In the overcurrent breaker case study, the
longest execution trace comes from the tick event. This comes
from the following trace: (1) tick is created in an external
SIFB. (2) IDMT Curve captures tick and emits unsafe. (3)
Setter Resetter captures unsafe and emits b change. (4) An
external SIFB captures b change.

This means that the WCET of the case study will be
4×WCRT.

It is important to note that the WCET computed via this
method does not take into account the time taken for any exe-
cution of C code required for networking functionalities. This
is because this complexity is abstracted away and considered
external to the network (i.e. seen as part of the environment).
See Section IV-A3 for further details.



Benchmark Name IEC 61499 Design Compiled Hardware

Total FB instances Networking? Longest
chain ALMs Registers Max Frequency

(MHz)
WCRT
(cycles)

Overcurrent Breaker 5 Yes 4 82* 35* 88.35 1
Traffic Lights 10 Yes 8 467* 203* 72.9 1
Water Pump 3 No 3 41 27 217.2 1

Benchmarks from [9]
WCRT from [9]
(T-CREST cycles
@ 50MHz)

VVI Mode Pacemaker 32 No 4 164 213 157.78 1 8706
Bottling Plant 36 No 7 257 264 187.48 1 22505

Table I: Benchmark results

V. RESULTS

To demonstrate the efficacy of the proposed approach, a
number of benchmarks were analysed, including the Overcur-
rent Breaker case study from Section IV. All benchmarks were
written using IEC 61499, with algorithms written in Structured
Text if applicable, before being compiled to Verilog using
the process introduced in Section 4. They are presented in
Table I. Aside from the case study, two other benchmarks
are presented, Traffic Lights, which allows for normal timed
round-robin R-G-Y progression of a 4-way intersection as well
as remote overrides for manual operation; and Water Pump,
which manages the control logic for the balancing of two
industrial water storage tanks. Within the Overcurrent Breaker,
the IDMT curve was approximated using a pessimistic seven-
stage step-function to provide a good tradeoff between accu-
racy and hardware consumption (as division is quite costly).

A. Comparison Benchmarks

To compare our approach with the time-predictable proces-
sor methodology, we also implemented two of the benchmarks
in [9], and compare with their published 4-core scratchpad
memory mode WCRT (this had the fastest execution time).
Bottling Plant controls a model of a system which fills bottles
with fluid. This contains a number of components, including
doors, lasers, conveyors, a bottle filler, and a robotic arm
model. VVI Mode Pacemaker contains a simplified pacemaker
controller model.

B. Experimental Methodology

IEC 61499 FBs were specifed in standard XML-based
formats and then compiled to Verilog. The Verilog was
synthesized using Intel Quartus 17.0 for a Terasic DE10-
Standard development board, targeting the onboard Cyclone
V 5CSXFC6D6F31C6. Where networking blocks were nec-
essary, they were provided using custom C compiled to the
integrated ARM® Cortex™-A9 dual-core processor running
Linux at 800MHz, and GPIO pins were exposed to SIFBs run-
ning within the IEC 61499 network via a bridge implemented
using Quartus Qsys. This used 4280 Adaptive Logic Modules
(ALMs) and 4096 registers, and was consistent across each of
the networked benchmarks. So that the consumption of each
network can be better judged, in Table I, the resource usage
is presented less this overhead where applicable (*).

To calculate the max frequency for the compiled hardware,
Quartus’s TimeQuest Timing Analysis tool was used with the
slow 1100mv 85C model.

As the integrated dual-core processor has the ability to
update the FPGA hardware, special C code for performing
software updates according to the IEC 61499 specification
can be loaded into the Linux system with or without the data
bridge.

C. Discussion

The results are presented in Table I. As can be seen, the
hardware FB are all capable of running at at least 50 MHz,
meaning that at these speeds, as they take only a single cycle
to execute, their WCRT is just 20 ns. Compare this to the same
networks running on T-CREST in [9], where the WCRT for
an equivalent 50 MHz clock is 174.12 µs for the VVI Mode
Pacemaker and 450.1 µs for the Bottling Plant — equivalent
hardware for these benchmarks can execute at least six orders
of magnitude faster!

Our benchmarks that used networking had a lower WCRT
than those that did not. This was due to the Quartus Qsys-
provided bridge for joining the integrated dual-core processor
with the FPGA fabric, which constrained the maximum clock
speed. Out of all the benchmarks, the Water Pump could
execute the fastest, as it was the smallest design and did not
feature the data bridge. In general, the hardware usage for
each benchmark was extremely minimal, granting very high
operational speeds while maintaining correct functionality.

VI. CONCLUSIONS

As the needs and scope of Industry 4.0 begin to encompass
safety-critical PTIA systems, the requirements for reliable, per-
formant, and formally verifiable controllers become apparent.
However, typical approaches for these kinds of systems can
involve RTOS and general-purpose processors, which greatly
complicate timing analysis. In this paper we presented an
alternative approach for achieving this functionality, via the
automatic compilation of IEC 61499 Function Blocks (FBs)
to FPGA-based hardware. Our approach developed a novel
architecture which synchronously executes FBs in a single
clock cycle, allowing for very accurate and simple timing
analysis. Compared with an alternative approach for executing
IEC 61499 synchronously on the time-predictable T-CREST
architecture, our hardware can run at least six orders of
magnitude faster while preserving identical functionality.



Future work could involve examining ECC algorithms re-
quiring multi-cycle execution, investigating mechanisms for
automatic derivation of the longest-length event-data chains,
and research into a more automated compilation process for
SIFB peripheral and networking function blocks.

SOURCE ACCESS

All examples used in this paper, and the source
code for the hardware compiler, can be found online at
https://github.com/PRETgroup/goFB.
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