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ABSTRACT

The paper tackles the problem of joint deconvolution and
segmentation specifically for textured images. The images
are composed of patches of textures that belong to a set of
K possible classes. Each class of image is described by a
Gaussian random field and the classes are modelled by a
Potts field. The method relies on a hierarchical model and a
Bayesian strategy to jointly estimate the labels, the textured
images as well as the hyperparameters. An important point
is that the parameter of the Potts field is also estimated.
The estimators are designed in an optimal manner (marginal
posterior maximizer for the labels and posterior mean for the
other unknowns). They are computed based on a convergent
procedure, from samples of the posterior obtained through
an MCMC algorithm (Gibbs sampler including Perturbation-
Optimization). A first numerical evaluation provides encour-
aging results despite the strong difficulty of the problem.

Index Terms — Deconvolution, segmentation, texture,
Bayes, Potts, sampling, optimization.

I. INTRODUCTION AND MOTIVATION

The paper addresses the tough problem of textured image
segmentation from indirect (noisy and blurred) observations.
Most existing approaches do not tackle the indirect obser-
vations issue and focus only on segmentation. To the best
of our knowledge, the proposed method is a first attempt
for a joint deconvolution-segmentation of textured images.
In addition, it also performs hyperparameter estimation.

Image segmentation has been of great interest for decades,
so the literature is extensive [1]. For instance, let us cite
thresholding, growing methods, bottom-up aggregation, ac-
tive contour, Markov approaches, level sets, curve evolution,
watershed, graph cuts and random walker,. ..

For the specific case of textured images [2,3], an im-
portant part of the literature relies on features based upon
moments of the image, on wavelet or Fourier transform,
on spatial or spectral histogram,...Let us cite some other
approaches. A method providing texture edges [4] uses active
contours and a patch based approach for texture analysis.
A significant method based on both gray level (intervening
contour framework) and texture (textons) is presented in [5].
[6] models a homogeneous textured region by a Gaussian
distribution and the region boundaries by adaptive chain
codes. Another approach [7] attempts to accurately charac-
terize the textures by combining a collection of statistics and
filter responses. Texel based image segmentation is achieved
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in [8] by identifying the modes in the probability density
function of region properties.

A significant class of segmentation methods relies on a
probabilistic formulation. [9] presents a work for image
partitioning into homogeneous regions and for locating edges
based on disparity measures. In [10], an image segmentation
method is developed based on Markov chain Monte Carlo
and the K adventurers algorithm. [11] introduced a weighted
Markov model that estimates the model parameters and
thus performs unsupervised image segmentation. Let us also
mention the popular graph partitioning approach [12, 13].
One of the most commonly used model for the labels in the
probabilistic approaches is the Potts model to favour homo-
geneous regions. It is mostly used for piecewise constant or
piecewise smooth images [14—16].

However, none of the aforementioned segmentation ap-
proaches is formulated in the context of indirect observa-
tions. Interesting works [17-23] are the Bayesian meth-
ods for image segmentation from indirect data (inversion-
segmentation) also based a Potts model for the labels.
Nevertheless, the existing developments are not adapted for
textures. On the contrary, the present paper proposes joint
deconvolution-segmentation specifically devoted to textured
images. In addition, it also performs Potts parameter estima-
tion whereas existing papers do not.

II. PROBLEM STATEMENT

In this work, y represents the blurred and noisy obser-
vation of an image ¢ that is a patchwork of textures. Each
patch is extracted form an image xj, for K = 1..K and £
represents the associated label. y, 2, the x; and £ are column
vectors of size P (the number of pixels).

Label — The labels are modelled by a Potts field, driven
by a “correlation” parameter 3

Prielg] = C.(8) " exp [ o6 t)] ()

where ~ stands for the four nearest neighbour relation be-
tween pixels and 9 is the Kronecker function. An important
feature of the proposed method is the capability to estimate
the parameter 3. To this end, the partition function C, is
a crucial function since it is involved in the likelihood of
B attached to any configuration. Its analytical expression is
unknown' and it is a huge summation over the K possible
configurations. However, based on stochastic simulation,
we have precomputed it for several image sizes and class

1except for the Ising field, i.e. K = 2, see [24] and also [25, 26].
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numbers [27,28]. The reader is invited to consult papers
such as [29, 30] for alternatives.

Textures — The textured images ), € C*, k = 1..K are
described by simple zero-mean stationary Gaussian fields

FlelRe) = (2m)~" det(Ri) ~ exp (il 1)

with covariance Ry. For notational convenience, it is defined
through a scale parameter y; and a structure matrix Ay:
R;l = Y Ag. Since xj is a stationary field, Ay is a
Toeplitz-block-Toeplitz (TbT) matrix and by Whittle approx-
imation, it becomes Circulant-block-Circulant (CbC). Then
the pdf becomes separable in the Fourier domain:

f(zk|Ry) = HP(QW)_lwAk,p exp [—kAkplTrpl?] (2)

where, for p = 1..P, the &y, are the Fourier coefficients
of the image x; and the )\, are the eigenvalues of Aj.
Thus )\;1 describes the Power Spectral Density (PSD) of xj,
in a discrete form, more specifically, v, A, is the inverse
variance of Zj, ,. As an example, we have chosen a Laplacian
parametric model, with known central frequency and width.
Nevertheless, any other parametric form can be used for the
PSD, e.g., Gaussian, Lorentzian,. ..

Image — The process of obtaining the image ¢ containing
the texture patches, starting from the full textures x; and the
labels £ is formalized as:

i=) Sk 3)

the Sy being diagonal matrices with entry 1 for pixel p in the
class k and O elsewhere: Sy (£) = diag {d(¢,, k), p = 1..P}.
They are zero-forcing matrices that extract from the image
x the pixels with label k£ and nullify the others.

Convolution filter — The convolution matrix H has a
TbT structure. It becomes CbC by circulant approximation
and its eigenvalues are the Fourier transfer coefficients. Any
function could be introduced (Gaussian, Airy,...) and the
considered one is an isotropic Gaussian centred in the null
frequency with known spatial width.

Noise — The errors are modelled as additive, zero-mean,
white and Gaussian with inverse variance -,. So, the pdf for
the data given the image and the noise level (likelihood) is:

Fyli,m) = @2r)" 4L exp [~mlly — Hil?] . @)

Hierarchical model — The dependencies between the
variables are described by the proposed hierarchy presented
in Fig. 1. The joint law then reads:

fy, 4,1k mm i, B) = F(Ylm, £ 21.K)
F@p)- I, £l - fOn) - £ - T, O

Hyperparameter models — Regarding the precision pa-
rameters -y, and 7,k = 1..K, one can see in the model (2)
for the textures and (4) for the observation that they are
precision parameters in Gaussian laws, hence the Gamma

&)
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Fig. 1: Hierarchical model: the round nodes / the square ones show
the estimated / fixed quantities.

laws are conjugate forms: G(7;c«, ). Furthermore, little
prior information is available on these parameters, so diffuse
priors are used by setting («, 8) to small values.

When it comes to (3, a conjugate prior is not available,
given the expression of the partition. A uniform prior on an
interval [0, B] is considered as a reasonable choice:

p(8) = Upo, 51 (B)

where B is defined as the maximum possible value of .

III. BAYESIAN FORMULATION
III-A. Design of the estimators

Given the joint law (5), optimal estimation function can
then be deduced, as Bayesian risk minimizer.
o Regarding discrete parameters: the labels £ are esti-
mated as a Marginal Posterior Maximizer;
« Regarding continuous parameters: 7, the 5 and the
textures xj are estimated as the Posterior Mean.
They rely on the posterior that is fully specified by the
image formation (3), the distribution for the labels (1), for
the textures (2), for the observations (4), and the hyperpriors:

f(£7w1..K7’7n,71“K|y) X

¢y exp [—mly —HY Sp(@)mi?]

Cop Y TP exp (— )

C-(8) exp [83 8t )| Upm ()

r~Ss

IL, (€. det(An) " exp (el )]
Hk [C% AP exp (_Vkﬁk)}

It summarizes the information contained by the data and the
priors about the unknowns.

III-B. Computing the Estimators

Due to the intricate form of the posterior, estimates cannot
be theoretically calculated. They must be extracted using
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numerical methods and stochastic samplers are especially
adequate. More precisely, the Gibbs sampler is employed
since it splits the global problem in simpler ones. It requires
to sequentially sample the a posteriori conditional laws.

e The noise parameter 7, has a Gamma conditional

T~ P e =y [y —HY Skl + )

so its sampling does not pose any difficulties.
e The PSD scale parameters ~y; also have Gamma forms

ap+P—1

Ve ™~ Vi exp =k [k lla, + B

which can be straightforwardly sampled.
e The correlation parameter 3 follows an intricate pdf

B CB) exp [BY.3(lyika)] Uom(8),

that cannot be straightforwardly sampled. The procedure is
identical to the one presented in our papers [27, 28]. It relies
on the inverse cumulative distribution function and it takes
advantage of the pre-computations of the partition function.
e The conditional posterior pdf of the texture x; reads

o~ exp— [nly-HY Sl wledli,| 0

that is a Gaussian law, and it is easy to show that the mean
p;, and the covariance X write

».1 = SIHTHS, + AL
w, = Sk S[Hg

where yp, =y —H Z#k S;x;. However, its practical sam-
pling is a very difficult task due to the high dimension of the
variable. Usually, sampling a Gaussian law requires handling
the covariance or the precision, e.g., factorization, diagonali-
sation or inversion, which are impossible here. Nevertheless,
the literature accounts for a sampling algorithm [31] by
Perturbation-Optimization (PO) and it is applicable here.

1) The Perturbation phase consists in drawing a realiza-
tion of: (1) a Gaussian white noise and (2) the prior
model for x; (computed by FFT).

2) The Optimization step relies on preconditioned gra-
dient descent or preconditioned conjugate gradient
descent (they perform similarly). The computations are
efficiently achieved through FFT and zero-forcing.

e The labels have a multidimensional categorial law:

~exp[<lly —HY S0zl +8Y (6,0

that is complicated and non separable, so, its sampling is not
an easy task. A solution is to successively sample each ¢,
conditionally on the others (and on the rest of the variables),
in a Gibbs scheme.

To this end, let us introduce the notation x}, for the image
with all its pixels identical to ¢ except for pixel p. The pixel
p in &} is the pixel p of . Let us note &, , = ||y — H:BZHQ
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that quantifies the adequation of pixel p of class k& with the
data. Sampling a label ¢, requires the probabilities:

Pr(ty = kl) o exp [~ Ep + B PRI )|

for ¥ = 1..K. To compute these probabilities, we must
evaluate the two terms of the energy. The second term is
the contribution of the prior and it can be easily computed
for each k by counting the neighbours of pixel p with label &.

Let us now focus on the first term, &, . To write this term
in a more convenient form, we introduce:

— A vector 1, € R” with null entries except for the p-th
that is equal to 1.
— The difference between the p-th pixel of the image xy,
and the one of ©: Ay, =z, — Ty p.
We then have & =i — Ay 1, so:

Eox =9y +AF ITHIHL, —2A,,11H'y  (8)

where y = y — Hz. These quantities can be easily computed
based on FFT and zero-forcing. Moreover, the residue y
can be updated from iteration to iteration and it allows for
efficient computations.

IV. RESULTS

The problem of texture segmentation is challenging, espe-
cially in the present case where (1) data are affected by blur
and noise and (2) estimation of hyperparameters including
Potts parameter is desired. The previous section proposes a
method for deconvolution-segmentation in this context and
this section gives a first numerical evaluation.

The algorithm has been run in different scenarios, several
times, from identical and different initializations: it has
shown consistent qualitative and quantitative behaviours.
Usually, it is iterated 100 times and Markov chains seem
stable after about 20 iterations (burn-in period). The esti-
mates for the labels are computed as the empirical marginal
posterior maximizers and for the other parameters as empiri-
cal posterior means. Computation time is about five minutes.

An example is given in Fig.2. It consists of an image
composed of 5 regions and containing K = 3 classes of
texture. True label and image are shown in Fig. 2a and
Fig. 2b. The observed image is given in Fig. 2c.

The algorithm produces a label configuration Fig. 2d very
similar to the true one, with only 1.2% of miss-labeled
pixels, despite the degradation of the image. The blur and
the noise are eliminated and the resulting textured patchwork
Fig. 2e strongly resembles the original image.

One of the main advantages of Bayesian approaches is
that they not only provide estimates for the unknowns, but
also coherent uncertainties. Fig. 3 illustrates our analysis
on the label estimates and their probability. Fig. 3a gives
the probabilities of the selected labels £ (i.e., the maximum
of the three probability fields shown in Fig.3c). These
probabilities are small at certain locations and it is safe to
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(e) Estimated image i

(d) Estimated labels ?

Fig. 2: Segmentation and reconstructed images.

assume that at these locations there is a smaller chance of
selecting a correct label.

This analysis can be done without the knowledge of the
true labels. In order to verify if indeed the method is more
prone to error in the area with small posterior probability,
we have compared the estimation to the true labels in a
case where they are known. We can immediately notice in
Fig. 3b that all of the miss-labeled pixels are positioned in
the areas of weaker posterior probability, shown in Fig. 3a.
This reinforces our statement concerning the interest of the
approach, due to its ability to anticipate errors.

V. CONCLUSION AND PERSPECTIVES

The paper proposes a tool for joint deconvolution-segmen-
tation dedicated to textured images. It is a very difficult prob-
lem due to the large amount of unknowns and their intricate
dependencies. The paper proposes a twofold contribution.

1) To the best of our knowledge, it is a first attempt for a
joint deconvolution-segmentation of textured images.
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(a) Probabilities (b) Miss-labeled

(c) Probability of each pixel of having label 1, 2 or 3, respectively.

Fig. 3: Link between the probability of the selected label and the
estimation error.

2) An important contribution is to also perform estimation
of the Potts parameter whereas existing papers devoted
to inversion-segmentation do not.

Moreover, our previous papers [25-28] include neither de-
convolution nor textured images.

Theoretically, the proposed method relies on a Bayesian
strategy and on optimal estimation functions. The numerical
calculations rely on a convergent scheme: the algorithm
produces samples of the posterior distribution and the es-
timates are computed from the samples. Nevertheless, the
sampling process for the full textures has also proved to be
challenging and has demanded an advanced sampling tool
based on Perturbation-Optimization. The proposed method-
ological and algorithmic original aspects have contributed
to developing a method that is both theoretically sound and
numerically efficient for solving this difficult problem.

The previous section has presented a first numerical eval-
uation. These results have shown that the method is able to
accurately segment the image, provide a good estimation for
the hyperparameters including the Potts parameter and thus
restore the original image.

From a methodological, practical and numerical stand-
point, the study leads us to several future developments.

e A first one relies on a non-Gaussian model for the
textures [32]. This would add an extra set of variables
to the texture model and sampling stage. See also [33].

o The second development is devoted to myopic deconvo-
lution [34, 35]: estimating the width of the convolution
filter along with the rest of the parameters.

o A third one presents a method based on a Swendsen-
Wang form [16,36]. It allows for graph clustering and
graph flipping (instead of single pixel flipping as in the
case of the Gibbs sampler).
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