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Abstract—Joint analysis of neuroimaging data from multiple
modalities has the potential to improve our understanding of
brain function since each modality provides complementary
information. In this paper, we address the problem of jointly ana-
lyzing functional magnetic resonance imaging (fMRI), structural
MRI (sMRI) and electroencephalography (EEG) data collected
during an auditory oddball (AOD) task with the goal of capturing
neural patterns that differ between patients with schizophrenia
and healthy controls. Traditionally, fusion methods such as joint
independent component analysis (JICA) have been used to jointly
analyze such multi-modal neuroimaging data. However, previous
JICA analyses typically analyze the EEG signal from a single
electrode or concatenate signals from multiple electrodes, thus
ignoring the potential multilinear structure of the EEG data,
and models the data using a common mixing matrix for both
modalities. In this paper, we arrange the multi-channel EEG
signals as a third-order tensor with modes: subjects, time samples
and electrodes, and jointly analyze the tensor with the fMRI and
sMRI data, both in the form of subjects by voxels matrices, using
a structure-revealing coupled matrix and tensor factorization
(CMTF) model. Through this modeling approach, we (i) exploit
the multilinear structure of multi-channel EEG data and (ii) cap-
ture weights for components indicative of the level of contribution
from each modality. We compare the results of the structure-
revealing CMTF model with those of jICA and demonstrate
that, while both models capture significant distinguishing patterns
between patients and controls, the structure-revealing CMTF
model provides more robust activation.

I. INTRODUCTION

Different neuroimaging techniques provide complementary
information about neural function/structure at different scales
[1]. Therefore, joint analyses of signals from multiple neu-
roimaging modalities are of great interest to better understand
neurological disorders [2], [3]. Functional modalities such
as electroencephalography (EEG) and functional magnetic
resonance imaging (fMRI) can be used to study the changes in
neural activities triggered by an event in both patients affected
by schizophrenia as well as healthy controls [2]. In addition to
functional methods, anatomical neuroimaging techniques such
as structural MRI (sMRI) can also capture structural differ-
ences between patients and controls [1], and since structure
underlies function, joint analysis of these three modalities is
expected to provide a more comprehensive picture.

The fusion of signals from multiple data sources is a
challenging task due to the heterogeneity of the data from
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different sources. One type of heterogeneity is the order of the
data, e.g., while multi-channel EEG signals can be represented
as a third-order tensor with modes: subjects, time samples
and electrodes, fMRI and sMRI signals are often arranged
as subjects by voxels matrices (Figure 1). The traditional
approach used for jointly analyzing such neuroimaging data,
first either matricizes the higher-order tensors [4] or selects
a single EEG electrode [2], thus ignoring the potential mul-
tilinear structures of multi-channel EEG signals. Then these
approaches use matrix factorization-based fusion methods such
as joint independent component analysis (JICA) [5], linked
ICA [6], parallel ICA [7] and transposed independent vector
analysis (tIVA) [2]. However, matrix factorization-based fusion
models need additional constraints such as orthogonality and
independence to obtain a unique model, and may fail to
capture the true factors due to those constraints [8].

In contrast, coupled matrix and tensor factorizations
(CMTF) have recently proven useful for analyzing heteroge-
neous data sets jointly and without imposing strong constraints
on the factors when the higher-order tensors have a defined
multilinear structure [8]. In addition, through the exploration
of the multilinear structure inherent to such data greater
understanding of brain activity can be achieved [9], [10], [11].
Therefore, recent studies have arranged multi-channel EEG
signals as higher-order tensors and used CMTF-type methods
to fuse EEG and magnetoencephalography [12], EEG and gaze
data [13] as well as EEG and fMRI [14], [3].

In this paper, with a goal of capturing patterns that dif-
ferentiate patients with schizophrenia from healthy controls,
we jointly analyze fMRI, sMRI and EEG data collected
during an auditory oddball task. Multi-channel EEG signals
are arranged as a third-order tensor, while fMRI and sMRI
data are represented as matrices (Figure 1). To the best of
our knowledge, the only other study that jointly analyzes
EEG and fMRI signals coupled in the subjects mode using
a CMTF model is by Hunyadi et al. [3], to study epileptic
activities. The CMTF model used in [3] assumes that all
extracted factors are shared by EEG and fMRI data. Rather
than such a CMTF model, which may fail to provide a unique
solution in the presence of both shared/unshared components
[15], we use a structure-revealing CMTF model, known as the
advanced CMTF (ACMTF) model [15], revealing the weights
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Fig. 1: A third-order tensor representing multi-channel EEG signals coupled
with fMRI and sMRI data in the form of matrices in the subjects mode.
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Fig. 2: Modeling of tensor X coupled with matrices Y and Z in the subjects
mode using a structure-revealing CMTF model.

of components in each modality to identify shared/unshared
factors and understand the contribution from each modality.
Previously, we have shown the promise of the ACMTF model
in a joint analysis of fMRI and multi-channel EEG data in
terms of capturing neural patterns that can differentiate patients
with schizophrenia from healthy controls [16]. Our contribu-
tions in this paper are: (i) In addition to fMRI and EEG,
we also incorporate sMRI data into the ACMTF model and
demonstrate that the model can capture spatial and temporal
patterns that differ between patients and controls. (ii)) We
use the ACMTF model to demonstrate that the sMRI dataset
contributes least to the model. (iii) We compare the results
using the ACMTF model to those obtained using the popular
fusion method jICA in terms of capturing patterns that differ
between the two groups and show that the ACMTF model
produces more robust results in terms of estimated differences.

II. METHODOLOGY

In this section, we briefly discuss the ACMTF and jICA
models. Let the third-order tensor X € RI*7*K with modes:
subjects, time samples and electrodes, and matrices Y &€
RIXM (subjects by voxels) and Z € RI*L (subjects by
voxels), represent the multi-channel EEG, fMRI and sMRI
data, respectively.

A. Coupled Matrix/Tensor Factorizations

Given the third-order tensor X coupled with matrices Y and
Z in the subjects mode, we can jointly factorize them using
the ACMTF model that fits a CANDECOMP/PARAFAC (CP)
model [17], [18] to tensor X and factorizes matrices Y and
Z in such a way that the factor matrix extracted from the
common, i.e., subjects, mode is the same in the factorizations
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of all data sets. The R-component ACMTF model minimizes
the following objective function:

f(\%,T,A,B,C,D.E)
=X —[NAB.ClI+[Y - ASD' ||+ Z - ATE" |*

+BIAN + BNl + Byl 0

where the columns of factor matrices have unit norm,
ie. lar | =Ibl =lc | =dv | =lle | =1 for r =
1,...,R. The CP model is denoted as [A;A,B,C] =
Zle Ara.ob,.oc,., where o indicates the vector outer product,
and A € RI*E = [a; ...ag|,B € R7*E = [b; ...bg|,C €
REXE = ¢y ...cg] correspond to factor matrices in the
subjects, time samples and electrodes modes, respectively.
X o,y € RE*D are the weights of rank-one terms in X,
Y, and Z, respectively. 3, T € R®*% are diagonal matrices
with entries of o and ~ on the diagonal. D € RM>% and
E € REXE correspond to factor matrices in the voxels mode in
fMRI and sMRI, respectively. || . || denotes the Frobenius norm
for matrices/higher-order tensors, and the 2-norm for vectors.
||.]|; denotes the 1-norm of a vector, i.e., || x|, = Zf‘:l |2,
and B > 0 is a penalty parameter. Imposing penalties on the
weights in (1) sparsifies the weights so that unshared factors
have weights close to O in some data sets. The model is
illustrated in Figure 2.

By modeling X using a CP model, we assume that com-
ponent r models a brain activity with temporal and spatial
patterns represented by b,. and c,., respectively. Multi-channel
EEG signals from each subject are a linear mixture of these R
brain activities mixed using subject-specific weights. Also, by
jointly analyzing neuroimaging data using the ACMTF model,
we assume that each component extracted from X models
a brain activity with certain temporal (b,) and spatial (c,)
signatures, and the corresponding component in Y models
that brain activity with higher spatial specificity using d,,
while the component in Z provides information about the
tissue type at a very high spatial resolution using e,. Since
the same factor matrix, A, is extracted from the subjects
mode of all data sets, subject covariations in all modalities
are assumed to be the same. Note that the significance of
the components can be assessed using a two-sample #-test on
each column of A, where the first group is the coefficients
corresponding to healthy controls and the second group is
the coefficients corresponding to patients. The CP model is
unique under mild conditions [19] and the ACMTF inherits
uniqueness properties from CP [20]. In the presence of both
shared/unshared components, 1-norm penalties on the weights
help to obtain unique solutions [15].

B. JICA

An alternative approach to jointly analyze X, Y and Z
is to use a matrix factorization-based fusion approach by
matricizing X in the subjects mode as a subjects by time
samples X electrodes matrix, denoted as X(l).
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Fig. 3: Components from ACMTF that remain significant after a Bonferroni correction, p < 0.005. Reported p-values are not corrected for multiple
comparisons. b, d, and e, corresponding to the fime samples mode in EEG and voxels modes in fMRI and sMRI are plotted. For EEG plots, b, is plotted
in red while green dashed plots show signals from individual electrodes averaged across all subjects. The fMRI and sMRI plots are z-maps, thresholded at
z = 2.7, where red indicates an increase in controls over patients and blue indicates an increase in patients over controls.

JICA concatenates matrices representing the data from
different modalities and models the constructed matrix using
an ICA model as follows:

X1 Y Z] = AS )

where, for an R-component ICA model, A € R/*® corre-
sponds to the mixing matrix, similar to the factor matrix in
(1), and S € REX(JK+M+L) represents the source signals.
Note that the subject covariations across all data sets, i.e.,
modalities, are assumed to be the same in jJICA as in ACMTF,
since the same mixing matrix is shared across the datasets.
However, in this case the model does not include an adaptive
estimation of contributions from each modality as in ACMTFE.
The rows of S correspond to patterns of brain activity and are
assumed to be statistically independent.

In the next section, we compare ACMTF and jICA in
terms of their ability to extract meaningful patterns that differ
between patients with schizophrenia and healthy controls.

III. EXPERIMENTS
A. Data

The EEG, fMRI and sMRI data were separately collected
from 21 healthy controls and 11 patients with schizophrenia
during an auditory oddball task, where subjects pressed a
button when they detected an infrequent target sound within
a series of auditory stimuli. For the fMRI data, we computed
task-related spatial activity maps for each subject, calculated
by the general linear model-based regression approach using
the statistical parametric mapping toolbox [21]. By making use
of these features, we constructed a matrix of 32 subjects by
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60186 voxels representing the fMRI signals. For the EEG data,
for each electrode, we averaged small windows around the
target tone across the repeated instances, deriving event-related
potentials. Out of 64 electrodes in total, we used multiple
electrodes from the frontal, motor and parietal areas, i.e., AF3,
AF4, Fz, T7, C3, Cz, C4, T8, Pz, PO3 and PO, based on our
previous results [16], which demonstrate better interpretability
using this subset rather than all electrodes. Multi-channel EEG
signals were then arranged as a third-order tensor: 32 subjects
by 451 time samples by 11 electrodes. For the SsMRI data, we
computed probabilistically segmented gray matter images for
each subject and by using these features formed a matrix of
32 subjects by 306640 voxels. For more details, see [2].

B. Experimental Setting

Before the analysis, we mean-centered the third-order EEG
tensor across the time mode, and scaled within the subjects
mode by dividing each horizontal slice by its standard de-
viation. The fMRI and sMRI data were also preprocessed by
mean-centering each row and dividing each row by its standard
deviation. For both models, the data sets were preprocessed in
nearly the same way. The steps in which they differ are: (i) in
JICA, (before preprocessing) the EEG data was repeated ten
times resulting in a third-order tensor of size 32 x 4510 x 11
to make the number of samples approximately the same
order as the fMRI and sMRI data after unfolding, (ii) in
structure-revealing CMTF, (after preprocessing) each data set
was divided by its Frobenius norm to give equal importance
to the approximation of each data set in (1).

In order to fit the ACMTF model, we use ACMTF-OPT [15]
from the CMTF Toolbox and the nonlinear conjugate gradient
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Fig. 4: Components from jICA that remain significant after a Bonferroni correction, p < 0.005. Reported p-values are not corrected for multiple comparisons.
Parts of s,- corresponding to the time samples for each electrode in EEG and voxels in fMRI and sMRI are plotted. In EEG plots, green dashed plots show
signals from individual electrodes averaged across all subjects. The fMRI and sMRI plots are z-maps, thresholded at z = 2.7, where red indicates an increase
in controls over patients and blue indicates an increase in patients over controls.

algorithm from the Poblano Toolbox. The penalty parameter is
set to 8 = 1073. A number of random initializations are used
and, after making sure that the model is unique, the solution
corresponding to the minimum function value is reported.

For jICA, we unfold the preprocessed EEG tensor in the
subjects mode and concatenate the resulting matrix with fMRI
and sMRI matrices. The concatenated matrix is modeled using
an ICA algorithm based on entropy bound minimization [22],
which makes use of a flexible density model, since the richer
data distribution encountered as a result of concatenation
benefits from such flexibility [2]. We fit the model using
a number of initializations and report the most stable run
determined by a minimum spanning tree-based approach [23].

The number of components, R, is empirically chosen to be
10 for both models. Note that the optimal R may be different
for the two models. In order to probe this, for ACMTF, we
increased IR up to 15 and found that increasing R introduced
components with small weights, i.e., < 0.1, in sMRI and made
it difficult to get a unique solution. For jICA, we observed
similar significant components for & = 15. An extensive study
on order selection is a topic of future research.

C. Results

As shown in Figures 3 and 4, both ACMTF and jICA
captured significant components that can differentiate between
patients and controls.

Out of the 10 components found by ACMTEF, Figure 3
displays the components, 1 and 3, with statistically significant
p-values that survive the Bonferroni correction. The first
component, shown in Figure 3(a), whose EEG corresponds
to the N2-P3 transition, shows higher motor activation for the
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controls over the patients and higher parietal activation in the
patients over the controls. For this component, from the SMRI,
we note that there is an increased concentration of gray matter
throughout the parietal lobe for controls over patients and a
decrease in concentration of gray matter in certain sections of
the cerebellum for controls versus patients. This component
is very similar to a component found using only the fMRI
and EEG data [16]; however, we note that the structure of the
default mode network (DMN) activation shown in the fMRI
plot is much clearer when only the fMRI and EEG data are
analyzed. The second component, displayed in Figure 3(b),
whose EEG component describes the P2 and P3 peaks, shows
higher fMRI activation in the superior parietal cortex and the
visual cortex for the patients over the controls. This component
is nearly identical to a component found when only the fMRI
and EEG data were analyzed [16]. However, from this joint
analysis we find that this component is associated with an
increase in concentration of gray matter in controls over
patients in sections of the parietal lobe and cerebellum. We
should note that the significance of both components is lower
in this study than it was in joint analysis of only fMRI and
EEG. This fact has previously been noted [2] and combined
with the fact that weights of the rank-one terms in sMRI are
almost always lower than the ones in fMRI and EEG, as shown
in Figure 5, seems to imply that the sMRI data contributes less
to the results and is itself less discriminative than the fMRI and
EEG data. This observation correlates with the result found in
[24], which also showed a weaker contribution from the sMRI.

Similarly, as shown in Figure 4, jICA also captures two
components with statistically significant p-values that survive
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Fig. 5: Weights of the rank-one components in EEG, fMRI and sMRI
extracted using a 10-component ACMTF model (for several runs returning
the same function value, and error bars in red show the change in weights in
different runs).

the Bonferroni correction. The first component, shown in Fig-
ure 4(a), whose EEG component describes the N2 peak, shows
higher fMRI activation in the superior parietal cortex for the
patients over the controls. The sSMRI portion of this component
shows both increased as well as decreased concentrations of
gray matter for controls versus patients in the cerebellum. This
component shows some similarities, especially in the fMRI
and parts of the EEG with component 3 in ACMTF. The
second significant component found using jICA, displayed in
Figure 4(b), whose EEG component describes the N1, P2,
N2 peaks and the N2-P3 transition, shows increased fMRI
activation in the motor cortex and temporal lobe for the con-
trols versus the patients. This component also shows increased
gray matter concentration in the cerebellum in controls versus
patients. This component shares similarities with a component
found in a JICA analysis of similar data where only the Cz
channel was analyzed [2].

IV. CONCLUSION

In this paper, we have addressed the problem of jointly
analyzing neuroimaging data from multiple modalities using
the ACMTF model. This model enables the processing of
multi-channel EEG signals as third-order tensors and the deter-
mination of the relative contribution from each modality. We
compared the ACMTF model with the popular fusion method,
JICA. Our results on joint analysis of EEG, fMRI and sMRI
demonstrates that, while both jICA and the ACMTF model
capture meaningful distinguishing patterns between patients
with schizophrenia and healthy controls, ACMTF, with its less
restrictive model that estimates contribution of each modality,
captures more robust regions of activation, particularly in the
SMRI data.

These promising results motivate a more comprehensive
comparison of CMTF-based approaches with jICA and more
general fusion methods, such as tIVA, promising to elucidate
the comparative advantages and limitations of all these fusion
methods.
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