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Abstract—We propose a method for optimizing an acoustic
feature extractor for anomalous sound detection (ASD). Most
ASD systems adopt outlier-detection techniques because it is
difficult to collect a massive amount of anomalous sound data. To
improve the performance of such outlier-detection-based ASD,
it is essential to extract a set of efficient acoustic features
that is suitable for identifying anomalous sounds. However, the
ideal property of a set of acoustic features that maximizes
ASD performance has not been clarified. By considering outlier-
detection-based ASD as a statistical hypothesis test, we defined
optimality as an objective function that adopts Neyman-Pearson
lemma; the acoustic feature extractor is optimized to extract a set
of acoustic features which maximize the true positive rate under
an arbitrary false positive rate. The variational auto-encoder
is applied as an acoustic feature extractor and optimized to
maximize the objective function. We confirmed that the proposed
method improved the F-measure score from 0.02 to 0.06 points
compared to those of conventional methods, and ASD results of a
stereolithography 3D-printer in a real-environment show that the
proposed method is effective in identifying anomalous sounds.

Index Terms—Anomalous sound detection, acoustic feature,
objective function, deep neural network, Gaussian mixture model.

I. INTRODUCTION

Much attention has recently been on anomalous sound
detection (ASD) such as audio surveillance [1], [2], [3], [4] and
equipment inspection [5], [6]. The goal with ASD is to prevent
accidents and/or mechanical failures by detecting sounds that
do not normally occur, i.e., anomalous sound [7]. In this study,
we investigated an ASD for industrial equipment by focusing
on machine-operating sounds.

Since anomalous sound due to equipment failure rarely
occurs, it is difficult to collect a massive amount of anomalous-
sound data [7]. Therefore, most anomaly-detection systems
adopt an outlier-detection technique (Fig. 1) [8], [9], [10],
[11]. In outlier-detection-based ASD, the deviance between
the normal model and a set of acoustic features extracted
from an observed sound is calculated (i.e., anomaly score).
The observed sound is identified as an anomalous sound when
the anomaly score is higher than the pre-defined threshold
value. Therefore, it is essential to extract a set of informative
acoustic features, which provides a small anomaly score for
normal sound and large anomaly score for anomalous sound.

To extract a set of acoustic features for the sound-
identification problem, feature-extractor-optimization methods
have been actively investigated [12], [13], [14]. These studies
have revealed that it is necessary to determine both spectral
and temporal characteristics to accurately identify various
sounds. In recent years, deep neural networks (DNNs) have
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Fig. 1. Procedure of anomaly sound detection based on outlier detection

been used as a feature extractor to determine spectro-temporal
characteristics [15], [16], and Chakrabarty et al. have reported
that the restricted-Boltzmann-machine-based feature extractor
is efficient for improving ASD accuracy [17]. Although de-
termining the spectro-temporal characteristics is a requirement
of acoustic features, the optimal acoustic features to maximize
ASD performance has not been clarified.

We propose a method for optimizing an acoustic feature
extractor for anomalous sound detection. By considering
outlier-detection-based ASD as a statistical hypothesis test,
we defined optimality as an objective function that adopts
Neyman-Pearson lemma [18]; the acoustic feature extractor is
optimized to extract a set of acoustic features which maximize
the true positive rate under an arbitrary false positive rate. A
DNN-based feature extractor is optimized with the proposed
method by applying the variational auto-encoder (VAE) [19].
We experimentally show that ASD performance improves
by optimizing the DNN-based feature extractor using the
proposed method.

The rest of this paper is organized as follows. Section
II briefly introduces outlier-detection-based ASD. Then, in
Section III, we discuss our proposed method for optimizing
a feature extractor and its implementation. After investigating
the performance of the proposed method in Section IV, we
conclude this paper in Section V.

II. DETECTION PROCEDURE OF ANOMALOUS SOUND
BASED ON OUTLIER-DETECTION

Anomaly sound detection is an identification problem on
whether the sound emitted from the target machine Xω,τ ∈
CΩ×T is a normal sound or anomalous one. Here ω =
{1, 2, ...,Ω} and τ = {1, 2, ..., T} denote the frequency and
time indices, respectively. In this section, we briefly introduce
the procedure of outlier-detection-based ASD (Fig. 1).
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First, a set of acoustic features fτ ∈ RD is extracted as

fτ = F(xτ ), (1)

where F is an acoustic feature extractor. To determine the
spectro-temporal characteristics of the observed sound, the
input vector xτ is obtained by concatenating several frames
of observation by accounting for previous and future frames,
as xτ =

(
Xτ−Pb

,Xτ−Pb+1, ...,Xτ+Pf

)⊤, where Xτ =
ln (|X1,τ |, |X2,τ |, ..., |XΩ,τ |), ⊤ denotes transposition, and Pb

and Pf are the context window size of previous and future
frames, respectively. As a simple implementation of F , fully-
connected DNN [20] can be used as

F(xτ ) = W(L)h(L−1)
τ + b(L), (2)

h(l)
τ = σθ

{
W(l)h(l−1)

τ + b(l)
}
, (3)

where l, L, W(l), and b(l) are the layer index, the number of
layers, the weight matrix, and bias vector, respectively. The
function σθ is a nonlinear activation function, such as the
sigmoid function. The input vector xτ is passed to the first
layer of the network as h

(1)
τ = xτ .

Next, the anomaly score L(fτ ) is calculated as the negative-
log-likelihood of the normal model

L(fτ ) = − ln p(fτ |z = 0), (4)

where p(f |z = 0) is the normal model, which is the prob-
ability density function (PDF) of the set of acoustic features
extracted from normal sound, z ∈ {0, 1, ...,∞} is the index of
types of machine which emitted Xω,τ , and z = 0 denotes Xω,τ

is emitted from the target machine. As a simple implementa-
tion of p(f |z = 0), a Gaussian mixture model (GMM) can be
used as p(f |z = 0) =

∑C
c=1 wcN (f |µc,Σc), where C is the

number of mixtures, N is the Gaussian distribution, and wc,
µc, and Σc are the mixing weight, mean vector, and covariance
matrix of the c-th Gaussian distribution, respectively. Finally,
when L(fτ ) exceeds the pre-defined threshold value ϕ, Xω,τ

is determined as anomalous sound;

H(L(fτ ), ϕ) =

{
0 (Normal sound) L(fτ ) ≤ ϕ

1 (Anomalous sound) L(fτ ) > ϕ
. (5)

In outlier-detection-based ASD, it is necessary to optimize
F to extract a set of informative acoustic features, which
provides a small anomaly score for normal sound and a
large anomaly score for anomalous sound. However, since the
optimal set of acoustic features to maximize ASD accuracy
has not been clarified, the objective function for F has not
been established.

III. PROPOSED METHOD

A. Basic property of optimal set of acoustic features for
anomaly sound detection

To optimize a system, engineers define the optimality of
the function output, i.e., objective function. The system can
be optimized by feeding back the evaluation of its output
in accordance with the optimality. Therefore, to optimize the
system more efficiently, it is necessary to define a suitable

optimality of the problem. In this section, to optimize F , we
discusses the optimality of the set of acoustic features (i.e.,
DNN outputs) for outlier-detection-based ASD.

From (4) and (5), the observed sound is identified as an
anomalous sound when the following inequality is satisfied.

p(F(xτ )|z = 0) < exp(−ϕ). (6)

Since ϕ is assumed to be sufficiently large, anomalous sound
can be defined as “sound whose acoustic features cannot be
regarded as a sample generated from the normal model.” Then,
it can be regarded as outlier-detection-based ASD, which is a
statistical hypothesis test. The observed sound is identified as
an anomalous sound when the following hypothesis is rejected.

Null hypotheses: the set of acoustic features F(x) is a sample
from normal model p(F(x)|z = 0).

Thus, we consider that the optimal property of the statistical
hypothesis test can be applied to the objective function.

The Neyman-Pearson lemma [18] denotes the criterion
of the most powerful hypothesis test between two simple
hypotheses; the most powerful test function maximizes the true
positive rate (TPR) with a constraint under the false positive
rate (FPR) equals ρ. The TPR and FPR can be calculated as

TPR(F , ϕ) = E [H(L(F(x)), ϕ)]x|z ̸=0 , (7)

FPR(F , ϕ) = E [H(L(F(x)), ϕ)]x|z=0 , (8)

respectively, and E[·]x is the expectation operator for x. We
define a threshold value ϕρ that satisfies FPR(F , ϕρ) = ρ,
then the most powerful test function maximizes the following
equation

J = TPR(F , ϕρ) + {ρ− FPR(F , ϕρ)} . (9)

To derivate the objective function for F , we aim to max-
imize (9) with respect to F . To simplify the problem, we
consider ϕρ as a constant value that is irrelevant with F . Then,
the objective function for F can be written as

F ← arg max
F

TPR(F , ϕρ)− FPR(F , ϕρ). (10)

In the following sections, a DNN-based feature extractor is
optimized using (10) by applying the VAE [19].

B. Acoustic feature-extractor optimization using variational
auto-encoder

To numerically optimize F , (10) is reformed to differ-
entiable form with respect to F . Then, a gradient method
can be used to optimize F . First, we assume that F and
p(F(xτ )|z = 0) are differentiable composite functions with
respect to the parameters of F , e.g., full-connected DNN and
GMM, respectively. Next, H(L(xτ ), ϕ) is approximated to
differentiable form using the sigmoid function as

H̃(L(F(x))), ϕ) = 1

1 + exp{L(F(x))− ϕ}
. (11)

Then, (10) can be reformed to differentiable form with respect
to the parameters of F as
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Fig. 2. Concept of optimization procedure of proposed method

F ← arg max
F

1

Ka

Ka∑
k=1

H̃(L(F(x(a)
k )), ϕρ)

− 1

Kd

Kd∑
k=1

H̃(L(F(x(d)
k )), ϕρ),

(12)

where, to optimize F using training data, the expectations in
the TPR and FPR are replaced with the arithmetic mean of
the training data of normal sound x

(d)
k and anomalous sound

x
(a)
k as

D = {x(d)
k ∈ RQ|k = 1, ...,Kd}, (13)

A = {x(a)
k ∈ RQ|k = 1, ...,Ka}, (14)

where Q = Ω × (Pb + Pf + 1) and Kd,Ka are the number
of training samples of normal sound and anomalous sound,
respectively. In (12), to satisfy FPR(F , ϕρ) = ρ, ϕρ is set as
the ⌊ρKd⌋-th value of sorted L(F(x(d)

1,...,Kd
)) in descending

order, where ⌊·⌋ is the floor function.
Unfortunately, since it is difficult to collect anomalous

sound data, A would not be massive enough to approximate
the expectation by arithmetic mean. To accurately calculate the
arithmetic mean, anomalous sound data are generated using a
sampling algorithm. In outlier detection, anomalous sound is
defined as sound whose acoustic feature cannot be regarded as
a sample generated from the normal model. Thus, we define
the PDF of the set of acoustic features of anomalous sound
p(F(x)|z ̸= 0) as

p(F(x)|z ̸= 0) =
∞∑
i=0

p(F(x)|z = i)− p(F(x)|z = 0),

≈ p(F(x))− p(F(x)|z = 0), (15)

where the priori probability p(z) was omitted. In the first
term of (15), the machine type index z is marginalized. Thus,
p(F(x)) would be regarded as the PDF of the set of acoustic
features extracted from various machine sounds emitted from
many other equipments recorded in other factories as

O = {x(o)
k ∈ RQ|k = 1, ...,Ko}. (16)

Hence, by calculating p(F(x)) using O, p(F(x)|z ̸= 0) can
be approximately calculated using (15).

In this study, A was generated using p(F(x)|z ̸= 0) and an
inverse function of the feature extractor G. First, by using a

Algorithm 1 Training algorithm of proposed method
Input: D and O
Output: F and p(F(x)|z = 0)
Initialize F , G, and p(F(x)|z = 0)
while repeat for designated times do
x
(d)
k and x

(o)
k ← Random draw from D and O

F and G ← Minimize (19) and (20) using x
(o)
k

f
(d)
1,...,Kd

← F(x(d)
1,...,Kd

)

p(F(x)|z = 0)← GMM-EM-algo. using f
(d)
1,...,Kd

ϕρ ← ⌊ρKd⌋th value of descend sorted L(f (d)
1,...,Kd

)

x
(a)
k ← Generate K samples using Algorithm 2 and (18)
F ← Maximize (12) x(d)

k and x
(a)
k

end while

sampling algorithm, the set of acoustic features of anomalous
sound f̃

(a)
k is generated as

f̃
(a)
k ∼ p(F(x))− p(F(x)|z = 0), (17)

where ∼ denotes sampling from the right-hand-side distribu-
tion. Next, A is generated using an inverse function of feature
extractor G as

x
(a)
k ← G(f̃ (a)

k ). (18)

To generate f̃
(a)
k and A easily and accurately, F and G are

implemented using the VAE [19], as shown in Fig. 2. In our
implementation, F(xk) outputs fk (i.e. mean vector) and its
variance σ(xk) = (σk,1, ..., σk,D)

⊤, and F and G are trained
to minimize the following reconstruction error

E =

Ko∑
ko=1

||G(ζ(o)
k )− x

(o)
k ||

2, (19)

with a constraint as p(f (o)|x(o)) = N (f (o)|0D, ID), where
0D and ID are the zero-vector and identity matrix of size D,
ζ
(o)
k = f

(o)
k + σ(x

(o)
k ) ⊙ ϵk, ϵk ∼ N (ϵk|0D, ID), and ⊙ de-

notes the element-wise product. The constraint is achieved by
minimizing the Kullback-Leibler divergence (KLD) between
p(F(x)) and N (f |0D, ID) as

Ko∑
k=1

KL
[
p(f

(o)
k |x

(o)
k )||N (f |0D, ID)

]
=

1

2

Ko∑
k=1

D∑
d=1

(
1 + ln((σ

(o)
k,d)

2)− (f
(o)
k,d)

2 − (σ
(o)
k,d)

2
). (20)

In this study, instead of using (17), the simple generation
algorithm shown in Algorithm 2 was used. In addition, F
and G were implemented using fully-connected DNNs, and
the symmetric network architecture of F was used for that
of G. Then, F and G were trained to maximize (12) and to
minimize (19) and (20), alternately.

C. Training procedure
We now describe the details of the training procedure shown

in Algorithm 1. The algorithm inputs are training data of
normal sound D and various sounds O, and outputs are F
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TABLE I
EVALUATION RESULTS

SNR (dB) -10 dB -5 dB 0 dB 5 dB
score Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

AE 0.62 0.98 0.76 0.94 0.76 0.84 0.95 0.87 0.91 0.98 0.91 0.94
VAE 0.51 0.94 0.67 0.52 1.0 0.68 0.61 0.98 0.75 0.86 0.84 0.85
PROP 0.76 0.91 0.82 0.84 0.96 0.90 0.96 0.89 0.93 0.92 1.0 0.96

Algorithm 2 Generation algorithm of anomalous sound
Input: p(F(x)|z = 0) and ϕρ

Output: f̃
(a)
k

while L(f̃ (a)
k ) ≤ ϕρ do

f̃
(a)
k ∼ N (0D, ID)

end while

and p(F(x)|z = 0). In this study, p(F(x)|z = 0) was
implemented using a GMM.

First, K-samples of normal sounds x(d)
k and various sounds

x
(o)
k are randomly drawn from D and O, i.e., mini-batches.

Then, F and G are updated one step to decrease (19) and
(20) using x

(o)
k by stochastic gradient descent. Next, sets of

acoustic features f
(d)
1,...,Kd

is extracted from all training data
of normal sound D. Then, the normal model p(F(x)|z = 0)
is updated with the expectation-maximization (EM)-algorithm
for GMM using f

(d)
1,...,Kd

. After updating the normal model,
in order to set the threshold value ϕρ, anomaly scores of the
training data of normal sound are calculated as L(f (d)

1,...,Kd
)

and sorted in descending order. Then ϕρ is set as the ⌊ρKd⌋-
th value of sorted anomaly scores. Finally, K-samples of
anomalous sounds x

(a)
k are generated with Algorithm 2 and

(18), then F is updated one step to increase (12) using x
(d)
k

and x
(a)
k by stochastic gradient ascent.

IV. EXPERIMENTS

A. Experimental conditions

We conducted experiments to evaluate the performance of
the proposed method (PROP). As comparison methods, we
applied the auto-encoder (AE) and VAE (VAE) for F .

The dimension of the number of output-units of F was
D = 32 and the context window sizes were Pb = Pf = 10.
To avoid over-fitting, Xω,τ was compressed using B = 64
mel-filterbanks. Thus, the dimension of input x was Q =
64 × (Pb + Pf + 1) = 1344. The architecture of F was
as follows: the number of hidden layers was 3, the number
of units in each hidden layer was 512, and the rectified
linear unit was used as the activation function. The F and G
were initialized with values that follow a normal distribution.
The Adam method [21] was used as a gradient method, and
L2 normalization with parameter λ = 10−5 was used for
weight normalization [22]. The dropout method was used
with the dropout probabilities of the input and hidden layers,
which were 0.2 and 0.5, respectively. The mini-batch size was
K = 100. After 500-epoch training, the training algorithm
was terminated. The FPR parameter heuristically determined
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Fig. 3. ROC curves of each SNR condition

ρ = 0.05. For the normal model, the number of Gaussian
mixtures was C = 16 and the diagonal covariance matrix was
used to avoid ill-condition. Both D and O were used to train
the F of the comparison methods.

B. Experiment data

Since it is difficult to collect a massive amount of test
data including anomalous sounds, synthetic anomalous data
were used for this evaluation. Normal sounds emitted from
an engine in real-environment were used as training data of
normal sound D. Other-type-machine sounds recorded in other
factories and machines were used as the various-sound data
O. The size of D and O were 1 and 20 hours, respectively.
These sounds were recorded at a 16-kHz sampling rate.
Anomalous sounds consisted of 45 machine-operating sounds;
15 sustainable sounds, such as engine rotation sound, 15 time-
varying sounds, such as engine acceleration sounds, and 15
sudden sounds such as collision of parts. These anomalous
sounds were mixed with the normal sounds at signal-to-noise
ratios (SNRs) of -10, -5, 0 and 5 dB.

C. Results

We report precision (Prec.), recall (Rec.), and F-measure
score (F1) for the anomaly-detection results from all methods.
To evaluate these scores, the threshold value, which maximizes
the average score of Prec., Rec., and F1, was used.

The results are listed in Table I and receiver operating
characteristic (ROC) curves are shown in Fig. 3. Overall, the
proposed method exhibited the highest F1 scores, which is a
weighted average of Prec. and Rec., compared with the other
methods. In addition, Fig. 3 shows that the proposed method
improved the TPR compared with the conventional methods
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Fig. 4. ASD results on real environment. (a) waveform, (b) spectrogram, (c)
acoustic feature, and (d) anomaly score.

even at a low FPR. This may be because the proposed method
exhibited a high TPR with a constraint under the low FPR
(ρ). These results suggest that the proposed method is more
effective than comparison methods.

D. Verification experiment on real environment
We conducted a verification experiment on a real envi-

ronment. The target equipment was a stereolithography 3D-
printer. We collected an actual anomalous sound; a sound
caused by collision of the sweeper and formed object. The 3D-
printer stopped 5 minutes after this anomalous sound occurred
due to the collision.

Normal sounds emitted from the 3D-printer were collected
for 30 minutes and used as training data D. We used the same
data as various machine operating sounds O in the objective
experiment. The anomalous and normal sounds were recorded
at a 16-kHz sampling rate. Since the size of the training data
was small, the architecture of F was as follows: the number
of hidden layers was 2 and number of units in each hidden
layer was 256. The other conditions were the same as in the
objective experiment.

Figure 4 shows the detection results. From the waveform
and spectrogram measurements (Figs. 4 (a) and (b), respec-
tively), the anomalous sound could not be clearly identified
because the magnitude of the anomalous sound was small.
On the other hand, we observed clear changes due to the
anomalous sound in the extracted acoustic feature, as shown in
Fig. 4 (c). In addition, the anomaly score also increased due to
anomalous sound, and the anomalous sound could be identi-
fied. This result suggests that the proposed method is effective
in identifying anomalous sounds in a real environment.

V. CONCLUSIONS

We proposed a method of optimizing an acoustic fea-
ture extractor for anomalous-sound detection. By considering
outlier-detection-based ASD as a statistical hypothesis test,
we defined optimality as an objective function that adopts
Neyman-Pearson lemma [18]; the acoustic feature extractor is
optimized to extract a set of acoustic features which maximize
the true positive rate under an arbitrary false positive rate. The

DNN-based feature extractor was optimized with the proposed
method by applying the VAE [19]. In the experiments, we
found that the F1 score of the proposed method improved from
0.02 to 0.06 points and could identify anomalous sound in a
real environment. Thus, it can be concluded that the proposed
method is effective for feature-extractor optimization for ASD.
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