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Abstract—Colored coded apertures (CCA) have been intro-
duced in compressive spectral imaging (CSI) systems entail-
ing richer coding strategies. CCA incorporate a wavelength-
dependent coding procedure, which not only achieves spatial
but also spectral coding in a single step. Even though the
use of the CCA offers significant advantages and could also
be applied to compressive spectral video sensing, this later
application still exhibits diverse challenges originated by the
temporal variable. The scene motion during the acquisition
yields to motion artifacts such that these artifacts get aliased
during the video reconstruction, damaging the entire data. As a
result, multiresolution approaches have been proposed in order
to alleviate the aliasing and enhance the video reconstruction.
In this paper, it is proposed an algorithm to generate temporal
colored coded aperture patterns that allow to sense the spatial,
spectral and temporal information in an uniform way such
that each spectral frame is spatially sensed at least once. In
addition, it is proposed a multiresolution approach in the spectral
multiplexing system allowing to extract optical flow estimates to
address a higher quality reconstruction. Simulation results show
an improvement up to 6 dB in terms of peak-signal to noise ratio
(PSNR) in the reconstruction quality with the multiresolution
approach using the designed patterns with respect to traditional
random structures.

Keywords—Spectral video, compressive spectral video, coded
aperture design, optical flow, optical filter

I. INTRODUCTION

Compressive spectral imaging (CSI) is an undersampling
framework having faster data cube acquisition than full sam-
pling techniques [1]. CSI exploits the fact that spectral images
are sparse, or highly compressible, in some basis representa-
tion, i.e, most of the energy of the signal is concentrated in
a small number of coefficients [2]. Formally, a spectral image
is denoted by F ∈ RN×N×L, with N ×N spatial pixels and
L spectral bands. Then, the vectorized form f ∈ RN ·N ·L of
F is K-sparse on a given basis Ψ, such that f = Ψθ can
be estimated by a linear combination of just K vectors of
Ψ. CSI sensors that measure the spectral information in a
single shot have been developed based on undersampling and
constrained reconstruction. Snapshot cameras as the coded
aperture snapshot spectral imager (CASSI) [3], its three-

dimensional version named colored coded aperture snapshot
spectral imager (C-CASSI) [4], [5], the prism-mask video
imaging spectrometry (PMVIS) [6], the snapshot colored
compressive spectral imager (SCCSI) [7], and the single pixel
camera spectrometry (SPCS) [8] are examples of CSI systems.
There are other snapshot systems designed to capture spectral
video, or spectral dynamic scenes, in a compressive format
such as the single dispersive CASSI extended to video (video-
CASSI) [9], the hybrid spectral video imaging system (HVIS)
[10] and the high-speed hyperspectral (HSHS) [11] video
acquisition. Furthermore, snapshot spectral systems such as
C-CASSI, using random-colored coded apertures, have been
extended to capture spectral images at video rates [12]. The
advantage of C-CASSI relies on the colored coded apertures
(CCA) that improve the quality of the reconstruction in terms
of peak-signal to noise ratio (PSNR) while reducing the num-
ber of snapshots. Basically, snapshot systems are composed
by the encoding and dispersion elements. Particularly, an
encoding element such as the CCA incorporates a wavelength-
dependent coding procedure that exhibits a spectrally richer
optical system. The CCAs are composed by a set of optical
filters that modulate the light with a specific spectral response
[4], [5]. However, the CCAs have been designed and optimized
just for static spectral images.

On the other hand, in the recover step, compressive spectral
video entails diverse challenges originated by the temporal
variable. The scene motion during the acquisition yields to
motion artifacts, and these artifacts get aliased during the
video reconstruction damaging the entire data [13]. As a result,
multiresolution approaches have been proposed in order to
alleviate the aliasing and enhance the video reconstruction.
This work presents an algorithm to design temporal coded
apertures based on a finite set of optical filters for compressive
spectral video. The designed patterns allow sensing the spatial,
spectral and temporal information in an uniform way such
that each spectral frame is spatially sensed at least once. In
addition, the designed patterns permit the reconstruction of a
low spatial resolution version, or preview, using few iterations
of a `2 − `1-norm recovery algorithm. Then, the temporal
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correlation between frames is estimated from the preview in a
similar way as in the spatial (Compressive Sensing Multi-scale
Video, CS-MUVI)[14] and temporal (Programmable Pixel
Compressive Camera, P2C2)[15] multiplexing approaches.
Thereby, the temporal correlation is imposed to restrict the
inverse problem of the high resolution video reconstruction.
Simulations show an improvement of up to 6 dB of PSNR
with the multiresolution approach using the designed patterns.

II. COMPRESSIVE SPECTRAL VIDEO SENSING

A. Mathematical sampling model

In discrete form, a spatio-spectral video can be expressed
as F ∈ RN×N×L×D, with N ×N spatial pixels, L spectral
bands and D frames. Mathematically, the sensing process of
F using video-CASSI can be modeled as the linear projection
of the vectorized form of the source f ∈ Rn, with n = N2LD,
onto a sensing matrix H as
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and d = 0, ..., D − 1, where gd, Hd and fd represent the
measurements, the sensing matrix and the vectorized-form of
the spectral video for the d-th frame, respectively. Then, Eq.(1)
can be succinctly expressed as

g = Hf = PTf , (2)

being g ∈ Rm with m = (N + L− 1)ND the compressive
measurements, and H ∈ Rm×n the sensing matrix that models
the spectral multiplexing system. Notice that the compression
is just performed in the spectral component, i.e, for each
measured spectral frame gd are obtained (N + L − 1)N
pixels. The matrix H accounts for dispersion (P ∈ Rm×n)
and coding (T ∈ Rn×n) effects [5]. More precisely, the
dispersion matrix P is an m×n rectangular matrix composed
by 1-valued N2 × N2 diagonal matrices. The T matrix
is a block-diagonal matrix that can be expressed as T =
blckdiag{(T̃0)T , ..., (T̃D−1)T }T , where blckdiag{·} denotes
a block-diagonal concatenation and T̃d is given by

T̃d =
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(3)
where diag(tdk) is a N2×N2 diagonal matrix whose entries are
the coded aperture values for k = 0, ..., L − 1. Traditionally,
the coded aperture entries are selected at a random Gaussian or
Bernoulli distribution, and the entries satisfy td0 = td1 =, ...,=

tdL−1 for tdk ∈ {0, 1}. As a result, all the spectral pixels are
blocked (tdk = 0) or pass through (tdk = 1) for each spatial
position of the coded aperture. This class of coded apertures
is known as block-unblock coded apertures. On the other hand,
in the wavelength-dependent colored coded apertures, the CCA
pixels correspond to a filter which can operate on the spectral
axis as frequency-selective filters, i.e. as low pass (L), band
pass (B) or high pass (H) optical filters.

Observe that in Eq. (2), f can be expressed as f = Ψθ
where Ψ is the representation basis. Specifically, for spectral
video, the basis Ψ can be constructed as a Kronecker product
between different basis as Ψ = Ψ1 ⊗Ψ2 ⊗Ψ3 ⊗Ψ4, such
that the four dimensional basis exploits the correlation between
the spatial, the spectral and the temporal information of the
spectral video [2]. Commonly used bases include Wavelet,
Cosine, Curvelet transforms and trained dictionaries [16], [17].

B. Multiresolution approach

Compressive video reconstruction exhibits a lot of chal-
lenges that compressive “static” imaging does not. The scene
motion during the acquisition yields motion artifacts such that
these artifacts get aliased during the video reconstruction dam-
aging the entire data [13]. Multiresolution approaches have
been proposed in order to alleviate the aliasing and enhance
the video reconstruction. Therefore, the idea of interpret data
at multiple resolutions have been entailed as a “chicken-and-
egg” problem, which states that reconstructing a high-quality
CS video could be obtained adding temporal correlation as
motion compensation, and computing motion compensation
requires the knowledge of the full video. Previous works have
proposed to compute a preview reconstruction to estimate the
motion field in the video such that it can be used to achieve
a high quality reconstruction. Specifically, approaches as the
spatial multiplexing system known as CS-MUVI (Compressive
Sensing Multi-scale Video) and the temporal multiplexing
system known as P2C2 (Programmable Pixel Compressive
Camera) have been proposed. However, these frameworks have
been focused to compressive video, disregarding the spectral
component of the scene. Thereby, in this paper, the preview
reconstruction strategy is addressed in a spectral multiplexing
system by obtaining an enhancement in the high-resolution
reconstructed spectral video.

III. TEMPORAL COLORED CODED APERTURES

Colored coded apertures (CCA) have been developed to
compress and sense “static” spectral images using a single
or multiple shots. Opposed to traditional block-unblock coded
apertures, CCA have shown a remarkable improvement in the
spatial and spectral quality reconstruction in real and simulated
scenarios [4], [5]. A CCA is designed based on a set of optical
filters with ideal responses, more specifically, on a large set
of cut-off wavelengths. Then, the optimized design of a CCA
relies on the minimization of the correlations of the spectral
responses of the L optical filters ensemble. Further, since
multiple shots set the CCA pixels to be complementary, the
correlation between multiple shots is reduced as well. Thus,
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in order to achieve a low spatio-spectral correlation, the CCA
design allows to block or unblock pixels of the scene [4].

A. Design criteria for temporal CCA
Aiming to extend the CCA design criteria from spectral

static images to spectral dynamic scenes, an algorithm using a
finite set of optical filters is proposed. Algorithm 1 generates
the structure for the coded aperture for spatial, spectral and
temporal modulation. The inputs of the algorithm are the set
of optical filters ξ, the number of filters FN of the set ξ,
and the dimensions of the spectral video N,L,D. Algorithm
1 starts with a vector of FN values ordered in a random
way, i.e. for some value γΩi

and γΩj
of the random vector,

γ = [γΩ1
, γΩ2

, ..., γΩi
, ..., γΩj

, ..., γΩFN
], it is satisfied that

Ωi 6= Ωj , i 6= j. This random vector represents the index
of each optical filter in ξ. Then, Algorithm 2 generates a
distribution of filters with the aforementioned parameters.

Algorithm 1 Generate the Temporal Colored Coded Apertures

Input: FN , N,L,D, ξ
Output: Temporal CCA, T

1: γ ← [γΩ1
, γΩ2

, ..., γΩi
, ..., γΩj

, ..., γΩFN
], Ωi 6= Ωj , i 6= j

2: A← FILTERSDISTRIBUTION(N,FN , ξ,γ)
3: T← A(ξr) with r = 1, ..., FN

Iteratively, Algorithm 2 spatially allocates the optical filters of
the given set ξ, taking into account the minimum correlation
between adjacent filters. The minimum correlation obeys the
`2 norm between two optical filters selected. In other words,
if an optical filter Γi, chosen from the given optical filters set
ξ, is allocated in pixel 1, then the next optical filter Γi+1 must
satisfy

Γi+1 = argmin
r
‖(Γi)ξT

r ‖2 (4)

for r = 1, ..., FN , being FN the total number of filters of
the set ξ. Briefly, the algorithm 2 includes three for loops;
in the first two loops, the variables i, j go over the M × N
matrix Γ spatially allocating the index filters r̂ that satisfy Eq.
(4). The third loop realizes a modulo repetition of the filters
distribution Γ by the temporal dimension i.e. d = 0, ..., D−1.
Then, algorithm returns a matrix A which contains the spatial
filters distribution for D spectral frames. Finally, the T matrix
contains the spatio-spectro-temporal distribution generated fol-
lowing algorithm 1. The designed coded apertures are called
temporal colored coded apertures (temporal CCA).

It is important to highlight that with the temporal CCA,
using the set of optical filters of Fig. 1, each spectral frame
is spatially sensed at least once, which means that for each
frame the motion, or frames changes, must be sensed. Partic-
ularly, the selected set of optical filters have a complementary
distribution (Fig.1). Notice that the distance between the
unblock elements is maximum providing a minimal spectral
correlation.

IV. SIMULATIONS AND RESULTS

In order to test the temporal CCA, two datasets of spectral
videos were sensed simulating the model in Eq. 2. The first

Figure 1: Illustration of the spectral responses of the set of
optical filters. A maximal distance between unblock elements
provides a minimal spectral correlation

Algorithm 2 Spatial distribution of the set of optical filters

1: function FILTERSDISTRIBUTION(N,FN , ξ,γ)
2: δ = 0
3: for i← 1 to N do
4: Γi,1 = ξγΩ1

. Initial guess
5: for j ← 2 to N do
6: r̂ = argmin

r
(‖(Γi,j−1)ξT

r ‖2+δ·‖(Γi−1,j)ξ
T
r ‖2)

with r = 1, ..., FN
7: Γi,j ← r̂
8: end for
9: δ = 1

10: end for
11: for d← 0 to D − 1 do . Temporal modulo loop
12: Ad ← Γ
13: Γ← (Γ mod FN ) + 1
14: end for
15: return(A)
16: end function

dataset is a cropped section of a spectral video [18]. The
second dataset is a synthetic spectral video of a moving object
over a spectral static scene [19]. Both databases were acquired
with a CCD camera and a VariSpec Liquid Crystal Tunable
Filter (LCTF) in wavelengths from 400nm to 700nm at 10nm
steps. A spatial section of M = 128, N = 128, L = 8 spectral
bands and D = 8 frames was used for simulations. Figure 2
presents an RGB profile of the test spectral videos.

The 4D basis representation selected was composed as the
Kronecker product of three transforms as follows: Ψ1 and Ψ2

are a 2D-wavelet Symmlet 8 basis for the spatial dimensions,
Ψ3 is a 1D-Discrete Cosine basis (DCT) for the spectral
dimension, and Ψ4 is a 1D-DCT basis for the temporal
dimension. The reconstruction quality for each reconstructed
spectral-frame is evaluated in terms of the PSNR and the
structural similarity index (SSIM). Furthermore, a preview
reconstruction of the spectral video is obtained by using few
iterations of a `2−`1-norm recovery algorithm. Then, based on
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Figure 3: RGB representation of the original fifth frame of the spectral video 2 and the reconstructed frame using LH-CCA,
the LH-random CCA and the temporal CCA.

Figure 2: RGB profile of eight frames of the two test spectral
videos. (a) a cropped section of a spectral video [18]. (b) a
synthetic spectral video of a moving object over a spectral
static scene [19].

the preview, the motion is obtaining following an optical flow
estimation. The Gradient Projection for Sparse Reconstruction
(GPSR) algorithm with an optical flow restriction was used to
recover the underlying signal in high resolution. Thereupon,
in order to compare the temporal CCA against to CCA, a
realization with an ensemble of high and low pass filters with
an optimal set of cut-off wavelengths (LH-CCA) is presented
[4]. In addition, a CCA based on a random selection of the
filters above (LH-random CCA) is also included. For each
tested dataset and coded aperture a preview version was com-
puted. Figure 3 shows the RGB ground truth representation
and reconstructed video 2 for the fifth frame using LH-
CCA, LH-random CCA, and the proposed temporal CCA.
The zoomed section for the reconstructions in Fig. 3 shows
that there is a spatial quality improvement using the temporal
CCA. Figure 4 shows the spectral signature comparison for

Figure 4: Spectral signature comparison for points P1 (frame
1) and P2 (frame 8) of the spectral video 1 using the LH-CCA,
the LH-random CCA and the temporal CCA.

two points of two different frames of the spectral video 1.
It can be seen that the spectral signature sampled with the
temporal CCA is more accurate than the LH-CCA and the
LH-random CCA. The performance of the multiresolution
approach can be demonstrated by comparing the average
reconstruction quality of the reconstructed videos sampled
with the LH-CCA, the LH-random CCA and the temporal
CCA. In the multiresolution approach, the preview version is
obtained to measure the optical flow in the spectral video.
Thereby, a comparison adding the optical flow restriction and
without the restriction is included. Figure 5 shows the eight
band of the preview reconstruction by using the three coded
apertures. Table 1 summarizes the reconstructions results for
the two spectral videos.

The results are shown with and without the optical flow (OF)
restriction. Further, if the restriction is added, the metrics for
the preview version reconstruction are also included. It can
be observed that a better reconstruction in terms of PSNR is
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Table 1: SUMMARY OF RESULTS IN TERMS OF PSNR AND SSIM MEAN FOR THE TWO SPECTRAL VIDEOS.

• LH-CCA : Low/High pass filters CCA. • LH-random CCA : Random CCA. • Temporal CCA: Designed Coded Apertures
Spectral video 1 Without the Optical Flow Restriction With the Optical Flow Restriction

PSNR SSIM PSNR SSIM PSNR preview SSIM preview
LH-CCA 31,600 0,942 33,451 0,962 29,78 0,95
R-CCA 31,603 0,942 33,583 0,959 27,47 0,92

Temporal CCA 32,717 0,952 34,855 0,970 31,19 0,96
Spectral video 2 Without the Optical Flow Restriction With the Optical Flow Restriction

PSNR SSIM PSNR SSIM PSNR preview SSIM preview
LH-CCA 26,685 0,885 30,526 0,938 28,87 0,94
R-CCA 26,410 0,871 30,093 0,944 27,84 0,93

Temporal CCA 27,981 0,895 33,243 0,966 29,12 0,94

Figure 5: Preview reconstruction of the eight band by using
the three coded apertures. Notice that the designed apertures
achieves better quality reconstruction in terms of PSNR

obtained for the preview version with the temporal CCA.

V. CONCLUSION

In this paper, an algorithm to design spatio-spectro-temporal
coded apertures based on a finite set of optical filters for com-
pressive spectral video was proposed. The designed patterns
allow to sense the spatial, spectral and temporal information
in an uniform way such that each spectral frame is spatially
sensed at least once. The mathematical procedure of the
proposed algorithm has been presented. Further, aiming to
alleviate the temporal artifacts of the video reconstruction
a multiresolution approach is used. The results show that
using the designed coded apertures the reconstruction quality
improves even without adding the optical flow. In general, the
multiresolution approach using the designed coded apertures
improves up to 6 dB of PSNR with respect to the traditional
random patterns structures.
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