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Abstract—This paper introduces a family of local feature
aggregation functions and a novel method to estimate their
parameters, such that they generate optimal representations for
classification (or any task that can be expressed as a cost function
minimization problem). To achieve that, we compose the local
feature aggregation function with the classifier cost function and
we backpropagate the gradient of this cost function in order
to update the local feature aggregation function parameters.
Experiments on synthetic datasets indicate that our method
discovers parameters that model the class-relevant information
in addition to the local feature space. Further experiments on
a variety of motion and visual descriptors, both on image and
video datasets, show that our method outperforms other state-of-
the-art local feature aggregation functions, such as Bag of Words,
Fisher Vectors and VLAD, by a large margin.

I. INTRODUCTION

A typical image or video classification pipeline, which uses
handcrafted features, consists of the following components:
local feature extraction (e.g. Improved Dense Trajectories [15],
SIFT [8]), local feature aggregation (e.g. Bag of Words [1],
Fisher Vectors [10]) and classification of the final aggregated
representation. This work focuses on the second component of
the classification pipeline, namely the generation of discrim-
inative global representations from the local image or video
features.

The majority of existing local feature aggregation functions
[1], [10], [13] rely on a visual codebook learned in an unsuper-
vised manner. For instance, Bag of Words [1] quantizes every
local feature according to a codebook, most commonly learned
with K-Means, and represents the image as a histogram of
codewords. Fisher Vectors [10], on the other hand, capture the
average first and second order differences between the local
feature descriptor and the centres of a GMM. Furthermore, the
Kernel Codebook encoding [13] is analogous to the Bag of
Words, with the only difference that it uses soft assignments,
which are functions of the distances between the local features
and the codewords.

There have been several attempts to improve the feature
aggregation step by improving the codebook. For example,
the authors of [4] propose a K-Means alternative that improves
modelling of sparse regions of the local feature space. Other
researchers focus on the indirect use of the class information
in order to influence the codebook generation. For instance, in
[6] Lazebnik et al. propose a technique for codebook learning
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that aims to minimize the loss of the classification-relevant
information. Finally, in [9] and [3] the authors make direct
use of the class labels in order to improve the Bag of Words
representation using a classifier.

In this paper, we define a family of local feature aggregation
functions and we propose a method for the efficient estimation
of their parameters in order to generate optimal representations
for classification. In contrast to former research, our method:
• Can be used to estimate any type of parameters and not

only codebooks.
• Can be used to create representations optimal for any task

that can be expressed as a differentiable cost function
minimization problem, not just classification.

To demonstrate these properties, we introduce two feature
aggregation functions that outperform state-of-the-art local
feature aggregation functions in terms of classification accu-
racy in various descriptors for both image and video datasets.

The rest of the paper is structured as follows. In Section II
we introduce and explain the proposed method. Experimental
results are reported in Section III, followed by conclusions in
Section IV.

II. LEARNING LOCAL FEATURE
AGGREGATION FUNCTIONS

Let F = {f1, f2, . . . , fNF
} be the set of NF local descrip-

tors extracted from an image or video. In order to derive a
global representation for this feature set, we consider feature
aggregation functions that can be expressed in the form of
equation 1, where T (· ; Θ) : RD 7→ RK is a differentiable
function with respect to the parameters Θ.

R(F ; Θ) =
1

NF

NF∑
n=1

T (fn ; Θ) (1)

By appropriately defining the T (· ; Θ) function, in the
above formulation, we are able to express many local feature
aggregation functions. For instance, the soft-assignment Bag
of Words [13] can be expressed with the T (· ; Θ) function
given in equation 2

TBOW (fn ; C) =
1∑K

k=1D(fn, Ck)

D(fn, C1)
...

D(fn, CK)

 (2)
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where

D(fn, Ck) = exp
(
−γ (fn − Ck)T (fn − Ck)

)
(3)

is a Gaussian-shaped kernel with Euclidean distance and C ∈
RD×K is the codebook.

In the following sections, we propose a generic method to
estimate the parameters Θ∗ of the local feature aggregation
functions, such that they generate representations that are
optimal for classification. To do that, we backpropagate the
gradient of a classifier’s cost function in order to update the
parameters Θ using gradient descent.

A. Parameter estimation

Most approaches for parameter estimation of local feature
aggregation functions do not take into consideration the subse-
quent usage of the global feature representation. For instance,
in the case of the classification task, the extensively used
K-Means and GMM methods, ignore the class labels of the
feature vectors in the training set. In this work, we propose a
supervised method for the parameter estimation of any local
feature aggregation function that belongs in the family of
functions of equation 1. Even though our method can be used
for any task that can be expressed as a differentiable cost
function minimization problem, in the rest of this paper we
focus on the classification task. In particular, we estimate the
values of the parameters Θ by minimizing the cost function
J(·) of a classifier.

Let J(x, y ; W ) be the cost function of a classifier with
parameters W that aims to predict the class label y from a
global feature vector x. Training a classifier is equivalent to
finding the W ∗ = arg minW

1
N

∑N
i=1 J(x(i), y(i) ; W ), where

x(i) and y(i) are the i-th training sample and its corresponding
class label from a total of N samples. Instead of using
traditional clustering methods, such as K-Means and GMM,
to learn the parameters of the feature aggregation function,
we compose J(· ; W ) with R(· ; Θ). This allows us to jointly
learn a classifier and a feature aggregation function by solving
the optimization problem of equation 4.

W ∗,Θ∗ = arg min
W,Θ

N∑
i=1

J
(
R(F (i) ; Θ), y(i) ; W

)
(4)

Due to the differentiability of T (· ; Θ), a straight-forward
way to solve this optimization problem is to use Stochastic
Gradient Descent (SGD). However, this optimization problem
becomes computationally intensive in case of multimedia and
especially for video datasets, due to the large number of local
features F of each video (e.g. more than 20,000 local features
in the case of Improved Dense Trajectories [15]). In order to
address this problem, we approximate the gradient of R(·)
with respect to the k-th parameter θk, of equation 5, by using
a random sample of local features, SF , instead of computing
the gradient for every local feature.

∂J

∂θk
=

∂J

∂R(F ; Θ)

∂R(F ; Θ)

∂θk

=
∂J

∂R(F ; Θ)

1

NF

NF∑
n=1

∂T (fn ; Θ)

∂θk

≈ ∂J

∂R(F ; Θ)

1

NSF

∑
n∈SF

∂T (fn ; Θ)

∂θk

(5)

Empirical results indicate that this approximation has sim-
ilar effects to the stochastic gradient approximation of SGD,
namely efficiency and robustness.

B. Aggregation functions

In this section, we make use of the previous analysis in
order to create two local feature aggregation functions that
outperform other state-of-the-art methods such as Bag of
Words [1] and Fisher Vectors [10] on a variety of descriptors,
as shown in the Experiments section III.

Firstly, we consider the representation R1(·), which is
a generalization of the soft-assignment Bag of Words and
employs the encoding function T1(·) of equation 6

T1(fn ; C,Σ) =
1

Z(fn, C,Σ)

 D(fn, C1,Σ1)
...

D(fn, CK ,ΣK)

 (6)

where

D(fn, Ck,Σk) = exp
(
−γ (fn − Ck)T Σ−1

k (fn − Ck)
)

(7)

and

Z(fn, C,Σ) =

K∑
k=1

D(fn, Ck,Σk) (8)

involve the codebook Ck and the diagonal covariance matrix
Σk used to compute the Mahalanobis distance between the
n-th local feature and the k-th codeword.

On the other hand, we consider the representation R2(·),
produced by the encoding function T2(·) of equation 9, which
is exactly the soft-assignment Vector of Locally Aggregated
Descriptors (VLAD) [2] and thus the dimensionality of the
resulting representation is D×K because fn−Ck is a vector
of size D.

T2(fn ; C,Σ) =
1

Z(fn, C,Σ)

 D(fn, C1,Σ1)(fn − C1)
...

D(fn, CK ,ΣK)(fn − CK)


(9)

In order to compute the optimal parameters C and Σ of
the local feature aggregation functions, we optimize equation
4 using a Logistic Regression classifier with a cross-entropy
loss according to equation 10. While linear classifiers are very
efficient, non-linear classifiers tend to yield better classification
results, especially in the case of Bag of Words [17]. Therefore,
we decided to adopt an approximate feature map of χ2 [14]



that is used in combination with T1(·) and Logistic Regression
to retain both the training efficiency of a linear classifier and
the classification accuracy of a non-linear classifier.

J(x, y ; W ) = −log

 exp
(
WT

y x
)

∑
ŷ exp

(
WT

ŷ x
)
 (10)

We could have used any classifier whose training is equiv-
alent to minimizing a differentiable cost function, such as
Neural Networks. Nevertheless, we use Logistic Regression
and a χ2 feature map in order to fairly compare our method
to existing feature aggregation functions.

C. Training procedure

In Algorithm 1, we present the training procedure for the
feature aggregation functions introduced in Section II-B. The
training process consists of three main parts, the initialization
step, the optimization step and the classifier fine-tuning step.

Regarding the initialization, we have experimented with
three methods to initialize the codebook C and the covariance
matrices Σ. In particular, we used:
• Random sampling from the set of local features to ini-

tialize the codebook and the identity matrix to initialize
the covariance matrices.

• K-Means clustering to initialize the codebook and the
identity matrix to initialize the covariance matrices.

• GMM clustering to initialize both the codebook and the
covariance matrices

The proposed method can be used in combination to any of
the aforementioned initializations. However, we empirically
observe that when initialized with K-Means it results in a
smoother parameter space, hence it is easier to choose a
suitable value for the SGD learning rate. Finally, the reason
for adding the classifier fine-tuning step emerged from the
need to alleviate the effects of gradient noise, produced by
the sampling of local features in equation 5.

III. EXPERIMENTS

This section presents an experimental evaluation of the
proposed method on real and artificial datasets in order to
assess its effectiveness and provide insights into the resulting
feature aggregation functions. In particular, we have conducted
experiments on the CIFAR-10 [5] image classification dataset
and the UCF-11 (YouTube) Action dataset [7]. In case of
CIFAR-10, we have extracted local features with a pre-trained
deep convolutional neural network. Specifically, we have used
the conv3_3 layer from VGG-16 architecture [11], pre-trained
on Imagenet, which results in 25 local features in R256 for
each image. In addition, in case of the video data, we have
extracted Improved Dense Trajectories [15], after removing
videos that have less than 15 frames, which results on an
average of approximately 22,000 local features per video.

In Section III-A, we present a comparative evaluation of
the discovered codewords in two synthetic datasets, in order
to acquire a better understanding of the way our method
chooses the codebook, compared to unsupervised methods.

Algorithm 1 Procedure to learn the parameters of a local
feature aggregation function

procedure TRAINAGGFUN(F, y)
# Parameter initialization
if initialize with K-Means then

C0 ← KMeans(F )
Σ0 ← I

else
C0,Σ0 ← GMM(F )

end if
W0 ← arg minW

∑N
i=1 J

(
R(F (i) ; C0,Σ0), y(i) ; W

)
# Core training
t← 0
repeat

i ∼ DiscreteUniform(1, N)
Sample F̂ (i) from F (i)

Wt+1 ← SGD(∇WtJ(R(F̂ (i) ; Ct,Σt), y
(i) ; Wt))

Ct+1 ← SGD(∇CtJ(R(F̂ (i) ; Ct,Σt), y
(i) ; Wt))

Σt+1 ← SGD(∇Σt
J(R(F̂ (i) ; Ct,Σt), y

(i) ; Wt))
t← t+ 1

until t ≥ specific number of mini-batches
# Classifier fine tuning
C∗ ← Ct

Σ∗ ← Σt

W ∗ ← arg minW

∑N
i=1 J

(
R(F (i) ; C∗,Σ∗), y(i) ; Wt

)
end procedure

Subsequently, in Section III-B, we present the classification
accuracy of various representations on CIFAR-10, with respect
to the training epochs, and compare it to the corresponding
results using Bag of Words. Finally in Section III-C, we
compare the proposed method on CIFAR-10 and UCF-11 with
respect to the classification accuracy to Fisher Vectors, Bag of
Words and VLAD on a variety of descriptors.

A. Synthetic dataset

Figure 1 compares the generated codebooks by K-Means,
GMM and the proposed method on two artificial two-class
datasets. In both cases, we generate and visualize 10 code-
words, especially in the case of GMM we visualize addition-
ally the covariance matrices. For our method, we use the T1(·)
feature aggregation function, from equation 6, to learn the
codebook with the covariance matrices being fixed and equal
to the identity matrix.

In contrast to K-Means and GMM, our method focuses on
generating representations that can be separated by the clas-
sifier without necessarily retaining the structural information
of the local features. It only suffices to observe Figure 1a to
note that K-Means and GMM do not respect the circular class
boundary, while our method focuses mainly on generating a
linearly separable representation. In addition, owing to the fact
that our method does not try to describe the local features
it results in a more separable representation with a smaller
codebook. For instance, it only requires a single codeword to
successfully separate the concentric dataset of Figure 1a.
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Fig. 1: Generated codebooks from synthetic data by K-Means, GMM and our method. The generated codewords are drawn
with black crosses, while the dots are the local features from both classes (either blue or red).
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Fig. 2: Classification accuracy on the test set with respect to
the training epochs for various representation sizes on CIFAR-
10 with features from VGG16 conv3_3

B. Training evolution

For this experiment, we generate codebooks using K-
Means of sizes {64, 128, 256, 512, 1024, 2048}, which we
subsequently use to create the corresponding Bag of Words
representations. To classify the produced representations, we

train a linear SVM with a χ2 feature map. Moreover, we use
the T1(·) feature aggregation function, of equation 6, with
Logistic Regression, a χ2 feature map and K-Means as an
initialization method according to Algorithm 1. In order to
select a value for the hyper-parameter γ of the T1(·) function,
we perform cross-validation.

By observing Figure 2, we conclude that the proposed
method produces discriminative representations even with a
small number of dimensions. In particular, it outperforms Bag
of Words with 2048 dimensions by almost 4 percentage points
with only 64 dimensions. Furthermore, we also notice that
our method considerably improves the representation during
the first epochs, thus we conclude that it can be used to
fine-tune any differentiable feature aggregation function (e.g.
Fisher Vectors) with little computational effort. Finally, we
anticipate that increasing the number of training epochs will
further increase the classification accuracy.

C. Classification results

In the current experiment, we assess the discriminativeness
of the produced representations by evaluating their classifica-
tion performance on a variety of descriptors and comparing
it to several state-of-the-art feature aggregation methods. In
the case of CIFAR-10, we use the provided train-test split
while for UCF-11, we create three random 60/40 train-test
splits and report both the mean classification accuracy and the



TABLE I: Comparison of T1(·) and T2(·) with Bag Of Words
(BOW), VLAD and Fisher Vectors (FV)

CIFAR-10 UCF-11
conv3_3 idt_hof idt_traj

BOW-1024 69.12% 89.72% +/- 0.50 83.88% +/- 0.39
BOW-2048 70.50% 91.03% +/- 0.35 85.65% +/- 0.53
T1(·)-1024 initial 76.85% 88.41% +/- 0.46 82.84% +/- 0.80
T1(·)-1024 80.87% 92.23% +/- 0.37 86.90% +/- 0.63
T1(·)-2048 initial 78.52% 90.24% +/- 0.24 83.78% +/- 0.90
T1(·)-2048 81.12% 93.00% +/- 0.30 87.01% +/- 0.48
VLAD-64 - 90.25% +/- 0.33 78.71% +/- 0.94
FV-64 - 90.55% +/- 0.26 78.92% +/- 0.21
T2(·)-64 initial - 90.92% +/- 0.15 79.96% +/- 0.46
T2(·)-64 - 91.08% +/- 0.26 83.82% +/- 0.34

standard error of the mean. Table I summarizes the results.
The experimental setup for CIFAR-10 is analysed in Section
III-B. Regarding UCF-11, we generate codebooks of sizes
{1024, 2048} using K-Means, both to create Bag of Words
representations and to initialize the codebooks for the T1(·)
function. In addition, we train a GMM with 64 Gaussians to
generate Fisher Vectors representations and again K-Means
with 64 centroids to generate VLAD and initialize T2(·).

For both datasets, we train an SVM with a χ2 feature map
for Bag of Words and T1(·) and a linear SVM for the rest of
the local feature aggregation functions in Table I. Moreover,
in case of CIFAR-10, T1(·) is trained for only 10 epochs,
while for UCF-11, both T1(·) and T2(·) are trained for 30
epochs. In the conducted experiments, we have observed that
both T1(·) and T2(·) are very sensitive with respect to the
hyper-parameter γ, which must be carefully selected using a
validation set or cross-validation. In particular, the reported
results are generated using γ = 70 for UCF-11 “idt_traj”,
γ = 50 for UCF-11 “idt_hof” and γ = 5× 10−8 for CIFAR-
10. The large differences in the range of γ make intuitive sense
upon observing the distribution of the pairwise distances of the
local features.

Furthermore, we additionally report the classification accu-
racy attained by T1(·) and T2(·), without learning the param-
eters using the proposed method; the results are reported in
Table I as “initial”. This allows us to quantify the improvement
in terms of classification accuracy achieved using the proposed
method. In particular, we observe an average improvement of
approximately 3.5 percentage points in all cases.

IV. CONCLUSIONS

We have introduced a new method to learn the parameters
of a family of local feature aggregation functions through
optimization, which can be used to learn any type of pa-
rameters and is not limited to codebooks. Furthermore, it
can be used to generate an optimal representation for any
task that can be expressed as a cost function minimization
problem. In particular, in the conducted experiments, we have
demonstrated the effectiveness of the proposed method in the
classification task. We observed that the proposed local feature

aggregation functions outperform Bag of Words, Fisher Vec-
tors and VLAD in a variety of descriptors on image and video
data.

Our method opens up a multitude of new research direc-
tions. Initially, we could use the proposed method to learn
extra parameters, such as γ, in order to further improve the
generated representation. Moreover, it would be interesting to
conduct experiments on other large-scale video classification
datasets, such as UCF101 [12] and compare the performance
of our method to state-of-the-art Neural Network architectures,
such as the hybrid deep learning framework, as it was intro-
duced in [16]. Finally, we can explore the use of the proposed
method for the generation of optimal representations for other
types of tasks, such as regression or ranking.
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