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Abstract—In this paper, we propose an L1 normalized graph
based dimensionality reduction method for Hyperspectral images,
called as ‘L1-Scaling Cut’ (L1-SC). The underlying idea of
this method is to generate the optimal projection matrix by
retaining the original distribution of the data. Though L2-norm
is generally preferred for computation, it is sensitive to noise
and outliers. However, L1-norm is robust to them. Therefore, we
obtain the optimal projection matrix by maximizing the ratio
of between-class dispersion to within-class dispersion using L1-
norm. Furthermore, an iterative algorithm is described to solve
the optimization problem. The experimental results of the HSI
classification confirm the effectiveness of the proposed L1-SC
method on both noisy and noiseless data.

Index Terms—Dimensionality reduction, Hyperspectral classi-
fication, L1-norm, L1-SC, scaling cut, Supervised learning.

I. INTRODUCTION

Hyperspectral remote sensing images with high spatial and
spectral resolution is used to capture the inherent properties of
the surface. These hyperspectral images (HSI) contains a huge
number of contiguous spectral bands. It spreads over a narrow
spectral bandwidth with wealth of information content. These
informations are used for characterization, identification and
classification of the physical and chemical properties of the
land-cover with improved accuracy. The huge spectral bands
implies the high dimensional redundant HSI data. This high
dimensionality is the major challenge in HSI classification.
In order to overcome this challenge, dimensionality reduction
(DR) is usually applied to the HSI data. An effective DR
method reduces the high dimension data into low dimensional
representative features. This DR method improves the classifi-
cation performance by reducing computational complexity and
exploring the intrinsic property of the reduced data features.

In the field of HSI processing, a large number of DR ap-
proaches have been developed during past few years. Among
them in unsupervised category principal component analysis
(PCA) [1] is widely used one. In addition, several supervised
DR approaches have also been developed, linear discriminant
analysis (LDA) [2] is the most popular classical approach.
Among LDA and PCA, LDA uses the labeled information for
DR and performs better than PCA in classification task. How-
ever, LDA always assumes the data distribution as Gaussian
with equal variance and unimodal. Hence, it fails to handle

the real HSI data which is heteroscedastic and multimodal in
nature. A graph based scaling cut (SC) [3], [4] method ad-
dresses these problem by constructing the pairwise similarity
matrix among the samples of the classes.

The graph based SC method basically makes a projection
of the data into a lower dimensional space by maximizing the
variance of the input data points. Although, the SC method by
Zhang et al. in [4] works well for the multimodal hyperspectral
data, they are very sensitive in handling the outliers and noise
in the dataset. The conventional SC works by computing the
dissimilarity matrix among the data samples. This dissimilarity
matrix computation is mostly done by calculating the conven-
tional L2-norm between the samples. The square operation in
L2-norm criterion magnifies the outliers [5], [6]. Therefore,
the presence of outliers drift the projection vectors from the
desired projection direction. Hence, dimension reduction and
classification of hyperspectral data demands robust algorithms
that are resistant to possible outliers.

It is found that, the L1-norm based DR method is a robust
alternative to handle outliers problem in image classification
[6], [7], [8], [9], [10]. Kwak et.al. [9] computed the covari-
ance matrix using L1-norm and proposed PCA-L1 by greedy
strategy. Ke and Kanade, in [8], proposed L1-PCA by using
the alternative convex method to solve the projection matrix.
Similarly in [6], Wang et.al. proposed LDA-L1 by solving the
supervised LDA method using L1-norm maximization in an
iterative manner. Li et.al. [11] proposed the 2D version of the
LDA (L1-2DLDA) using the L1-norm optimization.

L1-norm based LDA has achieved excellent performance
for image classification [6][11]. However, our HSI data is
heteroscedastic and multimodal. SC has proved its worth [4]
HSI classification. Motivated by these literature, we propose
a L1-norm based scaling cut method (L1-SC) for DR and
classification of HSI data. In this work we formulate the SC
algorithm into an L1-norm optimization problem by maximiz-
ing the ratio of between-class dissimilarity and within-class
dissimilarity matrix. Then, we solve this L1-norm optimization
problem by using an iterative algorithm to generate a projec-
tion matrix. The projected reduced dimension HSI data are
further used for classification by using support vector machine
(SVM) classifier. We analyze the classification performance by
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applying it over the spectral information of two real world HSI
datasets.

The rest of the paper is organized as follows. In section II,
a brief introduction to the conventional L2-norm based SC
method is discussed. We present the proposed L1-SC method
including its objective function and algorithmic procedure for
its solution in section III. Then section IV enumerates the
experimental results of the proposed L1-SC method over two
HSI datasets. Finally, we give the conclusive remarks to our
work in section V.

II. CONVENTIONAL L2- NORM BASED GRAPH SCALING
CUT CRITERION REVISITED

The purpose of SC is to determine the mapping matrix for
projecting the original data into a lower dimension space. The
classical LDA method is computed based on the assumption
that the data distribution of each class is Gaussian with
equal variance. However, the distribution of real world data
is more complex than Gaussian. Hence LDA fails when data
is heterscedastic and multimodal. The major advantage of the
SC over the state-of-art LDA is handling these heteroscedastic
and multimodal data. This method eleminates the Gaussian
distribution limitation of LDA by constructing the dissimilarity
matrix among the data samples.

Let X = (x1, x2, ..., xn) ∈ RD×n is the input training
dataset, given by {xi, Li}|ni=1. Here Li = {1, 2, ..., C} is
the class label of the corresponding training data with total
C classes and n training data samples. The objective is to
determine a projection matrix, that project the input training
data of D dimensions into reduced d dimension such that
d << D. The between-class dissimilarity matrix and the
within-class dissimilarity matrix of SC are defined as

SSC
Bk

=
∑

xi ∈Uk

∑
xj ∈ Ūk

1

nknk̄
(xi − xj)(xi − xj)T

SSC
Wk

=
∑

xi ∈Uk

∑
xj ∈Uk

1

nknk
(xi − xj)(xi − xj)T

(1)

where Uk represents all the samples from kth class and nk is
the total number of elements in Uk. Similarly, Ūk represents
all the data points that that does not belong to the kth class and
nk̄ denotes the total number of elements in Ūk. SSC

Bk
represents

the dissimilarity between Uk class and Ūk, whereas SSC
Wk

is the
dissimilarity matrix within the Uk class. Based on the SSC

Wk
and

SSC
Bk

, the objective function of SC can be written as

Scut(W ) =

∣∣∣∣ c∑
k = 1

WTSSC
Bk
W

∣∣∣∣∣∣∣∣ c∑
k = 1

(WTSSC
Wk
W +WTSSC

Bk
W )

∣∣∣∣
=

∣∣WTSSC
B W

∣∣∣∣WT (SSC
W + SSC

B )W
∣∣

=

∣∣WTSSC
B W

∣∣∣∣WTSSC
T W

∣∣

(2)

where SSC
B =

C∑
k=1

SSC
Bk

, SSC
W =

C∑
k=1

SSC
Wk

, and SSC
T = (SSC

B +

SSC
W ) is the total dissimilarity matrix and W is the projection

matrix. The dissimilarity matrix is scaled according to the size
of the class. Hence, this graph cut is termed as scaling cut.

III. PROPOSED L1-NORM BASED SCALING CUT
CRITERION

The conventional L2-norm based graph scaling cut criterion
basically determines the projection matrix by maximizing
the between-class distances, and minimizing the within-class
distances to enhance the compactness among the data points.
These models characterize the geometric structure of the data
by computing the L2-norm. These L2-norm is computed by
using square euclidean distance, which is sensitive to outliers
and noises [6], [7]. These outlier elements drift the projec-
tion vectors from the desired projection directions. Hence,
it reduces the flexibility of L2-norm based algorithms. To
handle this issue, L1-norm based technique is widely used as
a robust alternative of conventional L2-norm based technique.
Motivated by the idea of L1-norm based modeling, we propose
to model the graph based scaling cut criterion by using the
L1-norm optimization instead of L2-norm optimization. This
L1-norm based SC method is solved by following iterative
algorithm

A. L1-norm based Graph Scaling Cut (L1− SC)

Inspired by the existing literatures on L1-norm based
method [7], [11], we propose to maximize the SC criterion
using L1-norm rather than L2-norm. The equation (2) can be
simplified to a trace ratio [12] problem, which can further be
reduced to the Frobenius norm, given by,

W ∗ = max
WTW=I

Tr(WTSSC
B W )

Tr(WTSSC
T W )

= max
WTW=I

∑
k;xi∈Uk;
xj∈Ūk

1
nknk̄

Tr
(
WT (xi − xj)(xi − xj)TW

)
∑

k;xi∈Uk;
xj∈Uk

1
nknk

Tr
(
WT (xi − xj)(xi − xj)TW

)

= max
WTW=I

c∑
k=1

∑
xi∈Uk

∑
xj∈Ūk

1
nknk̄

∥∥WT (xi − xj)
∥∥2

F

c∑
k=1

∑
xi∈Uk

∑
xj∈Uk

1
nknk

‖WT (xi − xj)‖2F
(3)

As can be observed, the above objective is based on Frobenius
norm, which also involves the square operations and in term,
it is sensitive to outliers to noise and outliers similar to L2-
norm. In order to reduce the sensitivity, we use the objective
function in terms of the L1-norm. The proposed model of the
objective function for L1-norm SC is defined as,



vopt = max
vT v=1

c∑
k = 1

∑
xi∈Uk

∑
xj∈Ūk

∥∥∥vT 1
nknk̄

(xi − xj)
∥∥∥

1

c∑
k = 1

∑
xi∈Uk

∑
xj∈Uk

∥∥∥vT 1
nknk

(xi − xj)
∥∥∥

1

= max
vT v=1

c∑
k=1

∑
xi∈Uk

∑
xj∈Ūk

1
nknk̄
|vT (xi − xj)|

c∑
k=1

∑
xi∈Uk

∑
xj∈Uk

1
nknk
|vT (xi − xj)|

(4)

The objective of the criterion (4) is to find the optimal
projection vector v that maximize the ratio of between-class
dispersion to the within-class dispersion. These optimized
projection vectors are used to construct the optimal projection
matrix V = {v1, v2, ..., vd}. These projecting vectors are
sequentially optimized in d directions. We derive the following
iterative algorithm to find the optimal projection vector v that
maximizes the objective function (4). The entire algorithmic
procedure for L1-SC method is listed below.

B. Algorithmic Procedure for L1-SC

The aforementioned objective function (4) involves maxi-
mization of L1-norm based optimization problem. We solve
this problem by an iterative algorithm to obtain the optimal
projection vector v∗ of the matrix V .

The objective function (4) seems similar to the trace ratio
formulation of the general graph scaling cut in [3] and [4]. It is
difficult to solve (4) by the traditional optimization techniques
as both numerator and denominator are constructed by L1-
norm maximization and minimization. Inspired by the idea
used in [6], [9], [11] and [13], we are using similar L1-
norm optimization technique in this work. Thus, we solve the
objective function (4) to find the optimal projection vector v∗

by the iterative technique. The algorithmic procedure of L1-SC
is given as follows.

1. The iteration variable t is set to zero (t = 0). Then
we randomly initialize the d dimensional vector v(t) and
normalize it such that v(t)

T
v(t) = 1.

2. Two sign functions are defined to compensate the abso-
lute value operation for the numerator and denominator
term of (4) . These sign functions are computed as

qij(t) =

{
1, if vT (t)(xi − xj) > 0
−1, if vT (t)(xi − xj) ≤ 0

and

rij(t) =

{
1, if vT (t)(xi − xj) > 0
−1, if vT (t)(xi − xj) ≤ 0

(5)

3. Use the sign function to compute p(t) and b(t) by the
following equation:

p(t) =

c∑
k=1

nk∑
i=1

nk̄∑
j=1

qij(t)
1

nknk̄
vT (t)(xi − xj)

b(t) =

c∑
k=1

nk∑
i=1

nk∑
j=1

rij(t)
1

nknk
vT (t)(xi − xj)

(6)

Then using p(t) and b(t), update g(v(t))

g(v(t)) =
p(t)

v(t)
T
p(t)
− b(t)

v(t)
T
b(t)

(7)

4. Then update the vector v(t) using g(v(t)) by

v(t+ 1) = v(t) + γg(v(t)) (8)

where γ is the learning rate parameter (a small positive
value). Then normalize the v(t+1) and update t = t+1.
If any denominator in (7) happen to zero then perturb the
v(t) with a small non zero random vector ∆v and update
it by v(t) = (v(t) + ∆v)/||(v(t) + ∆v)|| and start with
step-2.

5. Convergence check: If the v(t) doesn’t show significant
increment or ||v(t + 1) − v(t)|| ≤ ε or total iteration
number is greater then maximum given iteration number,
then go to step-2 otherwise go to step-6.

6. Stop iteration and assign v∗ = v(t).
Above procedure only gives one optimal projection vector.

In practical classification problem this one vector is not
sufficient for the projection. Hence, It need a projection matrix
consists of multiple projection vectors placed in its column
space to optimize the objective function. These projection
vectors are used to update the input data matrix by

X ← X − v∗(v∗T )X (9)

and then the projection matrix V is padded as V = [V, v∗].
Using the above procedure, we can form the optimal projec-

tion matrix V of size RD×d. The pseudo-code for the complete
algorithmic procedure for the projection matrix of L1-SC is
listed in Algorithm 1.

Algorithm 1: L1-norm based scaling cut algorithm

Input : The training dataset {xi, Li}ni=1 ∈ RD×n;
Li is the label of each training data xi;
Desired dimensionality is d and d� D.

1 Formulate the L1-norm based objective function in (4) to
solve the optimization problem.

2 Determine the optimal projection vector v∗ by solving
the optimization problem (4) in Algorithm 2

3 Update the input data by using X = X − v∗v∗TX .
4 Pad these optimal projection vectors v∗ into the optimal

matrix by V = [V, v∗].
5 Project the original data into the lower dimensional space

d by projection matrix V
Output: Projection matrix V = {v1, v2, ..., vd} ∈ RD×d,

consists of d projection vectors
Result : Projected matrix Y = V TX

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section we evaluate the performance of the proposed
L1-SC method on two HSI datasets1: Salinas (D = 204, C =

1http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral Remote
Sensing Scenes



Algorithm 2: Computation of projection vector for v∗

Input : Number of projection vector d (d� D);
Learning rate parameter γ;
Maximum number of iteration is itmax

1 Set t = 0 and Initialize v(0) to a D dimensional random
vector such that v(0)

T
v(0) = 1

2 Compute the sign function qij(t) and rij(t) using (5) and
set p(t) and b(t) using (6)

3 Determine the g(v(t)) function using (7) to update the
v(t).

4 Update the v(t) by using (8). where γ > 0 is the learning
parameter.

5 Converge if: ||v(t+ 1)− v(t)|| ≤ ε or t > itmax
Output: Projection vector v∗ = v(d)

16) and Pavia center (D = 102, C = 9). Then we compare it
with the state-of-art conventional LDA [2], SC [4], LSC [14]
and L1-LDA [6]. In conventional L2-norm based methods use
PCA as preprocessing but in L1-norm methods we don’t use
any preprocessing step. In classification stage, we use SVM
classifier with linear kernel to identify the robustness of the
proposed algorithm.

In these experiments, we randomly select 10 training sam-
ples from each class of the dataset and rest of the samples are
used as test dataset. All obtained results are the average of the
5 iterations. Here we evaluate and analyze the effectiveness of
the proposed L1-SC by determining the overall classification
accuracy of the SVM classifier on the projected data.

Fig. 1 shows the behavior of different L2-norm and L1-norm
based algorithms in terms of overall classification accuracy
with respect to varied number of input samples. Here, Fig. 1a
and Fig. 1b shows the overall classification accuracy of Salinas
and Pavia dataset for input data size from 10 to 50. From
this figure, it is clearly observed that the proposed L1-SC
method completely outperforms the L2-norm based methods
and performs on par with L1-LDA when the input data sample
size is less.

To better illustrate the noise robustness feature of the
proposed L1-SC method with respect to others, we inject white
Gaussian noises of different levels to the raw input HSI data
and performed the classification on these data using different
approaches. The variance of the noise level is varied from
2% to 10% of the variance of the pixel values. As Fig. 2
indicate, the proposed L1-SC method is more robust to noises
and achieve better classification accuracies than other methods.

The proposed L1-SC method is compared with other popu-
lar L2-norm and L1-norm based methods. The statistics of the
highest overall classification accuracy along with correspond-
ing F1-score and dimension of the algorithms for Salinas and
Pavia center dataset are highlighted in Table I. Here in Table I,
all the results taken classification accuracy are the average of
5 runs using 10 random training samples per class. In order
to show the robustness of the algorithm, we have considered
the F1-score along with the overall classification accuracy as

(a)

(b)

Fig. 1: Effects of different number input samples for the
methods on overall accuracies on two data sets Salinas (1a)
and Pavia center (1b). From left to right of X-axis shows the
overall accuracies with 10, 20, 30, 40 and 50 number input data
samples for 10 dimensions.

the performance measure [15]. Table I gives the following
observations

• The overall classification accuracy of L1-norm based
methods performs better than the other state-of-art L2-
norm based methods.

• The classification results of the proposed L1-SC method
outperforms the other L2-norm based methods and L1-
LDA for both the datasets with less dimensions.

• In Salinas dataset, the proposed L1-SC method produces
highest accuracy with maximum F1-score among other
approaches by considering only 15 dimensions. Similarly
in case of Pavia center dataset, it takes only 10 dimen-
sions. This shows the effectiveness of the algorithm in
finding proper projection direction.

The above observations clearly explains the robustness of the
proposed algorithm in low dimensional feature space.



TABLE I: Classification performance of proposed approach compared with other L2-norm and L1-norm based approaches

Dataset Salinas Pavia Center
Methods Accuracy + stdv F1-Score Dims Accuracy + Stdv F1-Score Dims
LDA [2] 83.14± 1.93 0.8917 35 92.34± 0.64 0.8406 25
SC [4] 81.38± 1.41 0.8558 40 93.61± 0.68 0.8600 25
LSC [14] 83.09± 1.88 0.8939 50 93.43± 1.07 0.8587 45
L1-LDA [6] 83.21± 1.85 0.8913 30 93.50± 0.61 0.8542 40
L1-SC (Proposed) 84.01± 1.67 0.8956 15 94.20± 0.63 0.8724 10

(a)

(b)

Fig. 2: Illustration of noise robustness of the proposed method
with respect to other methods on two data sets Salinas (2a)
and Pavia center (2b).

V. CONCLUSION

In this study, we have proposed a novel DR method L1-SC
by computing the L1-norm based inter-class and intra-class
dispersion. This method determines the projection directions
by exploiting the discriminant structure and preserving the
geometrical structure of the data. Our method differs from
other state-of-art in various ways. For instance, it preserves
the intrinsic property as well as the distribution of the data and
we believe it handles multimodal and heteroscedastic data with
noise and outliers quite well. We examined the performance
of our method and other methods over two real world HSI
datasets. The promising results of L1-SC on these two datasets

demonstrates its noise robustness and efficiency.
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