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Abstract—We study joint estimation of the channel impulse
response (CIR) and of the carrier frequency offset (CFO) for
linear channels in which both the CIR and the noise statistics
vary periodically in time. This model corresponds to interference-
limited communications as well as to power line communication
and doubly selective channels. We first consider the joint maxi-
mum likelihood estimator (JMLE) for the CIR and the CFO and
show it has a high computational complexity and relatively low
spectral efficiency. This motivates the derivation of two estimation
schemes with higher spectral efficiency and lower computational
complexity compared to the JMLE, obtained by exploiting both
the periodicity of the channel and the fact that, typically, the
delay–Doppler spreading function of the CIR is approximately
sparse, without requiring a-priori knowledge of the sparsity pattern.
The proposed estimation schemes are numerically tested and the
results demonstrate that substantial benefits can be obtained by
properly accounting for the approximate sparsity and periodicity
in the design of the estimation scheme.

I. INTRODUCTION

Many practical communications channels exhibit periodic
characteristics. An important example is interference-limited
communications: As man-made signals typically obey a pe-
riodic statistical model [1, Sec. 5], the appropriate channel
model for interference-limited communications scenarios, aris-
ing, e.g., in 5G cellular [2], exhibits periodic characteristics.
Periodicity is also inherent to narrowband (NB) power line
communications (PLC) [3], due to the periodicity of the mains
voltage across the grid. Lastly, we note that doubly selective
channels can also be modeled as systems having periodically
varying channel impulse response (CIR) [4]. It follows that
studying communications over liner periodic channels is very
relevant for future communications scenarios.

Generally speaking, high data rate communications requires
accurate knowledge of the CIR and of the carrier frequency
offset (CFO), caused by instabilities of the oscillators [5, Sec.
1]. This need has motivated the proposal of many training–
based schemes for estimating these parameters using an a-
priori known pilot sequence (PS), while modeling the CIR
and the CFO as unknown deterministic parameters [5, Sec.
3.1]. The work [6] designed a maximum likelihood (ML)
scheme for jointly estimating the CIR and the CFO for linear
time-invariant (LTI) channels with additive white Gaussian
noise (AWGN). Joint ML estimation of the CIR and the
CFO for orthogonal frequency division multiplexing (OFDM)
modulated signals was studied in [5, Sec. 3.1.1]. In [7] joint es-
timation was studied for point-to-point multiple input-multiple
output (MIMO) scenarios, and in [5, Sec. 4] it was studied
for MIMO-OFDM scenarios. The work [8] proposed a CFO
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estimation scheme for periodic channels without estimating the

unknown CIR coefficients. Yet, none of these works considered
joint CFO and CIR estimation over linear periodic channels,
modeled as having linear periodically time-varying (LPTV)
CIRs with additive cyclostationary Gaussian noise (ACGN).

As evident from [4] and [7], reducing the number of CIR
coefficients to be estimated improves estimation performance.
A common approach to reducing the number of estimated
parameters is to assume that the CIR is sparse, and employ
compressed sensing (CS) techniques [9], [10]. Indeed, in [4],
it was shown that applying CS improves the performance of
CIR estimation for wireless channels as well as the spectral
efficiency. The works [11], [12] proposed a CS-based joint
CIR and CFO estimator for slow-fading wireless LTI channels
with AWGN. However, in [11] it was assumed that the number
of non-zero CIR coefficients is a-priori known, and in [12]
it was assumed that the number of observations is larger

than the number of estimated parameters. Lastly, the work
[13] designed an estimator for LPTV CIRs with temporally

uncorrelated ACGN, assuming that the noise variance, the
CFO, and the sparsity pattern of the CIR coefficients are all
a-priori known. To the best of our knowledge, joint estimation
of LPTV CIR coefficients and of CFO in the presence of
correlated ACGN, with or without the use of CS techniques,
has not yet been studied.

Main Contributions: In this work we study joint CIR and
CFO for LPTV channels with ACGN. We first present the
joint ML estimator (JMLE) and explicitly characterize its
drawbacks, namely, high computational complexity and low
spectral efficiency. Then, to improve upon these drawbacks,
we research the application of sparsity–based compression
techniques. We first conclude that when the CFO is unknown,

then the sparsity pattern is also unknown. This motivates us to
propose two JMLE-oriented schemes utilizing the approximate
sparsity of the CIR while not assuming a-priori knowledge of
the sparsity pattern. Note that the application of CS decreases
the number of parameters needed for representing the CIR,
hence decreasing the length of the PS and improving spectral
efficiency. We demonstrate via a simulation study that the
proposed schemes outperform the JMLE over a wide range
of signal-to-noise ratios (SNRs), while increasing the spectral
efficiency and reducing the computational complexity.

The rest of this paper is organized as follows: Section II
formulates the problem and details the JMLE of the CFO and
the CIR; Section III derives two JMLE-oriented estimators
which utilize compression techniques; Section IV details the
results of a numerical study; Lastly, Section V provides some
concluding remarks.

II. PRELIMINARIES

Notations: We denote the sets of non-negative integers,
integers, and complex numbers by N, Z, and C, respectively.
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|X | denotes the cardinality of the set X . Column vectors are
denoted with lower-case boldface letters; and the k-th element
(k≥0) of a vector x is denoted with [x]k. Matrices are denoted
with upper-case boldface letters, where the element at the k-th
row and the l-th column of a matrix X is denoted by [X]k,l.
IM denotes the M×M identity matrix. The Kronecker product,
Hermitian transpose, transpose, complex conjugate, Euclidean
norm, and stochastic expectation are denoted by ⊗, (·)H , (·)T ,
(·)∗, ‖·‖, and E{·}, respectively. 〈x〉 denotes the fractional part
of a real number x s.t. 〈x〉∈ (−1/2, 1/2]�I1/2, �x	 denotes
the largest integer not greater than x, and for x∈Z, ((x))m
denotes the remainder of x when divided by m ∈ N. CN
denotes the proper-complex (PC) Gaussian distribution.

Problem Formulation: We consider a discrete-time, scalar,
finite-memory, periodic channel, modeled as an LPTV filter
with ACGN. Let w[n] denote the PC zero-mean ACGN with
autocorrelation function cw [n, l] � E {w[n]w∗[n+l]}, and
let Lnoise, Nnoise ∈ N denote the length and the period

of the temporal correlation of the noise, respectively. Thus,
cw [n, l]= cw [n+Nnoise, l], ∀n, l∈Z (see also [1, Sec. 3.5]),
and cw [n, l] = 0 for all |l|≥ Lnoise. Next, let g [n, l] denote
the causal LPTV CIR, let Lch, Nch∈N denote the length and

the period of the CIR, respectively, i.e., g [n, l]=g [n+Nch, l],
∀n, l ∈ Z, and g [n, l] �= 0 only for 0 ≤ l < Lch. The CIR
is assumed to be deterministic and unknown to the receiver.
Set N0 to be the least common multiple of Nch and Nnoise.
We refer to N0 as the period of the channel. Let ν ∈ I1/2
denote the CFO between the transmitter and the receiver, and
let φ0 denote the phase offset at time n=0. Lastly, let x[n]
and y[n] to denote the channel input and the channel output,
respectively, which are related via:

y[n]=ej(2πνn+φ0)
Lch−1∑
l=0

x[n− l]g[n, l]+w[n], n∈Z. (1)

Define the parameter α�〈N0 · ν〉, which measures the phase
offset accumulated during a single period, and let

h [n, l]�ej(2πν((n))N0
+φ0)g [n, l], (2)

represent the phase–shifted CIR (recall that the phase shift is
unknown). Note that h [n, l] inherits the periodicity and finite
memory of g [n, l], Plugging (2) into (1) yields

y[n]=

Lch−1∑
l=0

x[n− l]ej2πα�
n
N0

�h[n, l]+w[n]. (3)

Since h [n, l] is periodic, it has a discrete Fourier series (DFS)
[14, Ch. 8.1] with DFS coefficients

˜
h [k, l]. k ∈ {0, 1, ..., N0−

1}�N0, l ∈ {0, 1, ..., Lch−1}�Lch. We refer to
˜
h [k, l] as the

delay-Doppler spreading function (DDSF), as in [4]. Note that
h [n, l] can be uniquely recovered from

˜
h [k, l] via the inverse

DFS (IDFS). Expressing h[n, l] in (3) using its DFS yields

y[n]=

Lch−1∑
l=0

x[n− l]√
N0

N0−1∑
k=0

ej
2π
N0

nkej2πα�
n
N0

�
˜
h [k, l]+w[n]. (4)

In the following we design a scheme for estimating the
unknown parameters (α, {

˜
h [k, l]}k∈N0,l∈Lch

), assuming that
the receiver knows the statistical moments of the noise.

The JMLE: Let NCIR � N0Lch denote the overall number
of CIR coefficients and let Nobs denote the number of observa-
tions used for estimation. For simplicity, we assume that Nobs

is an integer multiple of the channel period, Nobs = NpN0,
Np ∈ N. The channel input consists of a predefined PS of
length Nseq = Nobs+Lch−1, denoted as {s [n]}Nobs−1

n=−Lch+1.
When the PS is transmitted, the channel outputs at time
indexes n∈{0, 1, .., Nobs−1}�Nobs are obtained from (4) by
setting x[n]= s[n]. Next, define the vectors y,w∈CNobs s.t.
[y]n=y[n], [w]n=w[n], n∈Nobs, and define the Nobs×Nobs

matrix Cw � E
{
wwH

}
s.t. [Cw]n1,n2

= cw [n1, n2−n1].
We also define the DDSF coefficients vector

˜
h ∈ CNCIR s.t.

[
˜
h]kLch+l =

˜
h [k, l], k ∈ N0, l ∈ Lch, and the PS matrix

S∈CNobs×NpNCIR s.t. [S]n,l = s
[
n− ((l))Lch

]
for n∈Nobs,

nLch≤ l<(n+1)Lch and [S]n,l=0 otherwise. Let F−1
N0

be the

N0×N0 IDFS matrix, i.e.,
[
F−1

N0

]
n,k

= 1√
N0

ej
2π
N0

kn and define
the matrix F ∈ CNpNCIR×NpNCIR s.t. F � INp ⊗ F−1

N0
⊗ ILch

.
Lastly, define the matrix Φ(α) ∈ CNpNCIR×NCIR s.t. Φ(α) �
[1, ej2πα, ..., ej2π(Np−1)α]T ⊗ INCIR

, as well as the matrix

H(α)�SFΦ(α), and the matrix G(α) �
(
HH

(α)C
−1
w H(α)

)−1

.
Applying these definitions to (4), we arrive at:

y = H(α)
˜
h+w, y ∼ CN (

H(α)
˜
h,Cw

)
. (5)

When the number of observations is larger than the number of
estimated parameters, i.e., Np>Lch, and H(α) has a full rank,
then the JMLE of α and

˜
h based on y, denoted (α̂JML, ˆ

˜
hJML),

can be obtained from (5) following steps as in [15, Ch. 8.9]:
α̂JML = argmax

α∈I1/2

{
yHC−1

w H(α)G(α)H
H
(α)C

−1
w y

}
, (6a)

and
ˆ
˜
hJML
(α̂JML)=G(α̂JML)H

H
(α̂JML)C

−1
w y. (6b)

Note that when g [n, l] is LTI, and the noise is AWGN, then,
the JMLE in (6) coincides with the JMLE proposed in [6].

Note that the JMLE has two major drawbacks: First, the es-
timate α̂JML is obtained via a grid search which requires eval-
uating (6a) at T test points. Assuming that T >> NCIR, Nobs

the complexity of calculating the estimate (6) is dominated by
T inversions of an NCIR×NCIR complex matrix G(α), and
thus, the computational complexity of the JMLE is on the order
of O (

T ·N3
CIR

)
. Moreover, to facilitate the estimation, Np

must be larger than Lch, resulting in a low spectral efficiency.
We next propose two modifications of (6) which improve the
spectral efficiency and reduce the computational complexity,
by utilizing the approximate sparsity of the DDSF coefficients.

III.ESTIMATION SCHEMES BASED ON UTILIZING SPARSITY

Assuming that
˜
h can be approximated as a sparse vector,

see, e.g., [4], [13], then there exists a set of indexes K ⊆
{0, 1, . . . , NCIR − 1} � NCIR, s.t. [

˜
h]k ≈ 0 for each k /∈ K.

The set K is henceforth referred to as the sparsity pattern.
Note that K represents both sparsity in the lag-domain, i.e.,
w.r.t l ∈ Lch, and in the Doppler-domain, i.e., w.r.t k ∈ N0.
Recalling that

˜
h is defined as the stacking of

˜
h [k, l], and letting

˜
g [k, l] denote the DDSF of the CIR in the absence of CFO
and phase offset. The first result is a characterization of the
relationship between the non-zero elements of

˜
h [k, l] and of

˜
g [k, l]. This relationship is stated in the following lemma:
Lemma 1.

˜
h [k, l] is equal to zero if and only if

N0−1∑
k′=0˜

g [k′, l]
sin

(
π(k−k′−N0ν)

)

sin
(

π(k−k′−N0ν)
N0

) e−jπ
(N0−1)

N0
(k−k′−N0ν)=0.
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Proof: Denote v[n]� ej(2πν((n))N0
+φ0). v[n] is periodic

with a period of N0 and its DFS, denoted
˜
v[k], is given by

˜
v[k] = ejφ0√

N0

sin

(
π(k−N0ν)

)
sin

(
π(k−N0ν)

N0

) e−jπ
(N0−1)

N0
(k−N0ν), k ∈ N0. From

Eq. (2), h [n, l] = g [n, l]v[n], ∀l ∈ Lch, hence,
˜
h [k, l] can be

obtained as the circular convolution of length N0 between

˜
g [k, l] and

˜
v[k], see [14, Table 8.2]. Equating the circular

convolution to zero proves the lemma.
Lemma 1 implies that the sparsity pattern K depends on

ν, hence, when ν is unknown, the set K cannot be a-priori

known, and it has to be estimated. It follows that, if K is
assumed a-priori known, then only the CIR may be assumed
unknown, and joint estimation is irrelevant. Consequently, any
joint estimation scheme based on sparsity, must incorporate
a dedicated step for estimating K. In the following two
subsection we describe two such schemes.
A. Approximated ML with Sparsity Pattern Estimation

Existing sparsity estimation algorithms, e.g., [9], [10], are
based on the assumption that the observations are modeled as
a product between a known matrix and an unknown vector,
possibly corrupted by an additive noise. To express the obser-
vations y in such a form, we define the vector

˜
hΦ∈CNpNCIR

s.t.
˜
hΦ�Φ(α)

˜
h. Thus, (5) can be written as

y = SF
˜
hΦ +w, (7)

Letting Np� {0, 1, . . . , Np−1} and recalling that K denotes
the sparsity pattern of

˜
h, we next characterize the relationship

between the sparsity patterns of
˜
hΦ and of

˜
h:

Lemma 2. The sparsity pattern of
˜
hΦ is given by

K̃=
{
k˜ ∈ N|k˜ = pNCIR + k, p∈Np, k∈K}

. (8)
Proof: Since

˜
hΦ �Φ(α)

˜
h, then, [

˜
hΦ]pNCIR+k = ej2παp [

˜
h]k,

∀p ∈ Np, k ∈ NCIR, and α ∈ I1/2. Thus, | [
˜
hΦ]pNCIR+k | =

|ej2πpα [
˜
h]k |= | [

˜
h]k |. It follows that [

˜
hΦ]k˜=0 if and only if

[
˜
h]((k˜))NCIR

=0, i.e., k˜ ∈ K̃ if and only if
((
k˜
))

NCIR
∈K. �

It follows from Lemma 2 that the sparsity pattern of
˜
hΦ

consists of the sparsity pattern of
˜
h replicated Np times,

therefore,
˜
hΦ exhibits group sparsity [10], and K = K̃∩NCIR.

Leveraging the group sparsity and the relationship (7), we
propose to estimate the sparsity pattern using the adaptation
of the basis pursuit denoising (BPDN) algorithm [9] to signals
possessing structured sparsity patterns, as detailed in [10]. The
proposed sparsity estimation scheme consists of three steps:
1) Fix a positive σ2 such that σ2 ≥ E

{‖w‖2}.
2) Use the BPDN-based scheme detailed in [10] to recover

the group sparse vector
˜
hΦ. This is achieved by solving

the convex minimization problem:

˜
ho
Φ= argmin

˜
h

Φ
∈CNpNCIR

⎧⎨
⎩

NCIR−1∑
k=0

√√√√Np−1∑
p=0

∣∣∣ [
˜
hΦ]pNCIR+k

∣∣∣2
⎫⎬
⎭ ,

subject to ||y−SF
˜
hΦ||2≤ σ2.

3) Set K̃ as the support of
˜
ho
Φ. The estimate of K is obtained

via K = K̃ ∩ NCIR.
Note that the above algorithm does not recover the values

of the entries of
˜
ho
Φ, but only its support K̃, from which

the support of
˜
h is obtained in step 3. Having estimated the

sparsity pattern K, we formulate the JMLE under the sparsity

approximation. Let
˜
hr ∈ C|K| denote the vector of DDSF

coefficients of reduced size, obtained by taking only the entries
of

˜
h whose indexes are in K. Accordingly, we omit from Φ(α)

the columns whose indexes are not in K, together with the
rows whose indexes are not in K̃, and we omit from F the
columns whose indexes are not in K̃. We denote the reduced
matrices by Φr,(α) ∈ CNp|K|×|K| and Fr ∈ CNpNCIR×Np|K|,
respectively. Lastly, denote Hr,(α)�SFrΦr,(α), and Gr,(α) �(
HH

r,(α)C
−1
w Hr,(α)

)−1

, and approximate the observations via

y�Hr,(α)
˜
hr+w, y

(aprox.)∼ CN (
Hr,(α)

˜
hr,Cw

)
, (9)

which is an approximation as
˜
h is assumed only approximately

sparse. Using (9), we reformulate the JMLE in (6) as follows:

α̂CS=argmax
α∈I1/2

{
yHC−1

w Hr,(α)Gr,(α)H
H
r,(α)C

−1
w y

}
, (10a)

and
ˆ
˜
hCS
r,(α̂CS) = Gr,(α̂CS)H

H
r,(α̂CS)C

−1
w y. (10b)

We henceforth refer to the estimator (10) as the compressed

approximated ML estimator (CS–AML). The performance of
the CS–AML may be degraded if |K| is too large due to the
increased number of parameters to be estimated. Thus, we
truncate K based on an energy threshold, by fixing 0 < ε � 1
and selecting K as the set with minimal cardinality s.t.∑
k∈K

∑
p∈Np

| [
˜
ho
Φ]pNCIR+k |2 ≥(1−ε)‖

˜
ho
Φ‖2.

The CS–AML estimates a total of |K|+1 parameters, hence,
the number of observations must satisfy |K|< Nobs. As |K|
is smaller than NCIR, the CS–AML requires a shorter PS
compared to the JMLE and thus, the spectral efficiency is

improved. Lastly, note that the computational complexity of
evaluating (10) can be expressed similarly to that of (6), with
the exception that the number of estimated CIR coefficients
is decreased from NCIR to |K|. Consequently, the overall
complexity of CS-AML is on the order1 of O (

T · |K|3).

B. Low Complexity Implementation of the CS–AML

Here, we derive a sub-optimal approximation of the
CS–AML in which we further reduce the computational com-
plexity by dividing y into periods, and separately estimating
a phase–shifted version of the DDSF coefficients at each
period. This estimator is referred to as the reduced complexity

CS–AML (RCS–AML). Let Sp ∈ CN0×NCIR be a sub-matrix
of S consisting of the entires [S]n,l with indexes n, l s.t.
pN0 ≤ n < (p+1)N0 and pNCIR ≤ l < (p + 1)NCIR. Set
Fr∈CNCIR×|K| to be a matrix whose columns are the columns
of the matrix F−1

N0
⊗ ILch

corresponding to the indexes of the
set K, and denote

˜
h(α)
r,p =

˜
hre

j2παp, p ∈ Np. Lastly, define
the vectors yp,wp ∈ CN0 s.t. [yp]n = [y]pN0+n and [wp]n=
[w]pN0+n, p∈Np, n∈N0. As w[n] is an ACGN, it follows
that the covariance matrix of wp does not depend on p, and we
thus denote it by Cw � E

{
wpw

H
p

}
. It follows from (9) that

yp � SpFr
˜
h(α)
r,p +wp. Define

˜
Cr,p � (FH

r SH
p C−1

w SpFr)
−1.

To facilitate the RCS–AML we assume that |K|< N0. Under
this assumption, for any value of α and for any p∈Np, the

1Calculating
˜
ho
Φ via the algorithm detailed in [10, Sec. 4.3] requires a

complexity on the order of O(Np ·NCIR), hence, we consider the complexity
of calculating

˜
ho
Φ negligible compared to O (

T · |K|3).
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efficient estimator of
˜
h(α)
r,p from yp is given by2 [15, Ch. 4.5]:

ˆ
˜
h(α)
r,p =

˜
Cr,pF

H
r SH

p C−1
w yp, ˆ

˜
h(α)
r,p ∼CN (

˜
hre

j2παp,
˜
Cr,p

)
. (11)

Ignoring the correlation between the estimates {ˆ
˜
h
(α)
r,p }p∈Np

,
we obtain the RCS–AML estimate of

˜
hr and α as the solu-

tion to the weighted least squares problem (α̂RCS, ˆ
˜
hRCS) =

argmin
{α∈I1/2,

˜
h

r
∈C|K|}

Np−1∑
p=0

(ˆ
˜
h
(α)
r,p−ej2παp

˜
hr)

H

˜
C−1

r,p(ˆ
˜
h
(α)
r,p−ej2παp

˜
hr).

To implement the RCS–AML, define the |K|×|K| matrix

Cinv�
(Np−1∑

p=0 ˜
C−1

r,p

)−1

, the function x [p] s.t. x [p]�
˜
C−1

r,p
ˆ
˜
h
(α)
r,p

for p ∈ Np and x [p] = 0 otherwise, and the discrete-time

Fourier transform of x [p], x̃(α) �
Np−1∑
p=0

x [p] e−j2παp. Using

these definitions, the RCS–AML can be computed via:

α̂RCS = argmax
α∈I1/2

x̃H
(α)Cinvx̃(α), (12a)

ˆ
˜
hRCS
r,(α̂RCS) = Cinvx̃(α̂RCS). (12b)

Lastly, we write Cinv and x̃(α) using the scenario parame-
ters: Plugging the definition of

˜
Cr,p, we obtain that Cinv=(Np−1∑

p=0
FH

r SH
p C−1

w SpFr

)−1

. Then, using
˜
Cr,p and (11), x̃(α)

can be written as x̃(α)=
Np−1∑
p=0

FH
r SH

p C−1
w ype

−j2παp.

Note that the RCS–AML is clearly sub-optimal, as the
estimates of

{
ˆ
˜
h
(α)
r,p

}
p∈Np

do not utilize the correlation across

sequences of length N0. However, the RCS–AML does not
require a matrix inversion at each of the T test points, and
its complexity is dominated by the computations of x̃(α)

and (12a), and is thus of an order of O(T · |K|2), which is
considerably lower compared to that of the JMLE (6) and of
the CS–AML (10).

IV. NUMERICAL EXAMPLES AND DISCUSSION

In this section we compare the performance of the JMLE
(6), the CS–AML (10), and the RCS–AML (12) via a sim-
ulations study. We consider an NB-PLC channel, which is a
practical periodic channel with an approximately sparse DDSF
[13]. The NB-PLC CIR g [n, l] is generated as detailed in [16,
Sec. V] with a period of N0 = 20 and a memory of Lch = 5;
the CFO is set to α = 0.2. The ACGN w[n] is generated
according to the noise model detailed in [3] and in the IEEE
P1901.2 standard [17], with a set of typical parameters based
on [17, Appendix G, LV11]. Sparsity pattern estimation is
carried out using the version of the BPDN algorithm detailed
in Section III-A with σ2 = 1.05 · E{‖w‖2} and ε = 0.005.
For the RCS-AML estimator (12), if |K|> N0, then K is
truncated to contain only the indexes corresponding to the N0

most dominant entries of
˜
h. We consider two values of Nobs

corresponding to Np ∈ {4, 6}. For Np = 4, the number of
observations, Nobs=NpN0, is smaller than the total number
of parameters N0Lch+1, and thus, the JMLE (6) cannot be

2Note that when |K|> N0, we can always decrease |K| by taking only
the N0 coefficients with the largest magnitudes out of the |K| coefficients
produced by the sparsity pattern estimation procedure. This truncation clearly
results in an increased estimation error for the DDSF coefficients.
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implemented. The estimation of α was implemented using a
grid search over T = 104 equally spaced test points in the
interval I1/2. The SNR is defined as SNR� ‖y−w‖2

2

E{‖w‖2
2} .

We first evaluate the sparsity pattern estimation in terms
of the mean ratio between the CIR energy contained in K
and the total energy of the CIR, evaluated using r (K) �
EK

{ ∑
k∈K

|[
˜
h]k |2

}
/‖

˜
h‖2 (note that as K depends on y, then,∑

k∈K
|[
˜
h]k |2 is a random variable). As observed in Fig. 1, at

low SNRs a significant percentage of the estimated DDSF
coefficients is set to zero, hence, a significant bias is expected
in the estimated CIR. For moderate and high SNRs the indexes
of the dominant CIR coefficients are successfully identified for
both Np=4 and for Np=6. When Np=6, we observe from
Fig. 1 that the mean ratio values of the RCS-AML are slightly
smaller compared to the mean ratio achieved by the CS-AML
at high SNRs due to the restriction |K|≤ N0. Note that the
term 1 − r (K) constitutes a lower bound on the normalized
mean-squared error (NMSE) achievable for the estimated CIR.
Also note that r (K) is not larger than ∼ 95%. The reason is
that the DDSF coefficients are only approximately sparse, and
consequently, the estimator will always set a certain part of
the estimated coefficients to zero, which induces an NMSE
floor for the estimated CIR coefficients at high SNRs.

Next, we compare the estimation performance for
˜
h and

α. We also depict the Cramér-Rao bound (CRB) obtained for
Np=6 as a reference (when Np=4 the CRB does not exist
since Np < Lch [15, Ch. 7.8]). In addition, we present the
estimation performance obtained by adapting the algorithm
for joint CFO and CIR estimation proposed in [6] to periodic
channels, using a time partitioning approach similarly to [19],
referred to as the piecewise LTI estimator (PWLE).
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The NMSE for the estimation of
˜
h, defined as E

{
‖ˆ
˜
h −

˜
h‖2

}
/‖

˜
h‖2, is depicted in Fig. 2. As observed in Fig. 2,

while the CRB lower bounds the performance of the unbiased

JMLE, it does not lower bound the performance of the CS-
AML and of the RCS-AML, since the CIR estimates obtained
using these schemes are biased, due to the fact that the non-
zero coefficients excluded from the set K are estimated as
0. Moreover, since the estimates of the DDSF coefficients are
coupled, then decreasing the number of estimated DDSF coef-
ficients results in reducing the MSE of the DDSF coefficients
in K. Consequently, the NMSE for the estimated coefficients
can be smaller than the CRB, which bounds the NMSE for
unbiased estimation of the entire DDSF. As observed in Fig. 2,
both the CS-AML and the RCS-AML outperform the standard
JMLE over a wide range of SNRs, which is achieved thanks to
decreasing the number of estimated parameters. Furthermore,
even when the number of observed periods is Np=4, the CS-
AML and the RCS-AML still outperform the JMLE (derived
for Np=6) at low and medium SNRs. From the above discus-
sion we conclude that the proposed estimators can provide a

substantial performance gain, in addition to increased spectral

efficiency and reduced computational complexity. Additionally,
it is observed that for Np=6, both the CS-AML and the RCS-
AML outperform the PWLE for most of the considered SNR
range, for Np=4 they are superior for all of the SNR range.
This demonstrates the benefits of the CS-AML and the RCS-
AML compared to the ad-hoc solution.

The CFO estimation performance is depicted in Fig. 3.
As α is periodic, its estimation performance is measured
via the mean-squared periodic error (MSPE), defined as
MSPE(α̂ − α) � E

{
〈α̂− α〉2

}
[18, Sec. II]. Note that at

high SNRs the CRB also lower bounds the MSPE [18]. It is
observed in Fig. 3 that for Np=6, both the CS-AML and the
RCS-AML outperform the JMLE over a wide range of SNRs.
This can be explained by noting that the CFO estimation in
(6a), (10a), and (12a), yields the values of α maximizing the
energy of a projection of the observations y onto a signal
subspace which depends on the tested value of α. The CS-
AML and the RCS-AML only utilize signal space dimensions
which account for dominant DDSF coefficients, resulting in
improved performance. Furthermore, as the estimates of α and

˜
h are coupled, [7, Sec. 2.], the bias in the estimation of

˜
h

can result in estimates of α with an MSPE lower than the
CRB. Lastly we observe that both the CS-AML and the RCS-
AML obtain greatly improved CFO estimation performance
compared to the PWLE over a wide range of SNRs.

V. CONCLUSIONS

In this paper we proposed an estimation scheme for the
joint estimation of the CIR and CFO over channels with
periodic characteristics. The proposed estimators exploit the
approximately sparse nature of the CIR using compression–
based techniques, and can be implemented with a reduced
computational complexity at the cost of a minor performance
degradation. The performance of the proposed schemes is
evaluated in a simulation study corresponding to a practical
scenario, and compared to the performance of the JMLE and
of a reference ad-hoc estimation scheme based on adapting
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Fig. 3. CFO MSPE, NB-PLC scenario.

an estimation scheme for LTI channels. The numerical re-
sults illustrate that properly exploiting the periodicity and the
approximate sparsity of the periodic channel is a key for
obtaining improved estimation performance.
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