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Abstract—In this paper we examine the general problem of
estimating the frequency of a balanced or unbalanced three-phase
power system. The Clarke transform is commonly employed to
transform the three real voltages to in-phase and quadrature
components that are combined to form a complex exponential,
the frequency of which can then be estimated. The imbalance
between the voltages in an unbalanced system results in sig-
nificant performance degradation. We address this problem by
generalising the Clarke transformation to the case where the
voltages are not equal. We then propose a new simple yet accurate
algorithm for the estimation of the frequency. We simulate the
algorithm and show that it achieves the performance that is
obtained in the balanced case, practically sitting on the Cramér-
Rao Bound.

Index Terms—Three Phase Power Systems, frequency esti-
mation, unbalanced power system, amplitude imbalance, Fast
Iterative Interpolated DFT.

1. INTRODUCTION

The ability to control the system and maintain its stability
depends on the accurate estimation of its frequency [1], [2].
This problem has become all the more important with the
penetration of renewable energy sources and the advent of
smart grids [3], [4]. In this work, we consider the general
frequency estimation problem for a balanced or unbalanced
three-phase system where the imbalance manifests as voltage
sags [4].

The problem of estimating the frequency of a sinusoidal
signal has been extensively researched [5], [6]. When the
signal is complex, the frequency can be simply and efficiently
estimated by many robust algorithms such as those in [6].
When multiple complex exponentials are present, however,
the leakage effect must be accounted for [7]. Similarly, a real
signal can be modeled as a sum of two complex exponentials
which makes leakage compensation schemes necessary [3].
This approach has been applied in [8] to three phase systems
where three filters were used to reduce these effects. More
recently, a new real signal frequency estimator with built-in
leakage compensation was proposed [9], [10]. This algorithm
is powerful and effective for a single phase.

In a three-phase system, the well known Clarke Transform
is usually used to obtain an in-phase and quadrature com-
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ponents that are then combined into a complex exponential.
However, the Clarke Transform and the algorithms that employ
it are applicable only to balanced systems. When the voltages
deviate from the assumed model, as in the case of voltage
sags [4], significant degradation in the performance can result.
Previous efforts, such as those of [4], [11], [12], to tackle
this problem have focused on deriving the signal model and
modifying the frequency estimators to handle it. This leads
to more complex estimators. In this work, we re-examine
the transformation itself and generalise it to the unbalanced
case. This allows us to employ simple frequency estimators
directly giving a performance that sits on the Cramér-Rao
Bound [6]. Therefore, we make two contributions. The first is
the proposal and derivation of the adaptive Clarke transform
(ACT). Although it is formulated here only for amplitude
imbalance, this transformation has the potential to be extended
to other forms of imbalance. The second contribution is the
presentation of a novel estimation strategy that uses the ACT
to achieve accurate frequency estimation under amplitude
imbalance.

The rest of the paper is organised as follows. In Section II,
we give the three-phase signal model and briefly review the
Clarke Transform. The new, adaptive Clarke Transform (ACT)
is presented in Section III. The ACT is then used in Section
IV to propose a novel frequency estimation approach that can
account for the unbalanced case. Section V reports simulation
results to demonstrate the performance of the new approach.
Finally, some conclusions are drawn in Section VI.

II. THE CLARKE TRANSFORM

Consider a three phase power system and assume we have
N samples for each of the a, b and ¢ phases. The signal model
is given by

Xalk] = valk] + wylk]
Xplk] = vplk] + wplk] (1)
xc[k] = Vc[k] + Wc[k]»
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where the noise samples, w,, w, and w., are assumed to be
independent and identically distributed Gaussian with zero
mean and variance 0%/2. The noiseless voltages are given by

valk] = V,cos Qrfk + ¢)

vplk] = Vj cos (2nfk+¢— %) 2)

velk] = V. cos (2nfk + ¢+ 2%)

Here k = 0...N — 1, f is the system frequency, and ¢ the
initial phase. The amplitudes of the three phases are denoted
V., Vi and V. respectively.

Instead of operating on each of the phases individually,
the Clarke transform permits them to be combined into two
orthogonal and one zero component, denoted by «, 3, and 0.
Since we are only interested in the complex exponential, we
only use the @ — 3 part of the Clarke transform, which we
denote by T. Thus,

Xaﬁ[k] = TXapcl k], (3)
where
xalk]
XoslA] =[ i } and xpelk = | wl | @
xelk]
and 5 | |
T =[3 1 } 5)
i TV

Now, it is easy to verify thatif V, = V;, = V. = V, then we have
that x,[k] = Vcos2nfk+ ¢) and xg[k] = Vsin 2nfk + ¢).
This leads to

xlk]l = xolk] + jxglk]
= VeI L wikl, (6)

where w[k] is the resulting complex circular Gaussian noise
component with variance 2‘7’2 The combination of the three
phase voltages results in an SNR gain of 1.5 times with respect
to each individual phase, and the resulting complex exponen-
tial in white noise model simplifies many signal processing
tasks including that of estimating the signal frequency.

III. THE GENERALISED CLARKE TRANSFORMATION

When the system is unbalanced, the standard Clarke Trans-
form does not produce a single exponential. While most
approaches in the literature try to deal with the resulting
more complicated signal model, we opt to re-examine the
transformation itself to achieve a simplified signal model,
specifically a signal model like (6). Thus, in what follows
we will derive the general transformation for the unbalanced
case where the phase voltages are not necessarily equal. Let
the general transformation be

| @ ap .
G‘[ﬂa B Bc]' ™

Keeping in mind that the transformation is applied on a
sample by sample basis, we ignore the time index for sake of
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notational simplicity. Applying G to the three phase voltages
we get

1 1
Vo = (ozaVa - Eabe - EG’CVC) cos 2nkf + ¢)

+§ (@p Vi — . V,)sin 2rkf + ¢), and
1 1
Vg = (ﬂava - EIBbe - EBCVC) COs (27l'kf + ¢)

+? BV = BcVe) sin 2rkf + ¢) . (®)

In order to obtain a complex exponential we require the
coefficient of the cosine term in v, to be equal to that of
the sine term in vg. Without loss of generality we set them
equal to 1. Furthermore, the coefficients of the sine term in v,
and of the cosine term in vg to be zero. Therefore,

1 1
a’ava - Eabe - E(I’CVC = 1
3
g(ahvb—acvg =0
\% ! V ! Vo = 0
IBa a zﬁh b zﬁc c =
V3
(ﬁth_ﬁch) = 1.

2
Solving this system of equations, leads to the parametrisation
of the transformation on « and S as

1 V
aazva(l+Vba),ab=aandaC=Via

1 1
@)aﬁb =p and B, = VC(Vh

= — b — - —.
‘T, V3
©)
While these equations give a single complex exponential, they
do not constitute a unique solution. Thus, in order to determine
the solution that gives the optimal transform, we minimise the
output noise variance. Applying the transformation to the noise
we have that

W = (@aWa + @pWp + W) + j(BaWa + Bywp + Bewe) . (10)

The output noise is therefore zero-mean. Furthermore, using
the independence of the noise samples, we can show that the
variance is given by

Tou = E[ww']
o2
>
In order to minimise o2,, we differentiate it with respect
to @ and B and equate to 0. Substituting (9) into (11), and
proceeding to differentiate and equate to O yields

2 2 2 2 2 2
= (aa o, ta; +:3a +ﬁb +:30)

(1)

0 1 2 2 V}% 2
g{v—3(1+Vha) + @ +73a = 0
2

= L(2v +2Via)+2 20, = 0 (12)
Vg b fae’ @ VZQ = 0.
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Solving for @ and putting V2 = V2 Vb2 +V2V2 4 VbZVC2 we get

V,V?
@=-—=C (13)
Vi
Finally, we obtain
Vo (V2+V2) V, V2 V2V,
Qg = ——5—, @ =— 2,andcxcz— - (14)
Vr Vi Vi

Now turning our attention to the S-component, and following
a similar procedure, we arrive at the solution
V, 2V2 + V2
8= _”% (15)
V3 V:

leading to
5 Ve (v-v2) PR R0
a = s Pp= =
N ViV
V. 2V2+ V2
and Be=——t 2 b (16)

i v

The transformation parameters derived above minimise the
noise variance while maintaining the output signal amplitude
at 1. As a result, the SNR is maximised. Since the generalised
transformation depends on the power system parameters, in

this case the amplitudes, we refer to it as an “Adaptive Clarke
Transform” or ACT. The ACT is then expressed by

1| Va(V2+V2) ~VyV2 ~V2V,

Vil w(vi-ve) s@i+vs) H@e+vi)

G=

Putting V, =V, = V. = 1 yields the Clarke transform shown
in (5), which elucidates the particular transformation adopted
by Clarke as it maximises the output SNR. The output SNR
in the general case is given by

1
P = 5
O—UUZ
1 2
T 2+ a2+ R+ +po?
a b c a b c
3 vz

207 V24 VR4 V2 (1%

Regardless of the individual line voltages, the transforma-

tion that employs G of (17) results in a pure exponential.

Thus, instead of deriving estimators that are adapted to the

unbalanced case, we adapt the transformation which then
permits the use of pure tone frequency estimators.

IV. A PracTticaL FREQUENCY ESTIMATION ALGORITHM

The ACT derived in the previous section yields a pure
exponential, simplifying the signal model and permitting the
use of any pure tone frequency estimators, such as those
of [5], [6] for the power system frequency estimation. This,
however, requires that the amplitudes of the individual phases
are known. In general, however, considering that unbalanced
power systems might be experiencing voltage dips or rises,
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the voltage levels would likely not be available. Therefore,
we present in this section a practical estimation strategy that
combines the generalised transformation with the Fast iterative
interpolated DFT (FIID) algorithm of [6], [13].

In the absence of information to the contrary, we begin by
assuming that the system is balanced. The optimal transfor-
mation is then given by the traditional CT of (5). Under this
assumption, we apply the CT and proceed, using the FIID
algorithm, to obtain an estimate, f, of the system frequency.
Since the system may be unbalanced, the estimate f will
be biased due to the presence of the secondary component,
[12]. To address this, we propose to use the estimate f to
derive estimates of the voltage amplitudes that will be used
in the ACT. This process is iterated until convergence. The
estimates of the amplitudes are obtained using the well-known
Maximum Likelihood (ML) estimator. Specifically, it is readily
shown that for phase p, where p = a, b or c, the ML estimator

of the amplitude is given by
Vy = IZ7Y, (DI, (19)

where ||v|]| is the norm of the vector v. The matrix X is
symmetric, given by

X Zpp
Y= 20
[ % X ] 20)
with
N-1
= Zcos2 (27kf). Q21
=0
N-1
Iy = )y sin®(27kf), (22)
k=0
and
N-1
Th=X = Zcos (27 f) sin (27K ). (23)
k=0
The vector Y, ( £) is given by
N-1 ;
Yp(f) _ o Xplk]cos (Zﬂk]j) . (24)

Sy xplk] sin (27ka)

These amplitudes are then inserted into (17) to give the adapted
CT. The algorithm is summarised in Table I. In the table, the
matrix X s is a 3 X N matrix whose rows comprise the time
samples of each phase. Similarly the matrix X,z contains the
N samples of the ACT output for the @ and S phases.

V. SIMULATIONS

The proposed algorithm employs the ACT in order to
take full advantage of the excellent performance of the FIID
algorithm. The resulting ACT-FIID algorithm should then
emulate the FIID and exhibit an RMSE that is very close to
the Cramer-Rao Bound (CRB). In this section we verify this
and compare our method to the LS-SDFT algorithm of [12].
This algorithm takes a sliding window of DFT coefficients and
obtains an estimate of the frequency by accounting for the
additional component resulting from the imbalance. Although
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TABLE 1
Tue Prorosep ACT-FIID ALGORITHM

Put G =T (that is start with the CT)
Do For g =1 to Q, loop:
(i) Xn/3 = GXupe
(i) X = Xop(1,2) + jXap(2,2)
(i) f = FIID(x)
(iv) Calculate Y,(f) and E using (24) and (20)
(i) Vp = IZ7'Y (P, for p € {a, b, c}
(v) Update G according to (17)

—CRB
+LS-SDFT
10%F CT-FID |4
+ACT-FIID
— 10 \\\ E
N
E \
L
2 0
Z 107F E
107 F E
10-2 L L L I I
-20 -10 0 10 20 30 40

SNR (dB)

Fig. 1. Frequency RMSE vs SNR for the balanced case. 5000 MC runs were
used.

[12] assumes that the sampling frequency is a multiple of the
nominal frequency, LS-SDFT in fact is not critically dependent
on this asumption. Finally we note that in the following
simulations, we average 5000 Monte Carlo (MC) runs for each
scenario.

A. The Balanced Case

Since the algorithm generalises the Clarke Transform, it
should be able to achieve the same performance as the CT
in the balanced case. To demonstrate this, we set the nominal
frequency to 50Hz. For each MC run, we generate the actual
frequency randomly in the interval [49,51] and draw the
phase from a uniform distribution over the interval [, 7].
We simulate the estimation performance versus signal to noise
ratio. For comparison, we include the CRB value in addition
to the LS-SDFT, CT-FIID and proposed ACT-FIID. The Root
Mean Square (RMSE) of the frequency in Hz is shown as a
function of SNR in Fig. 1. To generate this figure, we used a
value of N = 65. For LS-SDFT we employed a DFT window
of length 48 giving L = 16 DFT coefficients. It is clear from
Fig. 1 that LS-SDFT performs significantly worse than the
other two methods. The CT-FIID method gives the ideal signal
model in the balanced case and, therefore, achieves the CRB.
Finally, we note that, as expected, ACT-FIID achieves the same
performance as the CT-FIID. The minor difference around the
breakdown threshold is attributed to the adaptation step, which
is not required in the balanced case.
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Fig. 2. Frequency RMSE vs SNR for the unbalanced case. 5000 MC runs
were used.

B. The Unbalanced Case

Having shown that the proposed approach has desirable
properties in the balanced case, we now look at its behaviour
when the power system is unbalanced. To this end, we choose
the same imbalance that was reported for the real system in
[12]. That is we set V, = 1.584, V;, = 0.416 and V, = 1.305.
We generate the frequency and phase in exactly the same way
as the previous example and keep the same parameters used
for the algorithms. The results are shown in Fig. 2 below. We
can clearly see that the ACT-FIID performs extremely well
and achieves the CRB. As expected, the CT-FIID algorithm
is heavily biased and deviates significantly from the CRB. It
is interesting to note that the LS-SDFT shows a very similar
performance as the previous example. This seems to indicate
that the algorithm is able to deal with the system imbalance,
but that the frequency estimation itself does not achieve the
CRB.

VI. ConcLusioN

The Clarke Transform (CT) has been become a ubiquitous
tool for the analysis of power systems. However, the CT is
not intended to map the three phases to signals that can be
combined to form a pure tone. Rather it is meant to facilitate
the analysis of the power system by transforming the three
phases to two orthogonal axes and a dc term. Thus, while the
CT has proven useful from an analysis point of view, it only
has desirable properties in the balanced case. In this work we
re-examined the CT from the signal processing perspective.
We generalised it, under amplitude imbalance, with the goal
of producing a pure tone with the maximum signal to noise
ratio. We then employed this adaptive transformation to obtain
a simple frequency estimation strategy that can achieve the
CRB. The adaptive Clarke transform (ACT) has the potential
to be extended to other forms of imbalance. Both the ACT
and estimators based on it will be further investigated in future
work.
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