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Abstract—In this work, the optimization of the analog transmit
waveform for joint delay-Doppler estimation under sub-Nyquist
conditions is considered. Based on the Bayesian Cramér-Rao
lower bound (BCRLB), we derive an estimation theoretic design
rule for the Fourier coefficients of the analog transmit signal
when violating the sampling theorem at the receiver through a
wide analog pre-filtering bandwidth. For a wireless delay-Doppler
channel, we obtain a system optimization problem which can be
solved in compact form by using an Eigenvalue decomposition.
The presented approach enables one to explore the Pareto region
spanned by the optimized analog waveforms. Furthermore, we
demonstrate how the framework can be used to reduce the
sampling rate at the receiver while maintaining high estimation
accuracy. Finally, we verify the practical impact by Monte-Carlo
simulations of a channel estimation algorithm.

Index Terms—Bayesian Cramér-Rao lower bound, compres-
sive sensing, delay-Doppler estimation, signal optimization, sub-
Nyquist sampling, waveform design

I. INTRODUCTION

CHANNEL parameter estimation enjoys significant atten-

tion in the signal processing literature and is key to

applications, such as radar and mobile communication. Radar

systems use knowledge of the delay-Doppler shift to precisely

determine the position and velocity of a target object, while

in wireless communication channel estimation is required for

beamforming techniques and rate adaptation.

In signal processing systems, the prevailing design paradigm

for the bandwidth of the transmit and receive filter is com-

pliance with the well-known sampling theorem, requiring a

sufficiently high receive sampling rate. While this guarantees

perfect signal reconstruction from the receive data, it stands

in contrast to results from estimation theory, where high

bandwidths can be beneficial for parameter estimation, see e.g.

[1]. When the receive system is designed such that it satisfies

the sampling theorem, i.e., the analog pre-filter bandlimits

the sensor signal to the analog-to-digital conversion rate, the
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achievable sampling rate fs at the receiver restricts the band-

width B of the transmitter and therefore the overall system

performance. Since the sampling rate forms a bottleneck with

respect to power resources and hardware limitations [2], it

is necessary to find a trade-off between high performance

and low complexity. Therefore we discuss how to design

the transmit signal for delay-Doppler estimation without the

commonly used restriction from the sampling theorem.

Delay-Doppler estimation has been discussed for decades

in the signal processing community [3]–[5]. In [3] a subspace

based algorithm for the estimation of multi-path delay-Doppler

shifts is proposed and it is shown how the dimensionality of

the maximum likelihood (ML) estimator can be reduced by a

factor of two. In [4] a time-domain procedure for estimation

of delay-Doppler shifts and direction of arrival (DOA) is

considered. Using prolate spheroidal wave (PSW) functions,

the favorable transmit signal design with respect to time-

delay accuracy is discussed in [6], while [7] considers such

a technique for joint delay-Doppler estimation. Recent results

show that for wide-band transmit signals, analog receive filter

bandwidths which lead to violation of the sampling theorem

can provide performance gains [8], [9]. Further, in [10] the

optimization of receive filters in a compressed sensing frame-

work has been investigated and improvements with respect to

matched filtering have been illustrated.

Here we consider optimization of the transmit signal while

the receiver samples at a rate fs smaller than the Nyquist

rate B. After introducing the system model for a single-input

single-output (SISO) delay-Doppler channel, we derive a com-

pact formulation of the transmit signal optimization problem

in the frequency domain. We show how to solve the transmitter

design problem for B > fs by an Eigenvalue decomposition.

The potential Pareto-optimal region is visualized by optimizing

the transmit waveform for different settings and comparing

the results to conventional signal designs. We conclude the

discussion with a performance verification via Monte-Carlo

simulations of a channel estimation algorithm.

II. SYSTEM MODEL

Consider the propagation of an analog, T0-periodic pilot

signal x̆(t) ∈ C through a wireless delay-Doppler channel. The

baseband signal at the receiver, which is perturbed by additive
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white Gaussian noise (AWGN) η̆(t) ∈ C with constant power

spectral density N0, can be denoted as

y̆(t) = γx̆(t− τ)ej2πνt + η̆(t) (1)

with channel coefficient γ ∈ C, time-delay τ ∈ R and Doppler

shift ν ∈ R. The signal y̆(t) ∈ C is filtered by a linear receive

filter h(t) ∈ C, such that the final analog receive signal

y(t) =
(

γx̆(t− τ)ej2πνt + η̆(t)
)

∗ h(t)
= v(t; θ) + η(t) (2)

is obtained, where θ =
(

τ ν
)T ∈ R

2 denotes the unknown,

random channel parameters. For the duration T0, the signal

y(t) ∈ C is sampled in intervals of Ts = 1
fs

, resulting in an

even number of N = T0

Ts
∈ 2N samples

y = v(θ) + η, (3)

with the receive vectors y,v(θ),η ∈ CN defined as

[y]i = y

((

i − N

2
− 1

)

Ts

)

, (4)

[v(θ)]i = v

((

i− N

2
− 1

)

Ts, θ

)

, (5)

[η]i = η

((

i− N

2
− 1

)

Ts

)

. (6)

We use positive integers as indices for vectors and matrices

and thus i ∈ {1, 2, . . . , N}. The noise samples η in (3) follow

a zero-mean Gaussian distribution with covariance matrix

Rη = Eη[ηη
H] ∈ C

N×N . (7)

Note that Rη depends on the receive filter h(t) and the

sampling rate fs and thus is not necessarily a scaled identity

matrix. The unknown parameters θ are considered to be Gaus-

sian distributed p(θ) ∼ N (0,Rθ) with known covariance

Rθ =

(

σ2
τ 0
0 σ2

ν

)

. (8)

Here we assume that the channel γ is known at the re-

ceiver, which simplifies the formulation of the transmit signal

optimization problem. However, when testing the optimized

waveforms for a practical scenario in the last section we will

treat γ to be a deterministic unknown. For the derivation, we

first assume a fixed sampling rate fs at the receiver while the

periodic transmit signal x̆(t) is band-limited with two-sided

bandwidth B. Then we consider the case of a variable rate

fs. In contrast to the sampling theorem assumption B ≤ fs,

in our setup we allow B > fs. Note that at the receiver, we

always use an ideal low-pass filter h(t) featuring the same

bandwidth B as the transmit signal.

III. CHANNEL ESTIMATION PROBLEM

Under the assumption that γ is known, the task of the

receiver is to infer the unknown channel parameters θ based

on the digital receive data y using an appropriate channel

estimation algorithm θ̂(y). The mean squared error (MSE)

of the estimator θ̂(y) is defined as

Rǫ = Ey,θ

[

(

θ̂(y)− θ
)(

θ̂(y)− θ
)T
]

. (9)

A fundamental limit for the estimation accuracy (9) is the

Bayesian Cramér-Rao lower bound (BCRLB) [11, p. 5]

Rǫ � J−1
B , (10)

where JB is the Bayesian information matrix (BIM)

JB = JD + JP . (11)

The first summand of the BIM (11) represents the expected

Fisher information matrix (EFIM)

JD = Eθ

[

JF (θ)
]

, (12)

with the Fisher information matrix (FIM) exhibiting entries

[JF (θ)]ij = −Ey|θ

[

∂2 ln p(y|θ)
∂[θ]i∂[θ]j

]

. (13)

For the signal model (3), the FIM entries (13) are

[JF (θ)]ij = 2Re

{

(

∂v(θ)

∂[θ]i

)H

R−1
η

(

∂v(θ)

∂[θ]j

)

}

. (14)

The second summand in (11) denotes the prior information

matrix (PIM) JP with entries

[JP ]ij = −Eθ

[

∂2 ln p(θ)

∂[θ]i∂[θ]j

]

. (15)

IV. TRANSMITTER OPTIMIZATION PROBLEM

The design problem of finding a transmit signal x̆⋆(t) that

minimizes the MSE (9) of the estimation algorithm θ̂(y) under

a particular positive semi-definite weighting M ∈ R2×2,

subject to a transmit power constraint P , can be phrased as

x̆⋆(t) = argmin
x̆(t)

tr(MRǫ), s.t.
1

T0

∫

T0

|x̆(t)|2dt ≤ P. (16)

Although the BCRLB (10) can be achieved with equality only

under special conditions [11, p. 5], it closely characterizes

the estimation performance trend (see Sec. VII-C). It is hence

possible to formulate (16) based on the BIM (11)

x̆⋆(t) = argmin
x̆(t)

tr(MJ−1
B ), s.t.

1

T0

∫

T0

|x̆(t)|2dt ≤ P. (17)

In order to avoid optimization with respect to J−1
B in (17), we

consider an alternative maximization problem

x̆⋆(t) = argmax
x̆(t)

tr(M ′JB), s.t.
1

T0

∫

T0

|x̆(t)|2dt ≤ P.

(18)

It can been shown that if x̆⋆(t) is a solution of the max-

imization problem (18) with M ′, there exists a weighting

matrix M (not necessarily equal to M ′) for which the original

minimization problem (17) has the same solution x̆⋆(t) [12].

Since JP is independent of x̆(t), (18) then simplifies to

x̆⋆(t) = argmax
x̆(t)

tr(M ′JD), s.t.
1

T0

∫

T0

|x̆(t)|2dt ≤ P.

(19)



V. ESTIMATION THEORETIC PERFORMANCE MEASURE

Solving the optimization problem (18) requires an analytical

characterization of the EFIM (12). A frequency-domain rep-

resentation enables a compact notation of the receive signal

model [9] and thus provides further insights on the FIM

entries (14). Note that a frequency-domain approach naturally

embodies the bandwidth restriction required in practice by

limiting the number of Fourier coefficients.

A. Signal Frequency Domain Representation

Due to periodicity, the transmit waveform x̆(t) can be

represented by its Fourier series

x̆(t) =

K
2
−1
∑

k=−K
2

Xke
jkω0t, (20)

where ω0 = 2π
T0

= 2πf0 and K = ⌈ 2πB
ω0

⌉ ∈ 2N is the total

number of harmonics. Xk denotes the k-th Fourier coefficient

of the transmit signal. Inserting expression (20) into (2) and

applying the filtering operation in (2), we obtain

v(t; θ) = γ

K
2
−1
∑

k=−K
2

Xk

(

ejkω0(t−τ)ej2πνt
)

∗ h(t)

= γej2πνt

K
2
−1
∑

k=−K
2

ejkω0te−jkω0τH(kω0 + 2πν)Xk,

(21)

where H(ω) is the Fourier transform of the receive filter h(t).
Evaluating v(t; θ) at instants nTs, n = −N

2 , . . . ,
N
2 − 1 yields

v(nTs; θ) =γ

K
2
−1
∑

k=−K
2

ej2πνnTsej2π
kn
N e−jkω0τH(kω0 + 2πν)Xk

=

K
2
−1
∑

k=−K
2

[C(θ)]n+N
2
+1,k+K

2
+1Xk, (22)

with the channel matrix C(θ) ∈ C
N×K , defined by

C(θ) = γ
√
ND(ν)WHT (τ)H(ν). (23)

The indices of C(θ) in (22) stem from the fact that we use

positive integers as indices for vectors and matrices. Here

D(ν) ∈ CN×N stands for a diagonal matrix

[D(ν)]ii = ej2π(i−
N
2
−1)νTs , (24)

which represents the Doppler frequency-shift. Further W ∈
CK×N is a tall discrete Fourier transform (DFT) matrix

[W ]ij =
1√
N

e−j2π
(i−K

2
−1)(j−N

2
−1)

N , (25)

and T (τ) ∈ CK×K denotes the diagonal time-delay matrix

[T (τ)]ii = e−j(i−K
2
−1)ω0τ . (26)

The diagonal matrix H(ν) ∈ CK×K in (23) characterizes the

frequency shifted receive filter spectrum and has elements

[H(ν)]ii = H

(

(

i− K

2
− 1

)

ω0 + 2πν

)

. (27)

Note that the channel matrix (23) describes the propagation of

x̃ through the channel and its transformation from the spectral

to the time domain. Further note that the aliasing effect due

to bandwidths B higher than the sampling frequency fs is

automatically included by the wide IDFT matrix WH.

Stacking the entries of v(nTs; θ) (22) into one vector yields

v(θ) = C(θ)x̃, (28)

with the transmit filter spectrum vector x̃ ∈ CK formed by

the Fourier coefficients

[x̃]i = Xi−K
2
−1. (29)

B. Fisher Information of the Delay-Doppler Channel

In order to compute the FIM elements (14), it is necessary to

compute the derivatives of v(θ) with respect to the parameters

θ. Using the frequency domain representation (28), we obtain

∂

∂[θ]i
v(θ) =

∂C(θ)

∂[θ]i
x̃. (30)

The derivatives of the channel matrix are

∂C(θ)

∂τ
=γ

√
ND(ν)WH∂T (τ)H(ν), (31)

∂C(θ)

∂ν
=γ

√
N
(

∂D(ν)WHT (τ)H(ν)+

D(ν)WHT (τ)∂H(ν)
)

, (32)

with the partial derivatives

[∂D(ν)]ii = j2π

(

i− N

2
− 1

)

Tse
j2π(i−N

2
−1)νTs , (33)

[∂T (τ)]ii = −j

(

i− K

2
− 1

)

ω0e
−j(i−K

2
−1)ω0τ , (34)

[∂H(ν)]ii =
∂

∂ν
H

((

i− K

2
− 1

)

ω0 + 2πν

)

. (35)

Inserting (31) and (32) into (14), the FIM entries can be

expressed as quadratic terms

[JF (θ)]ij = 2Re

{

x̃H ∂CH(θ)

∂[θ]i
R−1

η

∂C(θ)

∂[θ]j
x̃

}

. (36)

The elements of the expected Fisher information matrix

(EFIM) (12) are then obtained by

[JD]ij = 2Re

{

x̃HEθ

[

∂CH(θ)

∂[θ]i
R−1

η

∂C(θ)

∂[θ]j

]

x̃

}

= x̃H (Γij + Γji) x̃, (37)

with the channel sensitivity matrix Γij ∈ CK×K

Γij = Eθ

[

∂CH(θ)

∂[θ]i
R−1

η

∂C(θ)

∂[θ]j

]

. (38)



VI. TRANSMIT SIGNAL OPTIMIZATION

In the following we solve the transceiver design problem

(18) using the EFIM expressions (37). With the frequency

domain representation (29) of the transmit signal, the opti-

mization problem (18) becomes a maximization with respect

to the transmit Fourier coefficients x̃

x̃⋆ = argmax
x̃

tr
(

M ′JD

)

s.t. x̃Hx̃ ≤ P. (39)

Expanding the trace operation, the objective function becomes

tr
(

M ′JD

)

=

2
∑

i=1

2
∑

j=1

[M ′]ji[JD]ij = x̃H
Γx̃, (40)

with the weighted channel sensitivity matrix

Γ =

2
∑

i=1

2
∑

j=1

[M ′]ji (Γij + Γji) . (41)

The solution to the problem (39) is the Eigenvector γ1 of the

matrix Γ corresponding to its largest Eigenvalue.

VII. RESULTS

There exists a trade-off between the estimation of delay and

Doppler-shift. By solving the optimization problem (39) for all

positive semi-definite weightings M ′, we are able to approx-

imate the Pareto-optimal region. This region is characterized

by the set of transmit waveforms for which the estimation of

one parameter cannot be improved by changing the transmit

signal without reducing the accuracy of the other parameter.

For visualization, we define the relative measures

χτ/ν = 10 log

(
[

J−1
D |x̃rect

]

11/22
[

J−1
D |x̃

]

11/22

)

, (42)

with respect to a rectangular pulse x̃rect of bandwidth B = fs,

as it is used in Global Navigation Satellite Systems (GNSS).

For the following results, the expectation (38) with respect to

p(θ) is computed using Hermite-Gaussian quadrature.

−5 0 5 10
−5

0

5

χτ [dB]

χ
ν
[d
B
]

ρ = 1
ρ = 2

ρ = 1 (x̃rect)

Fig. 1. Pareto regions for bandwidths B = ρfs with fs = 10MHz

A. Pareto-Optimal Region - Fixed Sampling Rate

For a setting where T0 = 10µs, fs = 10MHz, σν = 5kHz
and στ = 10ns, Fig. 1 shows the Pareto-optimal regions for

different bandwidths B = ρfs. Note that here for all systems

the same sampling frequency fs has been used. The results

indicate that a potential performance gain of roughly 12dB
for delay estimation and 4dB for Doppler estimation can be

obtained when optimizing the transmit system for ρ = 2. Note

that when increasing the transceive bandwidth B from ρ = 1
to ρ = 2, two main effects affect the estimation performance.

First, a larger transmit bandwidth is beneficial for the delay

estimation due to high-frequency signal parts. On the other

hand, a higher receive filter bandwidth results in a larger

noise power at the receiver and therefore in a lower Doppler

estimation accuracy. However, the optimized system is able

to compensate this effect by efficiently using the available

transmit spectrum, which leads to a moderate loss.

B. Pareto-Optimal Region - Fixed Bandwidth

In the previous section, we have seen that optimized wave-

forms have the potential to increase the accuracy of delay-

Doppler estimation methods. We now investigate the estima-

tion performance for a fixed transmit bandwidth B = 10MHz,
a signal period T0 = 10µs and different sampling frequencies

fs =
B
κ . In order to focus on the case with undersampling we

consider setups where κ > 1. Fig. 2 shows the Pareto regions

−5 0 5 10
−5

0

5

x̃⋆

χτ [dB]

χ
ν
[d
B
]

κ = 1
κ = 2
κ = 4

κ = 1 (x̃rect)

Fig. 2. Pareto regions for rates fs =
B

κ
with B = 10MHz

of the optimized waveforms with respect to a rectangular

signal. Note that the sampling rate for the reference system is

held constant, while the sampling rate of the optimized system

decreases with increasing κ. This indicates that although lower

sampling rates are used, the optimized waveform design still

bears the potential to provide high estimation accuracy.

C. Simulation Results

To verify that the optimization based on the EFIM yields

substantial performance gains for practical scenarios, we con-

duct Monte-Carlo simulations with randomly generated noise

η and channel parameters θ. As the channel γ is in general not



known to the receiver, we use the hybrid maximum likelihood-

maximum a posteriori (ML-MAP) estimator [11, p. 12]
(

γ̂ML(y)

θ̂MAP(y)

)

= argmax
θ,γ

(

ln p(y|θ, γ) + ln p(θ)
)

. (43)

For simulations we use T0 = 10µs and B = 10MHz.
We compare the MSE of a rectangular pulse signal with

fs = 10MHz and the optimized transmit signal x̃⋆ with

fs = 5MHz, i.e., κ = 2. The transmitter design x̃⋆ used for

the simulations corresponds to the point of the Pareto-region

in Fig. 2 with largest distance to the origin. Fig. 3 and Fig. 4

show the normalized empirical mean squared error (NMSE)

NMSEτ̂ /ν̂ =
MSEτ̂ /ν̂

σ2
τ/ν

(44)

of the hybrid ML-MAP estimator for both systems, where

MSEτ̂/ν̂ represents the diagonal elements of (9), empirically

evaluated based on the results of the estimation algorithm (43).

The signal-to-noise ratio (SNR) is given by

SNR =
P

BN0
. (45)

It is observed that for low SNR the MSE saturates at σ2
τ,ν ,
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−20
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N
M
S
E
τ̂
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⋆)

BCRLBτ (x̃rect)

NMSEτ̂ (x̃
⋆)

NMSEτ̂ (x̃rect)

Fig. 3. MSE and BCRLB - Time-delay τ
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⋆)

NMSEν̂(x̃rect)

Fig. 4. MSE and BCRLB - Doppler-shift ν

since in this case the estimation merely relies on the prior

information p(θ). In the high SNR regime, the MSE of the

hybrid ML-MAP estimator shows close correspondence with

the BCRLB and the estimator benefits from the waveform op-

timization. For moderate to high SNR values the performance

gain is roughly 4.5dB for the estimation of the time-delay

and 3.5dB for the Doppler-shift estimation. This corresponds

to the findings from the Pareto-region in Fig. 2.

VIII. CONCLUSION

We have derived an optimization framework for the transmit

waveform of an undersampled pilot-based channel estimation

system. By employing the BCRLB, the transmitter design

problem was reformulated as a maximization problem with

respect to the expected Fisher information matrix. A frequency

domain representation of the receive signal allows one to

find an analytical solution to the maximization problem via

an Eigenvalue decomposition. The BCRLB of the optimized

waveforms can be used to approximately characterize the

Pareto-optimal design region with respect to other delay-

Doppler estimation methods. Further, our results show that

using optimized transmit waveforms enables the receiver to

operate significantly below the Nyquist sampling rate while

maintaining high delay-Doppler estimation accuracy. Finally,

Monte-Carlo simulations support the practical impact of the

considered transmit design problem.
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