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Abstract—We propose a method to both quickly and robustly
extract geometric information from trajectory data. While point
density may be of interest in some applications, trajectories
provide different guarantees about our data such as path densities
as opposed to location densities provided by points. We aim
to utilize the concise nature of quadtrees in two dimensions
to reduce run time complexity of counting trajectories in a
neighborhood. We compare the accuracy of our methodology
to a common current practice for subsampling a structure. Our
results show that the proposed method is able to capture the
geometric structure. We find an improvement in performance
over the current practice in that our method is able to extract
only the salient data and ignore trajectory outliers.

Index Terms—Trajectory counting, density estimation, land-
mark selection, quadtree.

I. INTRODUCTION

The increasing availability of large data sets containing
spatiotemporal or geometric data is driving the need for data
analysis methodologies. Obtaining counts of trajectories for
regions in the data provides a means for analysis.

Researchers have explored applying the principles of clus-
tering trajectories to determine animal movement patterns
[1]–[3], mapping roads from vehicle GPS data [3]–[5], and
describing environmental characteristics such as fault lines
[5] and hurricane forecasts [1]. The trajectory clustering tech-
niques are often used to supply a set of descriptive trajectories,
yet these descriptive trajectories may also be provided from a
region’s trajectory density. Trajectory counts over regions also
relate to subsampling techniques such as maxmin subsampling
utilized in [6]. Density based methods have been used in the
context of clustering as in DBSCAN [7], where density of
points has been taken into account for purpose of clustering.
The density based method TRACLUS [1] is also used in
clustering, yet it attempts to cluster trajectory segments. We
note TRACLUS avoids the resolution guarantees presented as
part of the proposed method. Similarly in [8], the authors use
the density of edges obtained by aggregating segmentation
from different algorithms.

The strategy presented in the following paper aims to
generate a representative subsampling of points that captures
the structure of a trajectory-based density function in the
space. In order to validate the correctness of our approach, we
present a comparison of topological features with point-density
based subsampling. As an example application, the topological
features of sensor data on a person’s joint can be used for

activity recognition as shown by the authors of [9]. Yet we
note the running time of density based subsampling does not
allow for real time activity recognition. We assert the proposed
method contributes to the work required to allow sensor data to
be utilized in real time activity recognition through calculation
of topological features.

This paper is organized as follows: section II gives an
overview of the tools we used in our method, followed by
our approach and implementation details in sections III and
IV respectively. In section V, we compare our approach with
the existing density based subsampling method. In section VI,
we discuss applications to activity recognition; and finally,
conclusion and future work is presented in section VII.

II. BACKGROUND

The structure of the data provides important geometric infor-
mation that can be used for inference. Often, such data can be
represented as a point cloud with each point corresponding to
a noisy observation. Topological data analysis provides us with
tools to analyze such datasets. Persistence Homology is one
such tool that allows us to analyze point clouds over a scale
parameter ϵ, and extracts topological features of the dataset
at specific scales [10]. A filtration X(ϵ) can be obtained by
increasing ϵ over a range of interest, with the property that if
t < s, then X(t) ⊂ X(s) meaning that all simplices in X(t)
are included in X(s) (see Figure 1). As an illustration, we can
create a list of simplices X(ϵ) where each simplex represents
a clique with the property that every pair of points is within
ϵ distance from each other.

Persistent homology computes the values of ϵ for which the
classes of topological features appear (bin) and disappear (din)
during filtration, referred to as the birth and death values of
the i-th class in dimension n. This information is encoded
into persistence intervals lin = [bin, d

i
n], or a multi-set of

Fig. 1: Illustration of filtration sequence and the corresponding
persistence diagram
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Fig. 2: Illustration for figure-8 (top-left panel), peanut (top-right panel), circle (bottom-left panel) and square (bottom-right
panel) trajectory sets. In each panel, the trajectories (top-left), our TRED representation (top-right), and count functions for
r = 0.15 and r = 0.30 (bottom) are shown. The landmarks selected by our approach are shown in red on the level sets for
the corresponding count functions. This show how these landmarks capture the same geometric structure as CB

r .

points (bin, d
i
n), called persistence diagram [11], denoted as

PDn (see Figure 1). The persistent diagram introduced by
Edelsbrunner et al. [11], is a multi-set of points (bin, d

i
n) in the

extended plane that summarizes how topological features of
the point cloud vary over ϵ, which represent the prominence of
such features. Note the points (bin, d

i
n) live above the diagonal

line which denotes birthvalue = deathvalue. The points
close to the diagonal appear and dissappear very quickly,
while the points that are father away from the diagonal are
more persistent and are considered as significant features.
Algorithms for computation of persistent homology can be
found in [12].

Subsampling strategies based on density are used widely
to get representative samples from a point cloud in order to
handle outliers as well as reduce computational complexity.
The maxmin density based subsampling [6] is a landmark se-
lection strategy that maximizes the distance from the previous

selected landmarks. The algorithm chooses a random point xi

from the point cloud X , and then the following landmarks
are chosen inductively. Let Xk−1 = {x1, x2, .., xk−1}, be the
chosen landmarks. For the next landmark xk, we want to pick
a sample point that maximizes min(D(xk,Xk−1)), where D
is the distance metric in the space.

III. METHODOLOGY

We begin by defining a dense version of density estimation
procedure. We consider a set of trajectories {γk}Nk=1 embed-
ded in R2, where each γk ⊂ R2 is the trace of the trajectory
in the space. We interpret a trajectory as the realization of
a spatio-temporal process containing stochastic components
centered about the true mean representative trajectory. We
assume that these trajectories have a bounded maximum cur-
vature notated as κmax. In order to recover some information
about the density of these trajectories over the space, we aim to
determine the number of trajectories around a particular point.
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However, picking a neighborhood that is too large would not
capture the appropriate geometric structure that we are after.
Hence, we only consider neighborhoods that have a radius of
curvature at most 1/κmax. This ensures that curves are unable
to self-intersect within a given neighborhood. Formally, we
define the following trajectory count function CB

r : R2 → N
for r ≤ 1

κmax
:

CB
r (x) =

∑
k

cc[γk ∩Br(x)], (1)

where cc[E] is the number of connected components in the set
E, Br(x) is an open ball of radius r around x ∈ R2. Figure 2
(left) illustrates this count function for a set of trajectories for
two values of the support radius r. Note that for r > 1/κmax

the count function does not capture all of the structure present
in the set since curves can actually wrap around inside Br.

We also defined a similar count for an open square Sr(x)
with half side-length equal to r and centered at x. In this case,

CS
r (x) =

∑
k

cc[γk ∩ Sr(x)]. (2)

We definite the size of this square such that Br is inscribed
in Sr. This count can be computed more efficiently using a
hierarchical quadtree approach (as discussed later). However,
this count has some unavoidable instability. If we perturb
a trajectory that moves along one of the straight edges of
the square, we can move it back and forth into the square
(increasing the count) but without violating our curvature
constraint. Hence, we consider a modified count for the case
of the square

CS
r1,r2(x) =

∑
k

cc[γk ∩ Sr1(x)|γk ∩ Sr2(x)], (3)

where r1 < r2 and cc[E1|E2] counts the number of connected
components in E1 modulus the connected components in E2

(i.e., if there are multiple segments in Sr1 that are connected
in Sr2 then they count as one).

It is easy to see that CS
r1,r2(x) ≤ CS

r1(x). Furthermore,
assuming that

√
2 · r1 ≤ r2 ≤ 1/κmax then any trajectory

that enters and leaves Br1 cannot enter back into Br1 without
leaving Sr2 . So, CB

r1(x) < CS
r1,r2(x). A similar argument en-

sures that CS
r1,r2(x) < CB

r2(x). Hence, we have the following
result:

Theorem 1. Given that
√
2 · r1 ≤ r2 ≤ 1/κmax, then for all

x ∈ R2 we have that

CB
r1(x) < CS

r1,r2(x) < CB
r2(x). (4)

IV. HIERARCHICAL IMPLEMENTATION

We introduce our Trajectory based Representation for Esti-
mation of Density (TRED) representation via a quadtree data
structure to describe the geometric structure of the set of
trajectories. For the implementation we will assume that there
is only a single continuous trajectory. However, the approach
can be extended without any difficulty. We define the bins of
the quadtree to be square regions. A bin may be split into four

equally sized and pairwise disjoint child bins. The ancestors
of a bin are all bins with which its intersection is not null.
We use the count of a bin’s ancestors to describe the depth
of a bin. Therefore given a bin with depth n, the length of
its edges will be a factor 1/2n shorter than the length of
the edge of the bin with depth 0. The maximum depth of
the quadtree is chosen such that the deepest bin satisfies the
condition on the length of a bin’s side as described in Theorem
1. We empirically set δ = 0.05 and r2 = r1 + δ for all square
sizes in our experiments. When describing the structure of a
set of trajectories, the bins with maximum depth are of interest.

The quadtree is initialized with a square bounding box to
ensure all bins are square. A top down approach is taken to
divide larger bins into smaller bins of greater depth. A bin is
split when the bin’s depth is less than the maximum depth and
the bin contains at least τ connected components. The value
of τ = 3 was set empirically for our experiments.

The count on the number of connected components
CS

r1,r2(x) in a bin is maintained for a bin given it has no
child bins. The trajectory count is incremented for a bin if the
initial point is within the bin. By moving along a trajectory γ,
we use Sr2 to determine if the trajectory leaves a bin before
checking which new bin it has entered. The trajectory count
of a bin is incremented once the trajectory enters the bin. It
was observed that the value of τ helps in reducing the effects
of noise along a bin boundary making the representation more
stable.

Once the quadtree has been constructed, the set of points
Π = {πi} is used to capture the geometric structure of the
trajectory density. Each πi is the center point of a bin which

Fig. 3: Comparing Sampling Strategies. (a) Original datas-
tream showing outlier trajectory, and persistence diagram PD1

for groundtruth ellipse, (b) trajectories with landmarks (high-
lighted in red) from maxmin baseline method, (c) transition
with landmarks (highlighted in red) from proposed TRED
subsampling method.
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Fig. 4: TRED subsampling applied to activity recognition.

has a depth equal to the maximum depth of the quadtree and
contains at least τ connected components. Figure 2 illustrates
some examples for two trajectory sets. We note that the
selected landmarks are within the corresponding level of the
count function CB

r .

V. COMPARISON

In this section we show a comparison of maxmin density
based subsampling method (mentioned in section II) and
our TRED subsampling method. A synthetic dataset (circle,
square, ellipse, figure-8 and peanut shapes), were created to
test our approach. Harmonic noise was added perpendicularly
to the tangent of the curve at each data point. The harmonic
noise was bounded by a magnitude of 0.1. Figure 2 shows
some examples for these trajectory sets and the outcome
of TRED representation. For these examples, our approach
selected similar landmarks as the maxmin approach, with the
advantage of faster performance.

In Figure 3 (a), we show an example of a transition stream
from figure-8 to an ellispe. The figure-8 has one loop and
the ellipse has four loops, so we consider the first trajectory
as an outlier. The maxmin method tends to select evenly
spaced points but is sensitive to outlier outliers, hence a
pre-processing step to remove outliers that uses a K-nearest
neighbor density estimation [13], was proposed before the
subsampling method. The maxmin density based subsampling
method picks samples based on density of the points and hence
it ends up picking up samples from the outlier trajectory as
well (see 3 (b) ). On the other hand our TRED subsampling
method picks samples based on trajectory densities (see 3 (c)
), hence samples are picked up only from the ellipse.

We use bottleneck distances [14] to compare the dimen-
sion 1 persistence diagrams (PD1), between the groundtruth
(ellipse shape in this case) and subsampled point clouds
obtained after maxmin and TRED method. We are interested
in dimension 1 which gives us information about holes. In the
maxmin method, since the samples are chosen from the outlier,
the structure of the ellipse is lost which is seen in PD1, a lot
of holes appear and disappear near the diagonal but there are
no persistent features. Whereas, in the TRED method we see
two holes: one disappears quickly and the other one captures

the structure of the ellipse yielding a diagram similar to the
groundtruth.

VI. APPLICATION TO ACTIVITY RECOGNITION

TRED can be applied to an activity recognition pipeline.
The authors in [9], use a windowed time-delay embedded [15]
signal as an input to the maxmin subsampling strategy. Fea-
tures from the persistence diagrams (obtained from subsam-
pled point clouds) are used for classifying activities. Applying
maxmin over each window can be computationally expensive
O(n2), where n is the number of points in the trajectory set.
Our proposed approach has a complexity of O(n). In Figure 4
we show an example of how TRED can be applied to motion
capture trajectories. The trajectories corresponding to the right
leg joint (x, y and z axis) for bicycling activity are shown in
Figure 4 (left). The TRED landmarks and quadtree for the
time-delay embedded signal are shown in Figure 4 (middle),
and the corresponding persistence diagram on the Figure 4
(right). In [9], features from the persistent diagram are used
for activity recognition.

VII. CONCLUSION AND FUTURE WORK

We propose a novel method for density based estimation
of trajectories using TRED. It is not only fast but also
robust in recovering the geometric structure as shown by the
persistence diagram. We provide upper and lower bounds for
describing the trajectory count in a region, and bounds on
the minimum size of square region which correlates to the
maximum curvature of a trajectory. Our method can be easily
extended to higher dimensional spaces.

This work is able to be further extended to not only consider
fixed trajectories of data, but consider instead the real-time
processing of continuous stream using a fixed window size.
This is particularly useful for applications such as the activity
recognition framework discussed in section VI in which our
representation can be computed and updated dynamically as
new observations become available. The landmarks from our
approach can then be used to extract geometric structure for
activity classification. For this dynamic case, we will consider
extensions to the presented algorithm as part of our future
work. Adding a merge capability would maintain a concise
data structure in that if data leaves a certain region, the bins
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may be merged to the single parent bin so that bare sections do
not contain unneeded resolution. Merging would preserve the
guarantees presented above and add the guarantee of a concise
and dynamic data structure that can be easily updated.
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