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Abstract—In this paper, a method for reducing coding artifacts
introduced by lossy image compression is proposed. The method
is similar to sample adaptive offset (SAO) which is adopted
in the H.265/HEVC video coding standard as one of in-loop
filtering tools. In the SAO, samples of the reconstructed image are
classified into several categories based on some simple algorithms,
and an optimum offset value is then added to the samples
belonging to each category. Since the classification algorithms are
switched on a block-by-block basis, not a negligible amount of
side-information must be transmitted to the decoder in addition
to the offset values. On the other hand, our method adopts
a machine learning technique using a support vector machine
(SVM) for the classification process. By applying the common
SVM classifier to a whole image, the amount of the side-
information can be considerably reduced. Simulation results
indicate that the proposed method provides bitrate savings of
up to 1.0 % for HD size images degraded through intra frame
coding of the H.265/HEVC standard.

Index Terms—Post filtering, coding artifacts, machine learning,
support vector machine (SVM), sample adaptive offset (SAO)

I. INTRODUCTION

Post filtering, or in-loop filtering for video coding, is a
technique to recover image quality degraded through lossy
image compression, and recent coding standards employ this
kind of technique to achieve better coding efficiency. For
example, a deblocking filter, which reduces blocking artifacts
caused by block-based motion-compensated prediction and/or
transform coding, is adopted in H.264/AVC video coding
standard [1]. In development of the latest H.265/HEVC
standard [2], three kinds of in-loop filtering tools: improved
deblocking filter (DF) [3], adaptive loop filtering (ALF) [4]
and sample adaptive offset (SAO) [5] were investigated, and
finally DF and SAO have been accepted. While DF and ALF
follow a typical filtering procedure where filter output is
generated as weighted sum of multiple reconstructed values
in local neighbors, the SAO utilizes the local information to
merely classify a target sample into several categories. The
filtering output is then obtained by adding an optimum offset
value to samples corresponding to each category. It can be seen
as a pattern analysis approach and classification algorithms
play an important role in obtaining better coding gains. In
practice, the SAO has several classification algorithms that
are designed in advance and the best one in a rate-distortion
sense is selected for each fixed size block, called a coding

tree unit (CTU). It means that not a negligible amount of side-
information on selection of the algorithms must be transmitted
to the decoder in addition to the offset values.

Recently, a novel nonlinear post filtering technique has been
proposed in [6], where a filtering algorithm itself is designed
for each image using a evolutionary computing framework. It
requires high computational power at the encoder side and the
resulting algorithm must also be transmitted to the decoder
as side-information. In [7], a support vector machine (SVM),
which is known as a robust supervised machine learning
algorithm [8], is incorporated with a median filter for restoring
images corrupted by impulse-like additive noise. Since the
SVM is reputed to have high generalization ability, it is
expected to be used for a wide variety of images without any
extra side-information for the post filtering purpose.

In this paper, we propose a new post filtering method
using the SVM for coding artifacts reduction. The method is
similar to an edge offset (EO) mode of the SAO. Specifically,
the sample classification algorithm in the EO mode is
replaced by the SVM classifier which was trained on several
decoded images in advance. After performing the SVM-
based classification, an optimum offset value calculated at the
encoder side is received as side-information and added to the
samples belonging to each category. Since we employ a three-
class SVM in this paper, only three small offset values are
needed as the side-information for the post filtering process
over the whole image.

II. PROPOSED METHOD

A. Motivation

In the H.265/HEVC standard, SAO has two kinds of
classification modes: EO and band offset (BO), which are
used exclusively for each CTU. In the EO, the reconstructed
value at a target sample is compared with two of adjacent
samples along a one dimensional directional pattern, which is
called an EO class, to classify the target sample into one of
five categories. Since the directional pattern can be rotated by
45◦, there are four EO classes to be signalized for each CTU.
Though the parameters including the EO classes as well as
offset values for the respective categories can be shared with
adjacent CTUs, the amount of side-information required for
the SAO is unable to disregard in general [5].
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Our aim is to replace the above classification algorithms
with a SVM classifier which can separate the samples so
that each of the classified categories has a certain bias in
reconstruction errors. If such a SVM classifier is commonly
used independent of image contents, the side-information on
the classification algorithms can be considerably reduced.

B. SVM Classifier

In order to capture local image structure around the target
sample p0, reconstructed values of 13 samples shown in Fig. 1
are extracted in the proposed method. We assume that a local
mean of image signals is irrelevant to statistical property of
the reconstruction errors and, therefore, differences of the
reconstructed values between these samples and the target one
are used as input features for the SVM classifier. Moreover, we
use a sigmoid-like function S(d) to map the features within
an interval of [−1,+1] because it is usually recommended
to scale the feature vector elements to a certain range [9].
Consequently, a 12 dimensional feature vector is defined with
respect to the target sample p0 as follows:

x(p0) = [x1, x2, . . . , x12 ]t, (1)

xk = S
(
f̃(pk)− f̃(p0)

)
, (2)

S(d) =
2

1 + exp(−a·d)
− 1, (3)

where f̃(pk) represents the reconstructed value at the sample
pk and a is a gain factor which controls slope of the function
S(d) at d = 0 as shown in Fig. 2.

In this paper, we use a three-class SVM which predicts a
class label y(p0) ∈ {−1, 0,+1} from the above feature vector.
As the desired output of the SVM used in supervised learning,
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Fig. 1. Target sample p0 and its neighbors.

−20 −15 −10 −5 0 5 10 15 20

−1.0

−0.5

0.5

1.0

a = 1
a = 1/2
a = 1/4
a = 1/8
a = 1/16
a = 1/32

d

S(d)

Fig. 2. Scaling function S(d).
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Fig. 3. Quantization of reconstructed errors to assign class labels.

an index of three-level quantization of the actual reconstruction
error at each sample is assigned to the class label:

y(p0) =

−1 if f(p0)− f̃(p0) < −Th
+1 if f(p0)− f̃(p0) > +Th

0 otherwise

, (4)

where f(p0) means the original image value and Th is a
quantization threshold for the reconstruction errors. A value of
Th is determined so that frequencies of the three quantization
outputs can be equally distributed for the training image as
depicted in Fig. 3

In this way, a training data set composed of pairs of
the feature vector and the class label {x(p0), y(p0)} is
collected from the given reconstructed images. By using
this data set, the trained SVM classifier is expected to
roughly discriminate the samples having significant biases in
the reconstruction errors. Practically, we employ a nonlinear
soft margin SVM with the radial basis function (RBF)
kernel implemented in LIBSVM, an open source library for
SVMs [10]. The following parameters may have an influence
on the classification performance of the proposed method and
their better settings will be investigated in the next section.

C: Regularization parameter for the misclassification errors.
γ: Kernel parameter used in the RBF.
a: Gain factor for the scaling function S(d) defined in (3).

C. Post Filtering

The SVM classifier is applied to the target image containing
coding artifacts, and each sample is categorized into one of
three classes according to its output. Then the reconstruction
errors obtained at the encoder side are averaged in each
category and the optimum offset ∆fy ∈ Z is calculated by
rounding off the averaged value into the nearest integer. Since
three values of ∆fy (y = −1, 0,+1) are usually close to zero,
they can be transmitted to the decoder by a few bits. In this
paper, we simply use the unary code [11] for the absolute
values of ∆fy and add a sign bit if ∆fy 6= 0 as the side-
information. It is worth noting that, our experimental results
show that ∆f0 is always zero and signs of ∆f−1 and ∆f+1

are consistent with their class labels in almost all cases. These
facts suggest that there is a room for further reducing the
side-information, but its total amount is anyway much smaller
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than the one needed for the SAO. Finally, the transmitted
offset value is added to the reconstructed values of the samples
belonging to each category. By carrying out this process for
all the samples at the decoder side, the coding artifacts on the
reconstructed image can be reduced.

III. EXPERIMENTAL RESULTS

A. Training and parameter tuning

In our experiments, the first frames of twelve CIF size
(352× 288 pels) monochrome sequences shown in Fig. 4 are
encoded by the H.265/HEVC to obtain the training data set.
Table I summarizes the coding condition used in this process.
Appropriate values of the parameters C, γ and a mentioned in
II-B are searched based on the leave-one-out cross-validation
procedure, namely, when one image is being evaluated, the
remaining eleven images are used for training of the SVM. To
speed up this parameter tuning process, 10 % of the samples
are randomly drawn from the eleven images for constructing
the training data set. Objective coding gains obtained by the
proposed method are measured by Bjøntegaard delta bitrate
(BD-rate) [12] calculated using four quantization parameters
QP = 22, 27, 32, 37. This means three of the four QPs are
different from the training condition shown in Table I.

Akiyo Carphone Coastguard

Container Foreman Hall monitor

Mobile & calendar Mother & daughter News

Silent Tempete Waterfall

Fig. 4. Training images.

TABLE I
CODING CONDITION FOR TRAINING DATA SET.

Codec HM 16.7
Coding mode Intra frame
Internal bit-depth 8 bit
Quantization parameter Fixed (QP=32)
Deblocking filter (DF) On
Sample adaptive offset (SAO) Off
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Fig. 5. Relationship between BD-rates and the parameters C and γ.
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Fig. 6. Relationship between BD-rates and the gain factor a.

Figure 5 shows a relationship between the averaged BD-
rates and two parameters C and γ which are concerned with
the soft margin SVM using the RBF kernel. According to [9],
both of the parameters generally have a significant impact
on the classification performance. In this two dimensional
parameter search, the gain factor in (3) is fixed to a= 0.125.
We can see that the combination of C = 2.0 and γ = 0.25
gives better coding gains on average. Under this condition,
better choice of another parameter a is also searched. Figure 6
indicates that the setting of a= 0.125 is the best among the
tested conditions. Based on these results, the SVM is finally
trained using all of the twelve training images shown in Fig. 4
with the parameter settings of C=2.0, γ=0.25 and a=0.125.

B. Performance evaluation

To eliminate bias from the training images, another set of
images with HD resolution (1920×1080 pels, 8-bit grayscale)
are used for performance evaluation. These images are the
first frames of (a) TUM 1080p25 Data Set (No. 1 and 2) [13]
and (b) ITE/ARIB Hi-Vision Test Sequence 2nd Edition
(No. 201–210) [14], and their thumbnails are shown in Fig. 7.
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TABLE II
COMPARISON OF BD-RATES.

Image SAO Proposed method SAO + Proposed
Crowd run −0.591% −0.661% −0.938%
Park joy −0.663% −0.484% −0.871%
Ginkgo trees −0.600% −0.456% −0.806%
Truck train −0.519% −0.257% −0.554%
Cosmos flowers −0.682% −0.661% −0.945%
Red leaves (pan up) −0.550% −0.393% −0.693%
Sunlight through leaves −0.825% −1.015% −1.314%
Red leaves (pan down) −0.705% −0.672% −1.014%
Woman at harbor (circle dolly) −0.802% −0.481% −0.873%
Fountain (follow) −0.918% −0.596% −1.250%
Fountain (dolly) −0.384% −0.045% −0.429%
Studio concert (confetti) −0.771% −0.801% −1.230%
Average −0 .668% −0 .543% −0 .910%

Crowd run Park joy
(a) TUM 1080p25 Data Set

Ginkgo trees Truck train

Cosmos flowers Red leaves (pan up)

Sunlight through leaves Red leaves (pan down)

Woman at harbor (circle dolly) Fountain (follow)

Fountain (dolly) Studio concert (confetti)
(b) ITE/ARIB Hi-Vision Test Sequence 2nd Edition

Fig. 7. Test images used for the performance evaluation.

Intra frame coding of H.265/HEVC (without SAO) is used
again as an anchor method in calculation of the BD-rates.

Table II compares the BD-rates obtained by the conventional
SAO and the proposed method. This table also reports results
of the proposed method incorporated with the SAO. In this
case, the SAO is enabled in the training and post filtering
processes, that is the SVM classifier is carried out after
performing the SAO on the reconstructed images. We can see
that, though the SAO provides better result on average. the
maximum coding gain is achieved by the proposed method for
“Sunlight through leaves”. Furthermore, combination of both
methods attains the best performance for all tested images and
its averaged BD-rate reaches about −0.9 %.

In Fig. 8, offset values calculated by the respective post
filtering methods with QP=32 are visualized by replacing
its chroma channel (CR component) with the offset values
after 50× amplification. It is observed that the offset values
of the SAO tend to exhibit isolated patterns except for some
blocks where BO is selected, while those of the proposed
method form blob-like patterns. When both of the methods
are incorporated, these patterns are overlaid and thus higher
PSNR is achieved without losing their advantages.

IV. CONCLUSIONS

In this paper, we proposed a new post filtering method using
a support vector machine (SVM) which is known as one of
the most effective machine learning algorithms. In this method,
the SVM is trained to classify the image samples into three
categories so that the reconstructed errors introduced by lossy
image coding have certain biases. After this classification, an
optimum offset value which minimizes the reconstructed errors
is simply added to the samples belonging to each category.

Effectiveness of the proposed method was evaluated using
several images other than the training ones under the condition
of intra frame coding of the H.265/HEVC. As a result, it was
shown that the proposed method provides bitrate savings of
up to 1.0 % and can be used together with the state-of-the-art
post filtering technique, namely sample adaptive offset (SAO).
Since our method utilizes no prior knowledge of a specific
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(a) Anchor method (33.75 dB, 0.542 bits/pel) (b) SAO (33.81 dB, 0.543 bits/pel)

(c) Proposed method (33.82 dB, 0.542 bits/pel) (d) SAO + Proposed (33.85 dB, 0.543 bits/pel)

Fig. 8. Enlarged view of “Crowd run” with visualization of the offset values.

coding algorithm, it could be used for any kinds of lossy
image coding schemes as far as their coding artifacts have
some structural relation to local waveform of the reconstructed
images.

Currently, a major limitation of the proposed method is its
complexity. In our experiments, the filtering process of a HD
size image takes a few hours due to a large number of support
vectors used in the classifier. A part of our future studies will
be directed toward simplification of the classifier so that it can
be used as an in-loop filtering tool for video coding.
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