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Abstract—This paper presents nonlinear filters that
are obtained from extensions of morphological filters.
The proposed nonlinear filter consists of a convex and
concave filter that are extensions of the dilation and
erosion of morphological filter with the maxout activa-
tion function. Maxout can approximate arbitrary con-
vex functions as piecewise linear functions, including
the max function of the morphological filters. The class
of the convex function hence includes the morphological
dilation and can be trained for specific image processing
tasks. In this paper, the closing filter is extended to
a convex—concave filter with maxout. The convex—
concave filter is trained for noise and mask removal
with a training set. The examples of noise and mask
removal show that the convex—concave filter can obtain
a recovered image, whose quality is comparable to in-
painting by using the total variation minimization with
reduced computational cost without mask information
of the corrupted pixels.

Indexr Terms—Mathematical morphology, maxout,
noise removal, nonlinear filter, neural network.

I. INTRODUCTION

Nonlinear filters have been widely applied to many im-
age processing tasks. Many classes of nonlinear filters have
been proposed. Mathematical morphology[1][2] is a frame-
work of nonlinear image processing and morphological
filters are major class of the nonlinear filters. Morphologi-
cal filters are implemented by connecting basic building
blocks: dilation and erosion. Impulsive noise reduction,
feature detection and other image enhancement tasks[2]
are realized by the connections of the erosion and dilation
filters. For gray scale images, the outputs of dilation and
erosion are, respectively, the maximum and minimum of
the biased intensities of the pixels within a local window.

Recently, deep neural networks[3][4][5] have been suc-
cessfully applied to object recognition and other im-
age processing tasks. For convolutional neural networks
(CNNs)[3][4], the unit input of the first layer is obtained
from a sliding window over the image. The units of a layer
share the same parameter set and the output of the layer
is translation—invariant with respect to the input. When
the resolution of the input is equal to the resolution of the
output, the CNN layer can be interpreted as a nonlinear
filter. For the recently proposed CNN, a rectified linear
unit(ReLU)[3][4][5] is employed for the activation function.
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The ReLU outputs the larger value of zero and the sum
of a linear combination of inputs and a bias.

Maxout, which is an extension of the ReL.U, is proposed
in Ref. [6]. The output of maxout is the maximum value
over sums of the weighted inputs and biases. The epigraph
of the transfer function between the input and output of
maxout is the union of the epigraphs of the hyper planes,
each of which is defined by the weighting parameters and
bias. Therefore, the maxout transfer function is a convex
function and can approximate any convex function as a
piecewise-linear convex function[6]. Maxout network has
been successfully applied to pattern and speech recogni-
tion problems[6][7].

Further, the dilation of morphology can be realized by
maxout, if the parameters are restricted to zero and one.
Thus, the convolutional layer composed of the maxout
functions is interpreted as an extension of dilation. More-
over, erosion can be implemented as the negative of the
dilation, of which the signs of the input are inverted.
Erosion can also be implemented as the negative maxout,
which can approximate any concave function. Since the
class of the function that can be realized by maxout is
broader than those by dilation and erosion, the maxout
network that yields from a morphological filter by replac-
ing dilations and erosions with maxout will outperform the
original morphological filter.

In this study, we construct maxout networks based on
morphological filters. The dilation filter is extended to a
convex filter with maxout, whereas the erosion filter is
extended to a concave filter with maxout by inverting the
sign of the output. By replacing the dilation and erosion
of the opening and closing filters with convex and concave
filters, we propose novel nonlinear filters for image noise
and mask removal.

In applying deep neural networks to image processing,
super resolution[4] and completion[5] have been realized by
CNNs with the ReLU. In such applications, the number
of hidden layer is greater than one. In this study, we
demonstrate that the proposed nonlinear filter networks
can perform noise reduction and completion with only one
hidden layer, owing to the filter configuration based on the
morphological filters.

This paper is organized as follows. In the next section,
dilation and erosion are extended to convex and concave
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Fig. 1. A maxout example with K =4, N=1.

filters, respectively. In Section 3, the maxout networks are
developed as extensions of the opening and closing filters
of the mathematical morphology. Parameter training using
the stochastic gradient descent method is also explained.
Finally, we show several examples of image completion to
demonstrate the advantages of our approach.

II. CONVEX AND CONCAVE FILTER WITH MAXOUT

The ReLU is one of the units of a CNN, of which the
transfer function between the input u = (u1,ug - uy)
and the output r (u) is defined as r(u) = \/{z(u) + b,0},
where z(u) is the linear combination of the input as
z(u) = wiug +wous+- - -+wyuy. \/ obtains the maximum
of the set of numbers.

Maxout[6] can be interpreted as an extension of the
ReLU. The number of sets of weighting parameters and
biases is greater than one for maxout. The maxout output
is defined as

\ o (a4 bi) (1)

where 2z, = wy pu1 + wa gu2 + - - - Wy run. The number of
maxout parameters is K times larger than the ReLU. In
Fig. 1, schematic outline of maxout is shown. In this figure,
the maxout unit has only one input. The transfer function
is defined by the union of the epigraphs of the lines.
Maxout can approximate an arbitrary convex function as
a piecewise—linear convex function. By using maxout for
a neural network, the activation function of each unit is
learned through training. In Ref. [6], a maxout network is
defined as the difference between two maxout units. The
negative maxout can approximate concave functions as
piecewise—linear concave functions. The network in Ref.
[6] can approximate the sum of the convex and concave
functions as piecewise-linear functions by using maxout.
Similarly, morphological dilation and erosion are also
defined by the max function with respect to the input
pixels. Let us suppose that {fx},.7 is the set of pixel
intensities, of which integer coordinates x are included in
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the set Z. The intensity of the dilation and erosion of f at
coordinate x are respectively defined as

dsofx = \/ fx+y+5y and egofx = /\ fx—yfsya (2)

yeS yES

where S is the small subset of the coordinates. The biases
that are allocated to the coordinates in S are denoted as
{5x}xes- The pair of the set of coordinate S and the biases
is referred to as the structuring element (SE). By using the
definition of dilation, the erosion can be represented as

€s O fx = —dg- © (_f)x ) (3)
where s* denotes the symmetrical SE of s. The SE of s*
is related to s as sZ‘m_n) = —5(_m,—n)-

Comparing the dilation in (3) and maxout in (1), di-
lation can be represented as maxout in which input is
specified the set of local image intensities. A filtering
operation is defined by replacing the maxout input with
the image intensities as

dAwofx: \/

k=1---K

Y owyrfery | Fbeg. (4)

yEeS

This filter is referred to as the convex filter, since maxout
can approximate arbitrary convex functions. If each input
zj, of the maxout in (1) corresponds to a intensity of the
pixel fxiy, the output of the convex filter is equal to
the the dilation output. The concave filter, which is an
extension of the erosion filter in (4), is defined as

évofxz_ \/

k=1---K

Zvy,kfx-i-y +ag o, (5)

yES

where vy, and ay, are the set of the weighting parameters
and biases for the concave filter, respectively. The class
of nonlinear filters that are realized by the connection of
the convex and concave filters includes the class of mor-
phological filters. In next section, the basic morphological
filters are extended to a maxout filter network by replacing
dilation and erosion with the convex and concave filters.

III. CONVEX FILTER NETWORKS BASED ON THE
MORPHOLOGICAL FILTERS

In mathematical morphology, the closing and opening
operations with SE s are respectively defined as

cs0 fx =es0dso fx and oz0 fx =dsoeso fx. (6)

Closing is applied to negative impulsive noise removal,
since the complement of the negative impulse cannot
include the complement of the SE whose size is greater
than one[2]. Opening is the complementary process of the
closing. The image is approximated by the union of the
translated SEs.

The convex—concave and concave—convex filters that are
obtained by replacing the erosion and dilation with convex
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and concave filters are respectively defined as
év,'w ofx = év Odw ofx and 6v7w Ofx = dw Oév Ofx~ (7)

Compared with the morphological filter, the number of
parameters increases with the number of convolutions K.
To specify these parameters, we apply training by using
stochastic gradient decent|8].

In this paper, we examine the convex—concave filter in
(7), which is an extension of the closing filter. Herein,
convex—concave filters are only applied to applications
that have been realized by closing filters. We therefore
apply the convex—concave filter to degraded images that
are corrupted by the negative impulsive noises and image
masking. Due to the complementary properties of the
opening and closing, a concave—convex filter can also be
applied to applications based on positive impulse noise
reduction. To perform noise and mask removal, the filter
parameters must be trained with a set of training images.
We present the training procedure for convex-concave
filters prior to the demonstration.

A. Parameter training

To train the filter parameters, we employ a training set
as the Berkeley segmentation dataset[10], extracting 400
images, whose size is 256 x 256 pixels. The number of
images is increased by inverting the extracted images, —
horizontally and vertically—. The total number of images
in the training set is, thus, 1,600. Let us suppose that the
i-th image of the data set is f(*). The set of the degraded
version of f() is {g(i’j)}jej. The objective function that
is reduced through training is the squared error, which is
defined by the outputs of the convex—concave filter and
the original image,

E=Y3 (cowoat - 1), 0
ij x

Parameter sets {v, w} are iteratively updated to minimize
this squared error. To update the parameter set, we em-
ploy a stochastic gradient descent method that is widely
employed for training neural networks. For one parameter
update iteration, only one image f is chosen from the
database. The degraded image g is generated from f for
each iteration. The subgradient V@ of the error,

Q= Z (Cvw o fx — QX)2 . 9)

is computed using the chain rule of differentiation to
update the parameter sets. The number of training images
is limited; however, the number of degraded images is
not, since the chosen image is corrupted randomly in each
iteration. The parameter update is performed by adding
gradient V@, which is multiplied by the step size obtained
by using ADAGRADI8],which can adaptively specify the
gradient size from the number of the iterations.

In noise and mask removal, the window size that covers
the input pixels for a maxout unit is empirically specified
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as 11 x 11. Thus, the set of coordinates S is defined
as § = {(m,n)| - M <m<M,-M <n<M}, where
M = 5. The initial training parameters are specified to
realize the closing filter, whose SE is specified as a 7 x 7
flat square SE that can remove intensity pits whose size
is within 7 x 7 pixels. Before training, our convex—concave
filter hence performs image closing. Noise reduction perfor-
mance is improved by iterative updates of the stochastic
gradient until convergence. The number of convolutions
K is specified as 49, which is the same as the number of
elements in the 7x 7 SE for closing. The initial parameters
for biases aj and by are specified as zero.

During training, the number of updates to the coeffi-
cients is limited to 400,000 for a convex-concave filter with
K = 49. Tt takes about 9 hours to train the filter using
MATLAB parallel processing toolbox with an NVIDIA
GTX1070 GPU and Intel Core i7.

IV. EXAMPLES OF NOISE AND MASK REMOVAL

In this section, we provide examples of noise and mask
removal by the proposed convex—concave filters. In order
to evaluate the proposed filters, we employ two noise
models. We note that the closing filter can perform noise
removal for negative values. The convex—concave filter that
extends the closing filter is also appropriate for the removal
of negative noises. The first example of noise is pepper
noise. The image that is degraded by the pepper noise is
generated by replacing the pixel intensities with zero with
the noise occurrence probability p. For evaluating median
filters, salt-and—pepper noise is often employed, in our
case, only the black pixels occur. This model is thought of
as pixel defects in imaging devices. We also examine the
masking with printed text. In our experiment, the color of
the text is black, as in the case of the pepper noise. The
probability of occurrence of text—masking noise at a pixel
is correlated with that of neighboring pixels. For noise and
mask removal, four images (Lena, Goldhill, Man and Boat)
which are widely employed in evaluating image processing
tasks. The size of the test images is 512 x 512 pixels.

We first show the result of the removal of pepper noise
with various occurrence probabilities p. For comparison,
we also examine convex—convex filters that are trained
using the same procedure as convex—concave filters to show
the advantage of the morphology—based network structure.
The closing filter whose SE is trained by stochastic gra-
dient descent is also included in this comparison. Pepper
noise removal can be thought of as an image inpainting
problem[9] if information about the coordinates of the
corrupted pixels are known. We employ the widely ap-
plied total variation (TV) minimization method[11][12] for
comparison. We note that the TV minimization method
requires the mask information that denotes the coordi-
nates at which pixels are replaced with zero. For our
filtering methods, mask information is not obtained for
the training process. The proposed filter can hence achieve
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(c) TV (d) Convex-Concave

Fig. 2. Examples of pepper noise denoising. (a) Original image, (b)
degraded image with p = 0.75, (c) result of TV (PSNR:30.77dB) and
(d) result of convex —concave filter (PSNR:30.24dB).

(b) Degraded image

(a) Original image

A /

(d) Convex-Concave

Fig. 3. Parts of Fig. 2

image inpainting, that is, pepper noise removal, without
mask information.

Table 1 shows the peak signal-to—noise ratios (PSNRs)
of the noise removal results for four test images with
various noise occurrence probabilities p. In the degrada-
tion process in the training phase of the convex—concave
filters, we examine two degradation processes. In the first
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(a) Maisked image (b) TV (c) Convex - Concave

Fig. 4. Example of text mask removal. Entire images are shown in
the first row. The parts of the images are shown in the second row.

TABLE 1
PSNRs (DB) OF THE RECOVERED IMAGES (PEPPER NOISE).

Image | Noise | Closing | Cnv.- | Cnv.- | Cnv. - | TV with
Prob. Cnv. Cnc.* | Cnc.** mask

Lena | 0.500 29.88 | 31.61 | 33.70 | 33.21 35.01

0.625 | 28.22 | 30.06 | 31.56 | 31.89 32.78

0.750 | 27.48 | 28.36 | 30.16 | 30.24 30.77

0.875 25.13 | 27.24 | 27.82 | 26.36 28.12

Goldhill | 0.500 | 28.59 | 30.07 | 31.54 | 31.15 32.53

0.625 | 27.51 | 28.97 | 29.96 | 30.07 30.81

0.750 | 26.27 | 27.52 | 28.70 | 28.51 29.04

0.875 24.51 | 26.25 | 26.54 | 25.54 26.80

Man | 0.500 | 28.59 | 29.81 | 31.34 | 30.80 32.33

0.625 | 27.51 | 28.74 | 29.72 | 29.83 30.57

0.750 26.27 | 27.07 | 28.32 | 28.24 28.72

0.875 24.51 | 25.74 | 26.08 | 25.16 26.32

Boat | 0.500 | 28.14 | 29.08 | 30.51 | 30.14 31.33

0.625 | 26.83 | 27.83 | 28.83 | 29.03 29.55

0.750 25.77 | 26.10 | 27.21 | 27.25 27.44

0.875 23.92 | 24.81 | 25.08 | 24.27 25.14

* Trained with target noise occurrence probability p. ** Trained with
p=1[0.5,0.875]

degradation process, the noise occurrence probability p
is specified as same and the target probability. In the
second, p is randomly specified for each iteration of the
stochastic gradient descent within the supposed range
[0.5,0.875]. For the closing and convex—convex filters, only
the results that obtained using filters that trained with
the target probability are shown. In this table, we see
that the convex—concave filters outperform other filtering
method without mask information. Comparing the TV
and proposed method, the PSNRs of TV inpainting are al-
ways higher than those of the convex—concave filters. Since
mask information is utilized in the TV inpainting method,
the nondegraded pixel intensities preserved exactly in the
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TABLE II
PSNRs (DB) OF THE RECOVERED IMAGES (TEXT MASK).

Image | Font Size | Cnv. — vV
Cnc. | with mask
Lena 10 pt | 36.27 39.07
24 pt | 34.69 36.77
32 pt | 33.06 35.10
Goldhill 10 pt | 34.26 36.49
24 pt | 32.43 34.72
32 pt | 32.01 33.71
Man 10 pt | 34.38 36.53
24 pt | 32.96 34.92
32 pt | 31.78 33.58
Boat 10 pt | 33.05 35.44
24 pt | 31.80 33.61
32 pt | 30.66 32.44

recovered images. However, the improvement in PSNRs
due to this advantage decreases as noise probability p
increases. When p = 0.75, the PSNRs of TV inpainting
are higher than those of the convex—concave filter by less
than 0.6 dB, which is a small difference for actual recovered
images. In Fig. 2, the recovered Lena images with p = 0.75
are shown. Large differences are not observed with com-
paring the TV (c¢) and convex—concave filters (d). Parts of
Fig. 2 are shown in Fig 3. In recovered images using the
TV method (c), we see that some thin lines are broken. In
the results of the convex—concave filter, some image details
that are lost in the TV methods are recovered.

TV inpainting is implemented by the augmented La-
grangian method in [12]. It takes about 2.4 seconds to
recover the image in Fig. 3(a) using an Intel Core i7 pro-
cessor and MATLAB. The result of Fig. 3(d) is obtained
by the convex—concave filter within 0.8 seconds. If all
convolution operations in a layer are performed in parallel,
the total computational time is equal to two convolutions
and two max operations. By using parallel computations,
the computational time of the convex—concave filter can
be reduced to 0.15 seconds with an Intel Core i7 CPU and
NVIDIA GTX-1070 GPU.

In Table 2, text removal results are shown in terms
of PSNR. Comparing the convex—concave filter with TV
inpainting that utilizes mask information, the PSNRs of
the convex—concave filters are smaller by 2 dB on av-
erage. In Fig. 4, the text removal results for the Boat
image degraded with 24 pt Arial font are shown. In the
recovery result obtained by TV (b), the regions that are
masked in the degraded images are smoothed; parts of
edge lines behind the mask are hence blurred and seem to
be broken in the recovered images. In the image recovered
by the convex—concave filter, such over—smoothing is not
observed. However, small granular artifacts appear around
the masks.
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V. CONCLUSION

In this paper, a novel class of nonlinear filters has been
introduced for image processing. The dilation and erosion
of morphology are respectively extended to the convex
and concave filter with the maxout activation function. By
using extended filters, we propose a convex—concave filter
that is an extension of closing filter. The convex—concave
filter can remove pepper noise with comparable quality as
that of TV inpainting, with lower computational costs and
without mask information that denotes the occurrence of
noise. Moreover, we show that the convex—concave filter
can be trained to remove text masks.

This paper presented only the extension of the closing
filter to show the advantage of extending morphological
filters with maxout. Obviously, existing morphological
filters can be extended to maxout filter networks using
our approach. In morphological image processing, deeper
filter networks have been proposed. For example, the alter-
nating sequential filter[2] cascades connections of closing
and opening filters with various SEs. Deeper networks of
convex and concave filters will cover many applications of
image processing. The applications and training of deeper
convex filter networks obtained from the morphological
filters are also topics for future research.
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