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Abstract—We derive an optimal shrinkage sample covariance
matrix (SCM) estimator which is suitable for high dimensional
problems and when sampling from an unspecified elliptically
symmetric distribution. Specifically, we derive the optimal (or-
acle) shrinkage parameters that obtain the minimum mean-
squared error (MMSE) between the shrinkage SCM and the true
covariance matrix when sampling from an elliptical distribution.
Subsequently, we show how the oracle shrinkage parameters
can be consistently estimated under the random matrix theory
regime. Simulations show the advantage of the proposed estima-
tor over the conventional shrinkage SCM estimator due to Ledoit
and Wolf (2004). The proposed shrinkage SCM estimator often
provides significantly better performance than the Ledoit-Wolf
estimator and has the advantage that consistency is guaranteed
over the whole class of elliptical distributions with finite 4th order
moments.

I. INTRODUCTION

We consider the problem of estimating the covariance
matrix based on a sample x1, . . . ,xn of independent and iden-
tically distributed (i.i.d.) random vectors from an unspecified
p-variate distribution x ∼ F with mean vector E[x] = 0
and p × p positive definite covariance matrix Σ = E[xx>].
The sample covariance matrix (SCM) S = 1

n

∑n
i=1 xix

>
i is

the most commonly used estimator of the covariance matrix,
and when random sampling from a multivariate Gaussian
Np(0,Σ) distribution, it is also the optimal maximum likeli-
hood estimator (MLE). Estimation of high-dimensional (HD)
covariance matrix when the sample size n is smaller, or not
much larger than the dimension p, has attracted a significant
research interest in recent years. Indeed since such data
problems are becoming increasingly common in finance [1],
genomics or classification, for example. Insufficient number
of samples causes significant estimation errors in the SCM.
Moreover, if p > n, the SCM S is always singular, i.e., not
invertible even if the true covariance matrix Σ is known to be
positive definite and hence non-singular. The commonly used
approach is then to use shrinkage regularization as in [1], [2],
[3], [4], [5], [6], for example.

One of the most ommonly used estimator in ”large p
compared to sample size n problems” is the regularized SCM
(RSCM),

Sα,β = βS + αI, (1)

where α, β > 0 denotes the shrinkage (regularization) param-
eters. Optimal RSCM estimator is often defined as one that is

based on oracle shrinkage parameters that minimize the mean
squared error (MSE),

(αo, βo) = argmin
α,β>0

{
MSE(Sα,β) = E

[∥∥Σ− Sα,β
∥∥2
F

]}
, (2)

where ‖ · ‖F denotes the Frobenius matrix norm (‖A‖2F =
tr(A>A) = tr(AA>) for any matrix A). The solution
(αo, βo) are called ”oracle” shrinkage parameters as they
will obviously depend on the true unknown covariance ma-
trix Σ and hence can not be used in practise. The widely
popular Ledoit-Wolf (LW-)RSCM [1] is based on consistent
estimators (α̂LW

o , β̂
LW
o ) of (αo, βo) under the random matrix

theory (RMT) regime. However, more accurate finite sample
estimation performance can be obtained by assuming that
the observations are from a specific p-variate distribution,
e.g., the multivariate normal distribution, as has been shown
in [4]. In this paper, we derive consistent estimators of the
oracle shrinkage parameters (αo, βo) under the RMT regime
when sampling from an unspecified elliptically symmetric
distribution. Elliptical distributions (see [7], [8], [9]) constitute
a large class of distributions that include e.g., the multivariate
normal distribution, generalized Gaussian and all compound
Gaussian distributions as special cases.

The RMT regime refers to the case that
(R1) n, p→∞ and p/n→ c, where 0 < c <∞.
Furthermore, we assume that the set of eigenvalues of Σ
converge to a fixed spectrum, and that

(R2) As p → ∞, ηi = tr(Σi)/p → ηoi , 0 < η0i < ∞ for
i = 1, . . . , 4

Our numerical examples illustrate that the RSCM estimator
that is based on the proposed consistent estimators (α̂Ello , β̂Ello )
outperform its competitors, e.g., the LW-RSCM estimator,
when sampling from an elliptical population.

The paper is organized as follows. In Section II and Sec-
tion III we derive the optimal shrinkage parameters (αo, βo)
under the general assumption of sampling from any general
p-variate distribution and an elliptical distribution with finite
4th order moments, respectively. In Section IV, consistent es-
timators of (αo, βo) are proposed under assumptions (R1) and
(R2) when sampling from an unspecified elliptical distribution.
Simulation studies of Section V illustrate that the proposed
shrinkage estimator always outperforms the LW estimator
when the samples are drawn from an elliptical population.

Notation: Let Sp be the open cone of positive definite p×p
symmetric matrices, and let I be the identity matrix of proper
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dimension, vec(·) denotes an operator that transforms a matrix
into a vector by stacking the columns of the matrix, tr(·)
denotes the matrix trace operator, and ⊗ denote the Kronecker
product: for any matrix A and B, A ⊗ B is a block matrix
with (i, j)-block being equal to aijB. A commutation matrix
Kp is a p2×p2 block matrix with (i, j)-block equal to a p×p
matrix that has a 1 at entry (j, i) and 0’s elsewhere. It has the
following important property [10]: Kpvec(A) = vec(A>) for
any p× p matrix A.

II. OPTIMAL ORACLE SHRINKAGE PARAMETERS

Define scale measures of Σ ∈ Sp as

η = tr(Σ)/p and η2 = tr(Σ2)/p. (3)

An important measure in our future developments is the
following measure of sphericity [11],

γ =
η2
η2

=
p tr(Σ2)

tr(Σ)2
. (4)

Statistic γ measures how close the covariance matrix is to a
scaled identity matrix. It verifies γ ≥ 1 and γ = 1 if and only
if Σ = cI for some c > 0.

The parameters η and γ are elemental in our developments.
As is shown in Theorem 2, the optimal shrinkage parameter
pair (αo, βo) for elliptical distributions depends on the true
covariance matrix Σ only through η and γ. Simple ”plug-in”
estimates of (αo, βo) can then be obtained by simply replacing
(η, γ) with their estimates. Finding accurate and consistent
estimators of the shrinkage parameters is then a considerably
simpler task than in the general case of Theorem 1.

Next theorem provides the expression for the oracle shrink-
age parameters in the case of sampling from an unspecified
p-variate distribution with finite 4th order moments.

Theorem 1. Let {xi}ni=1 denote a random sample from any
p-variate distribution (not necessarily elliptical distribution)
with finite 4th order moments. Then the oracle parameters in
(2) are

βo =
p(γ − 1)η2

E
[
tr
(
S2
)]
− pη2

and αo = (1− βo)η (5)

where η and γ are defined in (3) and (4), respectively. The
value of MSE at the optimum is

MSE(Sαo,βo
) = ‖Σ− ηI‖2F(1− βo). (6)

The optimal βo is always in the range [0, 1).

Proof. It was shown in [1, Theorem 2.1] that

βo =
‖Σ− ηI‖2F

‖Σ− ηI‖2F + E
[
‖S−Σ‖2F

] (7)

and αo = (1− βo)η. The form of βo in (7) implies that βo ∈
[0, 1). We now show that (7) can be expressed in the form (5).
First, we observe that

a1 = E
[
‖S−Σ‖2F

]
= E

[
tr
(
S2
)]
− 2E

[
tr
(
SΣ
)]

+ tr
(
Σ2
)

= E
[
tr
(
S2
)]
− tr(Σ2) (8)

where we used that E[tr(SΣ)] = tr(E[S]Σ) = tr(Σ2). The
numerator of βo in (7) is

a2 = ‖Σ− ηI‖2F = tr(Σ2)− (1/p)
{
tr(Σ)

}2
= p(η2 − η2) = p(γ − 1)η2 (9)

which shows that denominator of βo is a1+a2 = E
[
tr
(
S2
)]
−

(1/p)
{
tr(Σ)

}2
= E

[
tr
(
S2
)]
− pη2. These expressions for

numerator and denominator of βo yield the assertion (5) for
βo. Write L(α, β) = E

[
‖Sα,β−Σ‖2F

]
for the MSE. Note that

L(α, β) = E
[∥∥αI + β(S−Σ)− (1− β)Σ

∥∥2
F

]
= α2p+ β2a1 + (1− β)2η2p− 2α(1− β)ηp. (10)

The MSE at the optimum is

MSE(Sαo,βo) = L((1− βo)η, βo)
= β2

oa1 + (1− βo)2η2p− (1− βo)2η2p
= (1− β2

o)
2 {p(η2 − η2)}︸ ︷︷ ︸
= a2 by (9)

+β2
oa1

= (1− βo)2a2 + (1− βo)βoa2
= (1− βo)a2,

where the 3rd identity follows as βoa1 = (1 − βo)a2. This
completes the proof.

Theorem has important implications. First, since αo = (1−
βo)η is determined by the value of βo ∈ [0, 1), the optimal
RSCM can be expressed simply as

Sαo,βo
= βo

1

n

n∑
i=1

xix
>
i + (1− βo)ηI.

Since η̂ = tr(S)/p is a consistent estimator of η = tr(Σ)/p
both in the conventional (fixed p) and RMT asymptotic regime,
we need to simply focus on finding a consistent estimator
β̂o of βo. Consistent estimator of αo is determined simply as
α̂o = (1− β̂o) tr(S)/p.

Ledoit and Wolf [1] showed that the following estimate

β̂∗LW = 1−
∑n
i=1 ‖xix>i − S‖2F
pn2(γ̂ − 1)

= 1−
1
np

∑n
i=1 ‖xi‖42 − η̂2
n(γ̂ − 1)

where γ̂ = η̂2/η̂ = p tr(S2)/ tr(S) and η̂2 = tr(S2)/p,
converges to βo in (5) in probability under RMT regime (R1)
and (R2) when sampling from a distribution x ∼ F with
finite 4th-order moments. The authors of [1] then proposed
to estimate the shrinkage parameters using

β̂LW
0 = max(0, β̂∗LW) and α̂LW

0 = (1− β̂LW
0 ) tr(S)/p,

where the max constraint ensures that the final estimate
remains on the interval [0, 1]. The RSCM based on the
above penalty parameters is referred hereafter as LW-RSCM
estimator.



III. OPTIMAL ORACLE SHRINKAGE PARAMETERS: THE
ELLIPTICAL CASE

Assume now that x1, . . . ,xn are independent and iden-
tically distributed (i.i.d.) random vectors from a centered
elliptical distribution with mean vector E[x] = 0 and positive
definite covariance matrix Σ = E[xx>], denoted Ep(0,Σ, g).
For a review of elliptical distributions, see [7], [8], [9]. The
probability density function (p.d.f.) of x ∼ Ep(0,Σ, g) is

f(x) = Cp,g|Σ|−1/2g
(
x>Σ−1x

)
where g : [0,∞) → [0,∞) is a fixed function, called the
density generator, that is independent of x and Σ, and Cp,g
is a normalizing constant ensuring that f(x) integrates to 1.
Let g be defined so that Σ represents the covariance matrix of
x. For example, the p-variate Gaussian distribution, denoted
x ∼ Np(0,Σ), is a member in this class with density generator
g(t) = exp(−t/2). As earlier in Theorem 1, we assume that
the elliptical population possesses finite 4th-order moments.

Recall that the kurtosis of a zero mean random variable x
is defined as

kurt(x) =
E[x4]

(E[x2])2
− 3.

The elliptical kurtosis parameter [7] κ of a random vector x =
(x1, . . . , xp)

> ∼ Ep(0,Σ, g) is defined as

κ =
E[r4]

p(p+ 2)
− 1 =

1

3
· kurt(xi), (11)

where r denotes the (2nd order) modular variate of the ellip-
tical distribution, defined as r =

√
x>Σ−1x. The elliptical

kurtosis shares properties similar to kurtosis of a real random
variable. Especially, if x ∼ Np(0,Σ), then κ = 0. This is ob-
vious since the marginal distributions are Gaussian and hence
κ = (1/3) kurt(xi) = 0. Another way to derive this is by
noting that r2 = x>Σ−1x ∼ χ2

p and hence E[r4] = p(p+ 2).
The importance of elliptical kurtosis parameter κ is due to
the fact that the p2 × p2 covariance matrix of vec(S) can be
expressed as [7]:

cov(vec(S)) =

(1 + κ)

n
(I + Kp)(Σ⊗Σ) +

κ

n
vec(Σ)vec(Σ)>, (12)

where Kp denotes the commutation matrix defined in the In-
troduction. Thus the elliptical kurtosis parameter κ along with
the true covariance matrix Σ provide a complete description
of the covariances between elements Sij and Skl of the SCM
S.

In the next Lemma we derive the MSE of the SCM.

Lemma 1. Let {xi}ni=1
iid∼ Ep(0,Σ, g), where Σ = cov(xi)

and 4th-order moments exists. Then the MSE of S is

MSE(S) =
p

n
· η2
{
κ(2γ + p) + γ + p

}
,

and the normalized mean squared error (NMSE) is

NMSE(S) =
E
[
‖S−Σ‖2F

]
‖Σ‖2F

=
1

γ
· 1
n

{
κ(2γ + p) + γ + p

}
.

Furthermore,

E[tr(S2)] = MSE(S) + pη2.

Above η, γ and κ are defined in (3), (4) and (11), respectively.

Proof. Since S is unbiased, so E[S] = Σ, it holds that

MSE(S) = tr{cov(vec(S))}, (13)

where cov(vec(S)) has the expression stated in (12). Then
recall the following results: tr(A ⊗ B) = tr(A) tr(B),
tr{vec(A)vec(B)>} = tr(AB) for any square matrices A
and B of same order; see e.g., [10]. These imply that

tr(Σ⊗Σ) = tr(Σ)2, tr{vec(Σ)vec(Σ)>} = tr(Σ2). (14)

It is also easy to show that

tr
{
Kp(Σ⊗Σ)

}
= tr(Σ2) (15)

by recalling the definition of the commutation matrix and the
property tr(A ⊗ B) = tr(A) tr(B). Using (13) - (15), then
yield the stated expression for MSE(S). The expression for
NMSE is obtained by dividing MSE(S) by tr(Σ2) = pη2.
The last results follows as

MSE(S) = E[‖S−Σ‖2F] = E[tr{(S−Σ)(S−Σ)}]
= E[tr(S2)− 2 tr(SΣ) + tr(Σ2)]

= E[tr(S2)]− pη2

by using that E[tr(SΣ)] = tr(E[S]Σ) = tr(Σ2) = pη2.

Next theorem states that the oracle parameters derived in
Theorem 1 can be written in a much simpler form when
sampling from an elliptically symmetric distribution.

Theorem 2. Let {xi}ni=1
iid∼ Ep(0,Σ, g) and assume that

elliptical population possesses finite 4th-order moments. Then
the oracle parameters (αo, βo) that minimize the MSE are

βEllo =
γ − 1

(γ − 1) + γ ·NMSE(S)

=
γ − 1

γ − 1 + (1/n){κ(2γ + p) + γ + p}

and αEllo = (1− βEllo )η.

Proof. Using Lemma 1, the denominator of βo is

E
[
tr
(
S2
)]
− pη2

= MSE(S) + pη2 − pη2

= pη2{MSE(S)/(pη2) + γ − 1}
= pη2{γ ·NMSE(S) + γ − 1},

where the last idenitity follows as NMSE(S) =
MSE(S)/‖Σ‖2F = MSE(S)/(pη2) and recalling that
γ = η2/η

2. Substituting this expression into (5) yields
the first assertion for βo. The second assertion follows by
recalling the expression for NMSE(S) from Lemma 1.

It is not surprising that βo and hence also αo depend
on the functional form of the elliptical distribution (i.e., on



density generator g) only via elliptical kurtosis parameter
κ. Specifying the elliptical distribution (e.g., Gaussian, t-
distribution, etc), also specifies the value of κ. For example,
when sampling from the Gaussian distribution, the elliptical
kurtosis parameter is κ = 0, but since we do not assume any
particular elliptical distribution, we need to find a consistent
estimator of the elliptical kurtosis parameter κ̂ as well.

IV. CONSISTENT ESTIMATION OF THE ORACLE
PARAMETERS

Let {xi}ni=1
iid∼ Ep(0,Σ, g), where cov(x) = Σ and assume

that the 4th-order moments exists. In this section, we address
the important topic of how to obtain consistent estimators of
the unknown parameters η, γ and κ.

First we recall that the sample sign covariance matrix,
defined as

Ssgn =
1

n

n∑
i=1

xix
>
i

‖xi‖2
,

is well-known to be highly robust although it is not a con-
sistent estimator of the covariance matrix [12]. However, the
following result from [3, Lemma 4.1] shows that it can be
used to estimate the parameter γ.

Lemma 2. Let {xi}ni=1
iid∼ Ep(0,Σ, g). Then

γ̂ = p tr
(
S2
sgn

)
− (p/n) (16)

is a consistent estimator of γ = p tr(Σ2)/ tr(Σ)2 under
assumption (R1) and (R2).

Note that γ̂ is a robust and distribution-free estimator of γ.
The optimum parameter βEllo = βEllo (γ, κ) depends on γ and
κ. Hence a plug-in estimator,

β̂Ello = βEllo (γ̂, κ̂),

where γ̂ and κ̂ are consistent estimators of γ and κ, is a
consistent estimator of βo as well. A natural estimate of κ
is the conventional sample average,

κ̂ = max
(
− 2

p+ 2
,
1

3p

p∑
j=1

k̂j

)
, (17)

where k̂j = m
(4)
j /
(
m

(2)
j

)2 − 3 is the sample kurtosis of the
jth variable and m(q)

j = 1
n

∑n
i=1(xij)

q denotes the qth order
sample moment, j = 1, . . . , p. Above the max constraint
ensures that the final estimate κ̂ does not exceed the theoretical
lower bound [13], −2/(p+2) of elliptical kurtosis parameter
κ. The estimate κ̂ is a consistent estimator of the elliptical
kurtosis κ both in the conventional and RMT regime.

We can now define the Ell-RSCM estimator as the regular-
ized SCM based on the following estimated optimal shrinkage
parameters

β̂Ello = max

(
0,

T

T + (1/n){κ̂(2γ̂ + p) + γ̂ + p}

)
(18)

α̂Ello = (1− β̂Ell0 ) tr(S)/p

where T = γ̂ − 1 and γ̂ and κ̂ are defined in (16) and (17),
respectively,

V. SIMULATION STUDY

We conduct a small simulation study to investigate the
performance of RSCM estimators in terms of their finite
sample NMSE. Each simulation is repeated 10000 times and
the NMSE is computed (averaged of Monte-Carlo runs) for
each RSCM estimator. Theoretical oracle MSE value derived
in (6) and normalized by ‖Σ‖2F is used as a benchmark lower
bound for empirical NMSE values. This is shown in the figures
as solid black line.

A. AR(1) covariance matrix

In the first experiment, an autoregressive covariance struc-
tured is used. We let Σ be the covariance matrix of a Gaussian
AR(1) process,

[Σ]ij = %|i−j|, r ∈ (0, 1).

Note that Σ verifies η = tr(Σ)/p = 1. When % is close to 0,
then Σ is close to an identity matrix and when % tends to 1,
Σ tends to a singular matrix of rank 1. Thus the theoretical
value βo is close to 0 for small values of %, i.e., when the true
covariance matrix is close to the target I, and β0 ≈ 1 for %
close to 1. Dimension is fixed at p = 100 and n is allowed to
vary from 0.2 · p to 1.2 · p.

Figure 1 depicts the NMSE performance when the samples
are drawn from a Gaussian distribution (upper panel) and a
multivariate tν-distribution with ν = 8 degrees of freedom
(lower panel). Several conclusions can be drawn from these
figures. First, when % = 0.1 and thus Σ is close to the
shrinkage target matrix I, Ell-RSCM estimators outperform
the LW-RSCM estimator. Especially, when the ratio n/p is
small (i.e., p larger than n), we observe the largest perfor-
mance differences in favor of Ell-RSCM. Second, when the
true Σ starts to deviate significantly from the identity target
matrix I (i.e., % = 0.4), LW-RSCM and Ell-RSCM estimator
have similar performance especially for large values of n/p.
Third, when the samples are drawn from t8-distribution, the
performance of LW-RSCM estimator is seen to deterioritate
in comparison to the proposed Ell-RSCM estimator. Indeed
very large differences are witnessed in NMSE between the
estimators especially when n/p < 0.5.

B. Largely varying spectrum

Our next study follows the set-up in [3] in which Σ has
one (or a few) large eigenvalues. In the first set-up, Σ is a
diagonal matrix of size 50 × 50, where m eigenvalues are
equal to 1 and the remaining 50 − m eigenvalues are 0.01.
For the case n = p = 50, Figure 2 depicts the NMSE as a
function of m when sampling from a tν distribution with ν = 8
degrees of freedom. Ell-RSCM has excellent performance as
its NMSE curve is essentially overlapping with the theoretical
NMSE curve. LW-RSCM estimator is performing poorly for
all values of m except at the extremes, i.e, when m is either
small or large, in which case the covariance matrix Σ is close
to an (scaled) identity matrix.

Next simulation set-up considers a very challenging scenario
in which the spectrum of Σ consists of several different
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Fig. 1. AR(1) process: Comparison of covariance estimators when p = 100
and % ∈ {0.1, 0.4} and the samples are from Gaussian distribution (upper
panel) and tν -distribution with ν = 8 degrees of freedom (lower panel).
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Fig. 2. The covariance matrix Σ has m eigenvalues equal to 1 and 50−m
eigenvalues equal to 0.01. The samples are from tν -distribution with ν = 8
degrees of freedom and n = p = 50.

eigenvalues. We consider the case that p = 100 and the
covariance matrix Σ has 30 eigenvalues equal to 100, 40
eigenvalues equal to 1 and 30 eigenvalues of 0.01. Samples are
drawn from tν distribution with ν = 8 degrees of freedom. The
NMSE curves shown in Figure 2 illustrate the huge advantage
of the proposed Ell-RSCM over the LW-RSCM estimator. In
fact, in this scenario the LW estimator fails and it assigns
β̂o = 0 for all values of n. Again the Ell-RSCM estimator
reaches near oracle performance and thus there is not much
space for improvements.
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Fig. 3. The covariance matrix Σ has 30 eigenvalues equal to 100, 40
eigenvalues equal to 1 and 30 eigenvalues equal to 0.01. The samples are
from tν -distribution with ν = 8 degrees of freedom and p = 100.

VI. CONCLUSION

We proposed an optimal regularized sample covariance
matrix estimator, called Ell-RSCM estimator, which is suitable
for high-dimensional problems and when sampling from an
unspecified elliptically symmetric distribution. The estimator
is based on consistent estimators (under RMT regime) of
the optimal shrinkage parameters that minimize the MSE. It
smartly exploits elliptical theory such as the knowledge of the
form of MSE of the SCM when sampling from an elliptical
population. Our simulation studies illustrated the advantage
of the proposed Ell-RSCM over the Ledoit-Wolf (LW-)RSCM
estimator. The performance differences were often significant.
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