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Abstract—In this paper, we study the application of precoding
schemes on practical electronically steerable parasitic array radi-
ators (ESPARs), where quantized load impedances are considered
for each antenna element. The presence of quantization in the
loads results in a performance loss for practical ESPARs. To
alleviate the performance loss, we propose to approximate the
ideal current vector with convex optimization, where it is further
shown that the optimality is achieved by optimizing the feeding
voltages only. Specifically, we obtain the closed-form expression
when single-fed ESPARs are assumed. Numerical results show
that the proposed quantization-robust scheme can achieve a
significant performance gain over ESPARs with quantized loads.

Index Terms—MIMO, ESPARs, quantization, optimization.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) systems have been
widely acknowledged as a promising technology, and precod-
ing techniques have been extensively studied for multi-user
transmission [1]-[7]. The dirty paper coding (DPC) proposed
in [1] can achieve the channel capacity by subtracting the
interference before transmission, which is however difficult
to implement in practice due to the complexity and the
assumption of infinite codeword length. Non-linear precod-
ing schemes such as Tomlinson-Harashima precoding (THP)
[2] and vector perturbation (VP) precoding [3][4] are then
proposed and can approach the performance of DPC. On the
other hand, linear precoding schemes that require much less
computational complexity have received increasing research
attention. Among linear schemes, the zero-forcing (ZF) pre-
coding scheme in [5] requires the least complexity, while its
performance is far from DPC and the non-linear schemes.
A regularized zero-forcing (RZF) scheme is then proposed
in [6] to improve the rate performance of ZF, especially at
low signal-to-noise ratio (SNR) regime. A correlation rotation
linear scheme is further proposed in [7] to offer additional
performance gains by exploiting the constructive interference.

The above studies on precoding techniques are based on the
assumption that conventional antenna arrays are employed at
the transceivers, where each antenna element is connected to a
dedicated radio frequency (RF) chain. Multiple RF chains will
incur a large amount of hardware cost and consequent power
consumption, which can be a limitation especially in the fu-
ture energy-efficient communication systems. Furthermore, the
spacing between adjacent antennas for conventional antenna
arrays is usually designed larger than half of the wavelength
to avoid the spatial correlation and mutual coupling effect,

which is also a limitation for size-constrained devices such as
small access points (APs). Toward this direction and to achieve
energy-efficient transmission, an alternative compact antenna
array, also known as electronically steerable parasitic array
radiator (ESPAR), has been proposed with a much smaller
antenna spacing [8][9]. Different from conventional MIMO
arrays, ESPARs only require a few active antenna elements
with RF chains, while other antenna elements are parasitic and
excited passively by the mutual coupling effect. With a tunable
load employed at each parasitic element, the mutual coupling
and consequently the currents at each antenna port can be
controlled to form the desired radiation patterns. With reduced
number of RF chains, the hardware complexity and power
consumption of the antenna array can be greatly alleviated,
which makes ESPAR a space- and energy-efficient alternative
to conventional arrays.

Due to the above advantages, ESPARs have received in-
creasing research attention in recent years [10]-[15]. In [10]-
[12], single-fed ESPARs are considered, where in [11] the
calculation of each tunable load and the feeding voltage for
the central element is given. In [12], it is shown that the
currents at each antenna port of the ESPAR array can be
considered as the input signals of the MIMO systems, which
greatly simplifies the design of ESPARs. An optimization-
based scheme is proposed in [13] to obtain the values of each
load subject to the input impedance requirement. Nevertheless,
the above studies of ESPARs assume ideal and continuous load
values, which is not feasible for current hardware technologies.
In [14], a loading scheme is considered for ESPARs to support
16-QAM modulation, and the effect of impedance errors is
simulated. In [15], we further consider the Gaussian random
impedance errors for ESPARs, and mathematically analyze the
effect of impedance errors, where it is shown that the presence
of impedance errors results in an error floor at high SNR
regime.

Instead of considering Gaussian random impedance errors,
in this paper we focus on a more realistic ESPAR array where
load impedances with quantized values are considered, and
we study the precoding schemes with quantization errors.
Noting that the presence of the impedance errors caused by
quantization will lead to a performance loss especially at
high SNR, we propose to approximate the currents of the
ESPAR to the desired signals by optimization to minimize
the performance degradation. We propose to jointly optimize
the feeding voltages and each tunable load value, where it is



further proven that any additional variations in the loads result
in an additional noise term and the optimality is therefore
achieved by optimizing the voltages only. The optimization
problem can then be transformed into a convex optimization
and can be efficiently solved. Specifically, when single-fed
ESPARs are considered, we obtain the closed-form expression
of the optimal feeding voltage. Numerical results show that
the proposed quantization-robust scheme can compensate for
the performance loss by quantization and better approach the
performance of conventional MIMO systems, which enables
the practical implementation of ESPARs.
Notations: a, a, and A denote scalar, vector and matrix,

respectively. E {·}, (·)∗, (·)H , (·)−1, and tr {·} denote expec-
tation, conjugate, conjugate transpose, inverse and trace of a
matrix respectively. ‖·‖ denotes the Frobenius norm, and I is
the identity matrix. We denote 0 as a zero matrix or vector.
Cn×n represents an n × n matrix in the complex set, and
diag (·) denotes the conversion of a vector into a diagonal
matrix with the values on its main diagonal. < (·) and = (·)
denote the real and imaginary part of a complex number,
respectively.

II. SYSTEM MODEL

This section introduces the signal model for the ESPAR
array, followed by the channel modelling and quantization
model in the load values.

A. Signal Model

We firstly consider the conventional array, and then extend
to the ESPAR array. Assume a base station (BS) with Nt
transmit antennas, and each antenna is fed by an independent
source with the complex voltage v0

n. The equivalent circuit
representation is shown in Fig. 1 (a), where Z0

m ∈ CNt×Nt

is the mutual impedance matrix that is related to the carrier
frequency and antenna spacing. Then, the complex current
vector i0 at the antenna port can be obtained based on the
generalized Ohm’s law as

i0 =
[
diag (z0) + Z0

m

]−1
v0, (1)

where v0 ∈ CNt×1 denotes the voltage vector, and z0 = z0 · I
is the output impedance vector. For a conventional MIMO
array, z0 is fixed and the desired signals are generated by
adjusting v0. On the other hand, when an ESPAR-based array
is considered, as shown in Fig. 1 (b), only the active N antenna
elements are fed with voltages, while the remaining Nt −N
elements are parasitic and each is employed with a tunable
load. In this case, the current vector is obtained as

i = [diag (zL) + Zm]
−1

[v1, ..., vN , 0, ..., 0]
T

= [diag (zL) + Zm]
−1

vs

= ZTvs.

(2)

In (2), zL = [z0, ..., z0, z1, ..., zNt−N ]
T is the load impedance

vector, where each load for the active N elements is fixed as
z0 and each tunable load for the passive element is denoted as
zk, k ∈ {1, 2, ..., Nt −N}. Zm denotes the mutual impedance

(a) Conventional array (b) ESPAR array

Fig. 1: Circuit representation

for the ESPAR array that is obtained from Z0
m with some

column re-arrangements. For simplicity we denote ZT as
the effective coupling matrix. It can be observed in (2) that
different from conventional MIMO array where the currents
are solely dependent on the voltage vector, for the ESPAR
arrays the currents are jointly decided by both the voltage
vector vs and the load vector zL.

In this paper we consider a multi-user scenario, where
the BS communicates with K single-antenna users simulta-
neously. Following [12][13][15], the current vector can be
considered as the system input of the ESPAR arrays, based
on which a general system equation can be obtained as

y = Hi + n, (3)

where y ∈ CK×1 is the received signal vector, and we denote
H ∈ CK×Nt as the channel matrix. n ∈ CK×1 is the additive
Gaussian noise vector and n ∼ CN

(
0, σ2 · I

)
, where the noise

power is denoted as σ2. In order to apply precoding schemes
to ESPAR-based MIMO systems, the precoded signals are
mapped to the currents at each antenna port [12][13]. For an
ESPAR-based MU-MISO system, the current vector can then
be expressed as

i =
1

f
·Ps, (4)

where s ∈ CK×1 denotes the data symbol vector, the precoding
matrix is denoted as P ∈ CNt×K , and f is the scaling
factor to ensure that the signal power remains unchanged after
precoding.

B. Channel Model

Since the antenna spacing for the ESPAR array is usually
very small, the spatial correlation and mutual coupling effect
should be considered in modelling the channel. Following
[12][16] where it is shown and verified that conventional
channel model can be applied to ESPAR-based arrays, in
this paper we employ a geometric semi-correlated Rayleigh
channel H =

[
hT1 , ...,h

T
K

]T
, with each hk expressed as

hk = gkAk. (5)

In (5), gk ∈ C1×M with M being the number of directions of
departure (DoDs), and each element in gk follows the stan-
dard complex Gaussian distribution that forms the Rayleigh
component of the channel. Ak ∈ CM×Nt contains M steering



vectors at the transmitter side that form the correlation effect.
For uniform linear arrays, as assumed in this paper, Ak is
given by

Ak =
1

M

[
aT (θk,1) , ...,aT (θk,M )

]T
, (6)

with each a (θk,m) ∈ C1×Nt expressed as

a (θk,m) =
[
1, ej2πd sin θk,m , ..., ej2π(Nt−1)d sin θk,m

]
. (7)

In (7), d denotes the antenna spacing normalized by the carrier
wavelength. θk,m denotes the angle of departure (AoD) and we
assume each θk,m follows a uniform distribution in [−π, π].
We note that for the ESPAR array, since the mutual coupling
effect has been included in the current vector i in (2), it is
therefore not shown explicitly in the channel model.

C. Parasitic Arrays with Quantized Loads
In this paper we focus on the study of a more realistic

ESPAR array model, where we consider the imperfection in
the electronic components that only quantized load values
with finite precision are feasible in practice [17]-[19]. With
quantization, the load values of each tunable impedance can
be expressed as

ẑk = zk + ek, k ∈ {1, 2, ..., Nt −N} , (8)

where we denote ẑk as the quantized load value for the k-th
antenna, zk the desired load value, and ek the quantization
error. Assuming that the quantization interval is D, we can
express the potential values of each tunable load as

ẑk = mkD + j · nkD, mk, nk ∈ {0,±1,±2, ...} . (9)

III. PROPOSED QUANTIZATION-ROBUST SCHEME

It has been shown in [14][15] that the presence of the errors
in the load values greatly degrades the performance of the
ESPAR array and results in an error floor at high SNR regime.
Therefore in this section we propose to compensate for the
performance loss by approximating the current vector with
impedance errors to the desired current vector by optimization.
Specifically, we propose to jointly optimize the feeding volt-
ages vs and each quantized load ẑk such that the quantization
effect is minimized.

In the presence of the quantized loads, we firstly rewrite (2)
as

î = [diag (ẑL) + Zm]
−1

vs

= [diag (zL) + Zm + E]
−1

vs,
(10)

where ẑL denotes the quantized load vector. E =
diag ([0, ..., 0, e1, ..., eNt−N ]) is the load error matrix, where
we note that there exist quantization errors only for the tunable
loads. Then, with the variations in the quantized loads and the
voltages, the current vector with optimization can be expressed
as

iR =
[
diag

(
ẑRL
)

+ Zm
]−1

vRs

=
[
diag (zL) + Zm + ER

]−1
(vs + ∆v)

= [diag (zL) + Zm + E +D · diag (t)]
−1

(vs + ∆v) ,
(11)

where iR is the optimized current vector, the optimized
quantized loads are denoted as ẑRL , vRs denotes the optimized
voltage vector and ∆v is the variation in the feeding voltages.
In (11), ER = E + D · diag (t), t ∈ CZNt×1 is the
complex integer vector to be optimized that satisfies t (n) = 0,
n ∈ {1, ..., N}, and D ·diag (t) then represents the additional
quantized load values when optimality is reached. Based on
(2), (11) can be further transformed into

iR

=
[
diag

(
ẑRL
)

+ Zm
]−1 {[diag (ẑL) + Zm] i + ∆v}

= i−
[
diag

(
ẑRL
)

+ Zm
]−1

ERi +
[
diag

(
ẑRL
)

+ Zm
]−1

∆v

= i +
[
diag

(
ẑRL
)

+ Zm
]−1 (

∆v −ERi
)
.

(12)
Then, we can express the difference between the desired
current vector and the optimized current vector as

∆i = iR − i

=
[
diag

(
ẑRL
)

+ Zm
]−1 (

∆v −ERi
)
,

(13)

which leads to the following proposition.
Proposition 1: ∆i cannot be minimized to 0 by optimizing

∆v that corresponds to the variations in the voltages and t that
corresponds to the variations in the quantized load values.
Proof : To have ∆i = 0 is equivalent to[

diag
(
ẑRL
)

+ Zm
]−1 (

∆v −ERi
)

= 0. (14)

Since ∆v (n) = 0, ∀n ∈ {N + 1, ..., Nt}, therefore we
obtain that ∆v − ERi 6= 0. Then, (14) is equivalent to
having non-zero solutions for a linear system Ux = 0 with
U =

[
diag

(
ẑRL
)

+ Zm
]−1

. Based on linear algebra theory,
the following condition must be satisfied

det
{[
diag

(
ẑRL
)

+ Zm
]−1
}

= 0. (15)

(15) is not achievable for an inverse matrix, which completes
the proof. �

Proposition 1 implies that there always exists a performance
loss compared to the conventional MIMO when quantized
loads are employed. We then propose to minimize this per-
formance gap by convex optimization, and the following
proposition is given.
Proposition 2: When the optimality is achieved, t∗ = 0,

which means that any further variations in the quantized loads
will incur additional performance losses.
Proof : When there are only variations in the feeding

voltages, we have ∆v 6= 0 and t = 0. Then, based on (12)
the current vector is obtained as

iR = i−
[
diag

(
ẑRL
)

+ Zm
]−1

Ei+
[
diag

(
ẑRL
)

+ Zm
]−1

∆v.
(16)

Then for the same voltages ∆v, when a variation in the
quantized loads is further introduced, t 6= 0 and we can further
obtain

iR = i−
[
diag

(
ẑRL
)

+ Zm
]−1

Ei +
[
diag

(
ẑRL
)

+ Zm
]−1

∆v

−D ·
[
diag

(
ẑRL
)

+ Zm
]−1

diag (t) i
(17)



Comparing (16) with (17), it is observed that an additional
term is introduced in (17) with variations in the quantized
loads, which contributes as an additional noise and increases
the equivalent noise power. Therefore, to keep the noise power
as low as possible, the optimal case is to keep the load values
unchanged and only optimize the voltages. �

We can then formulate the optimization problem as

P1 : min
∆v
‖∆i‖2

s.t. ∆v (n) = 0, ∀n ∈ {N + 1, ..., Nt}
(18)

By denoting P = [diag (zL) + Zm + E] that is fixed with
respect to ∆v, P1 can be transformed into a convex form as

P2 : min
∆v

∥∥P−1∆v −P−1Ei
∥∥2

s.t. ∆v (n) = 0, ∀n ∈ {N + 1, ..., Nt}
(19)

which can be efficiently solved by convex optimization tools
such as CVX.

A. Closed-Form Expression for Single-Fed ESPARs

We further consider a special case where single-fed ESPARs
are employed, and show that in this case a closed-form solution
can be obtained. In the case of single-fed ESPARs, N = 1,
and by introducing an auxiliary complex variable α, ∆v can
be expressed as

∆v = α · vs, (20)

since there is only one entry in vs that is non-zero for single-
fed ESPARs. Then, based on (12) and the expression of P,
∆i for single-fed ESPARs can be expressed as

∆i = (1 + α)P−1 (P−E) i− i

=
(
I−P−1E

)
i · α+

[(
I−P−1E

)
− I
]
i

= Q · α+ (Q− i) ,

(21)

where Q =
(
I−P−1E

)
i and Q ∈ CNt×1. Then, ‖∆i‖2 can

be further expressed as

‖∆i‖2 = tr
{

∆i ·∆iH
}

= tr
{

[Q · α+ (Q− i)] [Q · α+ (Q− i)]
H
}

= tr
{
QHQ · αα∗

}
+ 2<

(
tr
{(

QQH −QiH
)
· α
})

+ tr
{

(Q− i) (Q− i)
H
}

(22)
Since Q and i are independent of α, the optimization for
single-fed ESPAR arrays can be transformed into

P3 : min
α

f (α) (23)

where f (α) can be expressed as

f (α) = tr
{
QHQαα∗

}
+ 2<

(
tr
{(

QQH −QiH
)
α
})

= tr {S · αα∗}+ 2< (tr {T · α}) .
(24)

In (24), S and T are given by

S = QHQ > 0, T = QQH −QiH . (25)

By denoting

< (α) = αRE , = (α) = αIM , (26)

the objective function in P3 can be further obtained as

f (α) =

{
Sα2

RE + 2

Nt∑
i=1

< [T (i, i)]αRE

}

+

{
Sα2

IM − 2

Nt∑
i=1

= [T (i, i)]αIM

}
.

(27)

It can be observed that the real part and imaginary part of
f (α) are both in a quadratic form, and we can then obtain
the optimal α∗ as

α∗ =

−
Nt∑
i=1

< [T (i, i)]

S
+ j ·

Nt∑
i=1

= [T (i, i)]

S
. (28)

With α∗ obtained by (28), the optimal feeding voltage for
single-fed ESPARs is obtained as

vRs = (1 + α∗)vs. (29)

IV. NUMERICAL RESULTS

To evaluate the performance of ESPAR-based MIMO sys-
tems and the proposed quantization-robust schemes, in this
section we present numerical results based on Monte Carlo
simulations. Perfect channel state information (CSI) is as-
sumed throughout the simulations, and QPSK modulation is
applied to evaluate the bit error rate (BER) performance. The
simulation parameters are shown in Table I below.

Simulation Parameters ESPAR arrays
Operating Frequency 2.5GHz
Antenna Spacing d λ/4

Quantization Interval D 1
Number of DoDs M 50

Number of Transmit Antennas Nt 64
Number of Active Antennas N 7

Number of Parasitic Antennas Nt −N 57
Number of Users K 6

TABLE I: Simulation Parameters

For simplicity we employ ZF precoding scheme at the
transmitter, which leads to the expression of the desired current
vector as

i =
1

f
·HH

(
HHH

)−1
s, (30)

while the performance gains of the proposed quantization-
robust scheme trivially apply to other precoding schemes. For
clarity, the following abbreviations are applied: ‘MIMO ZF’
denotes the conventional MIMO systems with ZF precoding;
‘ESPAR ZF ideal’ denotes the ESPAR-based MIMO systems
with ideally continuous loads; ‘ESPAR ZF Quantized’ denotes
ESPARs with quantized loads; ‘ESPAR ZF Robust’ denotes
the proposed quantization-robust scheme.



In Fig. 2, the BER performance of multiple-fed ESPARs is
shown with respect to the transmit SNR, where it is observed
that the ideal ESPAR array can achieve similar performance
to the conventional MIMO systems, while the presence of
the quantization in the load values severely degrades the
detection performance. With the proposed quantization-robust
scheme, the performance loss can be greatly alleviated and
the ESPARs with quantized loads can better approach the
performance of conventional MIMO systems, which enables
the implementation of the ESPAR arrays in practice.
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Fig. 2: BER vs transmit SNR, Nt=64, N=7, K=6, D=1, QPSK

A similar result can be observed in Fig. 3 where we compare
the BER with the increasing quantization interval D, where
it is observed that the proposed quantization-robust scheme is
less sensitive to the increase in the quantization interval, which
validates its robustness.
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Fig. 3: BER vs quantization interval D, Nt=64, N=7, K=6,
SNR=0dB, QPSK

V. CONCLUSION

In this paper, the precoding schemes for practical ESPARs
with quantized loads are studied. The quantization in the loads
is shown to result in a performance loss, especially at high
SNR regime. We then propose to optimize the feeding voltages
and each quantized load to alleviate the performance loss,
where it is shown that the optimality is reached by optimizing
the voltages only. Specifically, we obtain the closed-form
solution when single-fed ESPARs are considered. Numerical
results observe a significant performance gain for the proposed
quantization-robust scheme over conventional ESPARs with
quantized loads.
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