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Abstract—In this paper, we propose to use modified Gam-
matone filterbank with Teager Energy Operator (TEO) for
environmental sound classification (ESC) task. TEO can track
energy as a function of both amplitude and frequency of an
audio signal. TEO is better for capturing energy variations in
the signal that is produced by a real physical system, such
as, environmental sounds that contain amplitude and frequency
modulations. In proposed feature set, we have used Gammatone
filterbank since it represents characteristics of human audi-
tory processing. Here, we have used two classifiers, namely,
Gaussian Mixture Model (GMM) using cepstral features, and
Convolutional Neural Network (CNN) using spectral features.
We performed experiments on two datasets, namely, ESC-50,
and UrbanSound8K. We compared TEO-based coefficients with
Mel filter cepstral coefficients (MFCC) and Gammatone cepstral
coefficients (GTCC), in which GTCC used mean square energy.
Using GMM, the proposed TEO-based Gammatone Cepstral
Coefficients (TEO-GTCC), and its score-level fusion with MFCC
gave absolute improvement of 0.45 %, and 3.85 % in classifi-
cation accuracy over MFCC on ESC-50 dataset. Similarly, on
UrbanSound8K dataset the proposed TEO-GTCC, and its score-
level fusion with GTCC gave absolute improvement of 1.40 %,
and 2.44 % in classification accuracy over MFCC. Using CNN,
the score-level fusion of Gammatone spectral coefficient (GTSC)
and the proposed TEO-based Gammatone spectral coefficients
(TEO-GTSC) gave absolute improvement of 14.10 %, and 14.52
% in classification accuracy over Mel filterbank energies (FBE)
on ESC-50 and UrbanSond8K datasets, respectively. This shows
that proposed TEO-based Gammatone features contain comple-
mentary information which is helpful in ESC task.

I. INTRODUCTION

The automatic recognition of an environmental sound is a
growing research problem in the multimedia applications. The
environmental sounds are very diverse group of everyday audio
events that cannot be described as only speech or music [1].
There are various applications of the environmental sounds
classification (ESC) task, such as, audio surveillance system
[2], hearing aids [3], smart room monitoring [4] and video
content highlight generation [5], etc. Previous approaches
to address this problem include matrix factorization [6]-[9],
dictionary learning [2], [10], and wavelet-based features [11],
[12]. In [13], authors have used GMM classifier for Acoustic
Scene Classification (ASC) task. GMM classifier is also used
for sound classification task [14]. Recently, Deep Neural
Network (DNN)-based classification are used for ESC task
[15]-[17]. In particular, deep Convolutional Neural Network
(CNN) has been observed to work better for this problem [16],
[17]. CNN classifier is well suited to ESC task because of they
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are useful for capturing the energy modulations across time
and frequency axis of audio spectrograms [16].

In [17], authors have used CNN in which the first convo-
lutional layer is designed to capture the temporal variations
in the time-frequency representation of the audio signal. The
convolutional layer and pooling layer are designed to achieve a
small frequency invariance. On the other hand, the CNN used
in [16] do convolution in time and frequency-domain, which
is designed to capture spectro-temporal variations in the time-
frequency representation of the audio signal. In both of these
works, log-scaled Mel spectrograms or commonly referred to
as Mel filterbank energies (FBEs) were used as the input to
the CNN.

In this paper, we aim to improve the classification accuracy
of an ESC task by using the feature representation that is
biologically-inspired and perceptually more significant. We
employ the features extracted using the Gammatone filterbank
with the energy estimation using TEO for ESC task such
as TEO-GTCC and TEO-GTSC. The cepstral coefficients
extracted using Gammatone filterbank have been previously
used for speech recognition [18]-[20], and non-speech audio
classification [21]. Unlike conventional energy (I2-norm), Tea-
ger Energy Operator (TEO) profile represents both amplitude
and frequency variations of a signal [22]. In experiments, we
used cepstral features, and spectral features for two classifiers,
namely, GMM, and CNN, respectively. Using two datasets
ESC-50, and UrbanSound8K, the results show that proposed
TEO-based Gammatone features work better as compared to
other state-of-the-art features such as MFCC, and FBEs.

II. TEO-BASED GAMMATONE FEATURE
A. Gammatone filterbank

The impulse response of Gammatone filter is a multipli-
cation of Gamma distribution function and a sinusoidal tone
centered at a particular frequency [21]. It is given by:

g(f,t) = t* e 2 cos(2m ft),t > 0, (1)

where a is the filter order, b is rectangular bandwidth, and f
is the center frequency. Gammatone filter is inspired from the
biologically motivated studies [23]. The Gammatone function
is used for modeling of the human auditory filter response [24].
The magnitude response of a Gammatone filter is very similar
to the representation of the human auditory filter response
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(called as reox function) in the cochlea [21]. The filter band-
width of a Gammatone corresponds to the placement of filters
in the basilar membrane (BM) in the human auditory system
(HAS). It is measured as equivalent rectangular bandwidth
(ERB) scale [25].

B. Teager Energy Operator (TEO)

Among many acoustic and perceptual features of an audio,
temporal modulations are one of the important parametric
representations of the audio signal. Temporal modulations
describe the changes in an audio signal in terms of amplitude
modulation (AM) and frequency modulation (FM) [22]. It is
observed that AM and FM always co-occur and are inseparable
features of the audio signal [22]. AM-FM responses can be
obtained from the filterbank model of the cochlea. However,
instead of separating an AM and FM responses after filterbank
processing, we consider using an operator such as TEO that
can track an energy due to both AM and FM components. The
TEO represents the energy of the system that generates the
signal or energy required to generate the signal [26]. Unlike
the conventional energy (/2-norm), the TEO is approximately
equal to the squared product of amplitude and frequency. The
discrete version of the TEO applied on the AM-FM signal of
the form z[n] = aln|cos(¢[n]) is defined as follows [27]:

Vo{a[n]} = 2°[n] — 2[n — Ua[n + 1] = a®*[nw’[n], ()

where a[n], and win] = di

~¢[n| are discrete time-varying
amplitude and instantaneous frequency (derivative of instanta-
neouse phase ¢[n]), respectively. This energy operator is useful
for analyzing AM-FM signals with time-varying amplitude and

frequency.

C. Proposed TEO-based Gammatone feature set

TEO cannot be applied directly to the audio signal because
it works primarily on monocomponent or at least bandpass
filtered signal [27]. However, an audio signal contains many
frequency components. Therefore, before applying TEO, we
need to filter the signal using a narrowband filterbank [28].
As seen in Figure 1, we bandpass filter the audio signal
with Gammatone filterbank followed by the half-wave rectifier
(HWR) on each subband of the audio signal. HWR represents
a function of inner hair cell movements in the human ear
[29], [30]. Then TEO is applied on each subband followed by
the short-term averaging to obtain short-term spectral features.
The logarithm is applied as a compressive nonlinearity, that is
also found in auditory processing literature [30]. For CNN, we
used directly short-term spectral features called as TEO-based
Gammatone spectral coefficients (TEO-GTSC), and for GMM,
we used DCT-based cepstral features called as TEO-GTCC.

As shown in Fig. 2(c) and Fig. 2(d), the TEO-based Gam-
matone spectral features (Fig. 2(d)) enhanced higher frequency
regions as compared to Gammatone spectral features (Fig.
2(c)) as shown by upper box in Fig. 2(c) and Fig. 2(d). The
TEO-based Gammatone filterbank has slightly lower resolu-
tion in lower frequency regions as compared to Gammatone
spectrogram as shown by lower box of Fig. 2(c) and Fig. 2(d).
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Fig. 1. Block diagram of the proposed features, (a) raw audio signal, (b)
Gammatone filterbank response, (c) effect of the HWR on Gammatone filter
responses, (d) TEO applid on each suband of Gammatone filterbank, (e)
averaging of each subband filter response, (f) log-magnitude response of
Gammatone TEO response.
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Fig. 2. Spectrographic analysis: (a) raw audio signal of cow sound, (b) Mel
filterbank spectrogram, (c) Gammatone spectrogram, (d) TEO-Gammatone
spectrogram. The regions indicated by black-boxes shows the differences
between spectrum representation in (c) and (d).

Such representation observed improvement in classification
accuracy of classes such as dog barking (DB), gun shot
(GS), and street music(SM), compared to Gammatone spectral
features.

III. EXPERIMENTAL SETUP

In this paper, two publicly available standard databases,
namely, ESC-50 [1], and UrbanSound8K [31] are used for
the experiments. The ESC-50 dataset consists of 2000 short
environmental audio recording with 44.1 kHz sampling fre-
quency. These recordings are equally divided into 50 classes
that are divided into five major categories, namely, animals,
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natural soundscapes and water sounds, non-speech sounds of
humans, interior or domestic sounds, and exterior or urban
noises. UrbanSound8K is a dataset with 8732 audio files and
10 classes. For ESC task, we have done experiments using two
classifiers, namely, GMM and CNN. We use cepstral features
in GMM and spectral features in CNN classifier. As compared
to the cepstral features, the raw spectral features retain more
information and enable the use of convolution and pooling op-
erations that captures invariance and variability in frequency-
domain [32]. In GMM, we apply cepstral features since GMM
describe their statistical distribution with uncorrelated features
[33].

Before, feature extraction for both classifiers, we first pre-
processed the audio signal. All the audio files were downsam-
pled to 22.05 kHz ( to compare results with baseline system
[17]). To extract features, the audio files were divided into
frames by using 25 ms Hamming window with 50 % overlap.
Then, we applied silence removal algorithm. For silence
removal, we first check for more than three consecutive silence
frames (approximately 50 ms duration). If silence is present in
more than three frames, then we remove the silence frames else
we keep frames. Simple energy thresholding algorithm was
used to remove the silence regions. 60-D FBEs, GTSCs, and
TEO-GTSCs were extracted from files of audio frames. For
cepstral feature set, the audio spectrum envelope is converted
to decibel (dB) scale, normalized with the RMS (root mean
square) and finally, energy compacted with DCT.

A. GMM classifier

We have experimented with different cepstral feature sets
such as MFCC [34], GTCC [21], along with TEO-GTCC
in GMM classifier. We take it’'s A, and AA components
resulting in the 39-D feature vector. Class-specific GMM
models with different components were trained based on the
feature using the expectation-maximization (EM) algorithm.
The testing stage uses maximum likelihood decision among
all the class models. Classification performance is measured
using an accuracy (the number of correctly classified files
among the total test files) and the confusion matrix. We select
16 component GMM model since from the experiment, the
highest accuracy is achieved relatively, for 16 mixtures. We
have also done the score-level fusion of two different feature
sets, i.e.,

LLkeomp = aLLky + (1 — o) LLks, 3)

where LLk; is likelihood of first feature set, L Lk likelihood
of another feature set, and LLk.,,;, is a weighted fusion of
likelihoods of two feature sets. « is the weight of fusion, that
varies from O to 1 with step size of 0.1.

B. CNN classifier

We have also used the CNN classifier with architecture
as proposed in [17]. However, we have not used data aug-
mentation technique. As studied in detail in [16], the data
augmentation techniques help to improve the performance of
CNN. However, for some classes, the augmentation techniques
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degrade the performance of CNN. Since the objective of this
paper is to compare the performance of different feature sets,
we have not used the augmentation to analyze that how these
features perform in all the classes.

Since CNN requires the input of the uniform dimensions and
the length of the audio files varies across the database, the short
segments of 41 frames were used as the input to the CNN. The
segments were extracted with 50 % overlap from the audio
files. The convolutional layers used in CNN were similar to
as the ones used in [17]. Fig. 3 shows the details of each layer
in the CNN architecture that we have used in ESC task. The
network was implemented using Keras [35] with theano back-
end on NVIDIA Titan-X GPU. A mini-batch implementation
with 200 batch size was used to train the network using the
stochastic gradient descent. Network parameters were similar
as used in [17]. The Nesterov momentum of 0.9, learning
rate of 0.002, L2 regularization with the coefficient 0.001
and network was trained for 300 epochs on ESC-50, and
UrbanSound8k databases to monitor the performance. At the
testing time, the class of the test audio files was decided using
the probability prediction scheme [17].

C. Experimental Results

To evaluate the performance of various feature sets, 5-fold,
and 10-fold cross-validation was performed on ESC- 50, and
UrbanSound8K databases, respectively. Table I shows that the
results on both databases using all the feature sets for 16
component GMM. Moreover, to check the possibility of any
complementary information captured by different feature sets,
we have done their score-level fusion. It can be observed from
Table I that TEO-GTCC gave better results than other features
on both databases. The average classification accuracy of TEO-
GTCC improved by 0.45 % and 1.40 % over MFCC on
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Fig. 4. Plot of an accuracy vs. « for different dataset on GMM for (a) ESC-50,
(b) UrbanSound8K.

ESC-50 and UrbanSound8K datasets, respectively. In addition,
TEO-GTCC provided an absolute improvement of 3.15 % and
0.85 % over GTCC on ESC-50 and UrbanSound8K datasets,
respectively. Moreover, it can be observed that the score-level
fusion of different features sets with proposed TEO-GTCC
gave the improvement in an accuracy. The value of « varies
with datasets and around 3.40 % and 1.04 % improvement
in classification accuracy is achieved when TEO-GTCC is
fused with MFCC and GTCC for ESC-50, and UrbanSound8k
datasets, respectively. Fig. 4(a) and Fig. 4(b) shows the plot of
an accuracy vs. « for ESC-50, and UrbanSound8K datasets,
respectively, indicating that score-level fusion gave better
performance in majority of the cases more for proposed TEO-
GTCC feature set.

TABLE I
CLASSIFICATION ACCURACY (%) OF DIFFERENT FEATURE SETS ON
DIFFERENT DATABASE WITH 16 COMPONENT GMM. THE & SIGN
INDICATED SCORE-LEVEL FUSION (AS PER EQ. 3).

ESC-50 UrbanSound8K
Feature Set

« Accuracy « Accuracy
MEFCC - 68.40 - 57.28
GTCC - 65.70 - 57.83
TEO-GTCC - 68.85 - 58.68
MFCC @ GTCC 0.6 69.65 0.5 58.91
GTCC & TEO-GTCC | 04 71.30 0.3 59.72
MFCC & TEO-GTCC | 0.6 72.25 0.2 58.83

In CNN classifier, the accuracy is found to be more as com-
pared to the GMM classifier. Table II shows the classification
accuracy of ESC-50 and UrbanSound8K datasets using the
CNN classifier with different feature sets. The performance of
TEO-GTSC is not better as compared to GTSC in ESC-50, and
UrbanSound8K. However, on ESC-50, and UrbanSound8K
datasets, score-level fusion of GTSC and TEO-GTSC gave an
absolute improvement of 14.10 %, and 14.52 %, respectively,
compared to FBE. Since we have observed that score-level
fusion of GTSC and TEO-GTSC performed better in all the ex-
periments, we have experimented with the feature-level fusion
of both feature sets. On ESC-50, and UrbanSound8K datasets,
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TABLE II
CLASSIFICATION ACCURACY (%) OF DIFFERENT FEATURE SET ON
DIFFERENT DATABASE WITH CNN CLASSIFIER. THE ¢} SIGN INDICATED
SCORE-LEVEL FUSION (AS PER EQ. 3), AND ® SIGN INDICATED
FEATURE-LEVEL FUSION.

ESC-50 UrbanSound8K
Feature Set

« Accuracy « Accuracy
FBE - 67.85 - 73.50
GTSC - 79.10 - 85.34
TEO-GTSC - 74.85 - 79.65
GTSC ® TEO-GTSC - 80.75 - 85.85
GTSC @& FBE 0.5 79.65 0.9 86.02
TEO-GTCC & FBE 0.6 75.00 0.8 83.70
GTSC ¢ TEO-GTSC | 0.5 81.95 0.5 88.02

the feature-level fusion of GTSC and TEO-GTSC gave an
absolute improvement of 12.90 %, and 12.35 %, respectively,
compared to FBE. The score-level fusion and feature-level
fusion of both feature sets gave better results as compared
to individual one indicating that they capture complementary
information. However, score-level relatively fusion performs
better compared to feature-level fusion. Fig. 5 shows confusion
matrix of UrbanSound8K dataset using GTSCs and TEO-
GTSCs. As it can be observed from Fig.5(a),(b), TEO-GTSCs
improve classification accuracy in dog barking (DB), gun
shot (GS), and street music(SM). From that we can observe,
TEO-GTSC captures repetitive, impulsive, and harmonic-like
patterns from the audio signal much better then Mel spectral
and Gammatone spectral based feature sets.
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Fig. 5. Confusion matrix for Urbansound8k database using (a) GTSC and
(b) TEO-GTSC. Classes are air conditioner (AC), car horn (CH), children
playing (CP), dog barking (DB), drilling (DR), engine idling (EI), gun shot
(GS), jackhammer (JA), siren (SI) and street music (SM).
IV. SUMMARY AND CONCLUSIONS

In this study, we proposed to use TEO-GTCC and TEO-
GTSC feature sets for ESC task in GMM and CNN classifiers,
respectively. Performance on ESC system was compared with
different feature sets such as MFCC and FBE, GTCC and
GTSC on two publicly available databases. Proposed TEO-
GTCC feature set gave better results for this application
with low feature dimension and GMM classifier. Moreover,
the results suggested that using system combination of basic
feature set and proposed feature set gave better accuracy
than the individual feature sets. TEO-GTSC does not give

1862



2017 25th European Signal Processing Conference (EUSIPCO)

better results by CNN classifier. However, using the score-
level and the feature-level fusion of TEO-GTSC and GTSC
gave better results than GTSC alone. According to the ob-
tained class-based averaged accuracy, we conclude that TEO-
based Gammatone features perform better compared to the
conventional feature sets. Our feature work includes used of
energy separation algorithm (ESA) to exploit AM and FM
components of an audio signal for ESC task.
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