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Abstract—Audio Event Detection (AED) aims to recognize
sounds within audio and video recordings. AED employs machine
learning algorithms commonly trained and tested on annotated
datasets. However, available datasets are limited in number of
samples and hence it is difficult to model acoustic diversity.
Therefore, we propose combining labeled audio from a dataset
and unlabeled audio from the web to improve the sound models.
The audio event detectors are trained on the labeled audio and
ran on the unlabeled audio downloaded from YouTube. Whenever
the detectors recognized any of the known sounds with high
confidence, the unlabeled audio was use to re-train the detectors.
The performance of the re-trained detectors is compared to the
one from the original detectors using the annotated test set.
Results showed an improvement of the AED, and uncovered
challenges of using web audio from videos.

I. INTRODUCTION AND RELATED WORK

Sounds are essential to how humans perceive and interact
with the world. Audio content is captured in recordings and
shared on the web on a minute-by-minute basis. Academia and
industry exploits this acoustic information throughout multiple
applications. The dominant application is multimedia video
content analysis, where audio is combined with images and
text [1], [2] to index, search and retrieve videos. Another task
is human-robot interaction [3], [4], where sounds complement
speech as non-verbal communication. Recently, a growing
application is in smart cities [5], where sounds are used to
detect sources of noise pollution. All of these applications rely
on Audio Event Detection (AED) to recognize the occurrence
of sounds within audio and video recordings.

The related work on AED has mainly focused on using
available datasets to train machine learning models in a
supervised manner [6], [5], [7], [8], [9]. However, the largest
data set, ESC-50 [8], contains only 40 samples per class. The
numbers strongly contrast with Imagenet, the computer vision
counterpart, which has hundreds of samples per class. Hence,
training a model which reflects the acoustic diversity of an
audio event class is limited. The common solution is to have
humans annotating more data. However, the process is costly
and slow and thus, other solutions should be explored.

§ First six authors contributed equally.

Another solution is to combine the small amount of labeled
data with a large amount of unlabeled data. A particular
method is semi-supervised self-training, which is an algorithm
that iteratively re-trains a model. First, the model is trained
using the labeled data set. Then, at each iteration and under a
certain criteria, a portion of the unlabeled set could be labeled
as any of the known classes. Lastly, using the newly labeled
data, the model is re-trained. This approach has been explored
for audio events in two papers [10], [11]. Particularly in [10],
the authors collected 17,000 labeled audio-only recordings
from FindSounds.com. Two thirds were used to train and test
a classifier and the rest was treated as unlabeled audio for
re-training. The result was an improvement of 1.4% precision
over the baseline, suggesting a valid alternative to improve
models. Moreover, the authors pointed out the challenges of
utilizing audio-only web recordings.

In our paper, we followed a similar framework of semi-
supervised self-learning, but with the following differences:

• We employed UrbanSounds8k as the labeled set for train-
ing and testing. However, we collected YouTube videos
as the unlabeled set for re-training, creating mismatch
conditions.

• For re-training, we used 30 times more audio files.
• The unlabeled audio is extracted from videos as opposed

to audio-only recordings. Hence, posing challenges dur-
ing the collection process. For instance, it is not possible
to guarantee that the YouTube audio will actually contain
any of the sounds.

The paper is structured as follows, in Section II we describe
the flow of our self-training approach for sound detectors.
Within this Section we describe the sound event dataset and
YouTube video collection process and how we pre-processed
the audio recordings. Then, we explain how we trained our two
machine learning based detectors to compare performance. In
Section III we compare the baseline performance and the self-
training performance obtained with different techniques.
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II. SEMI-SUPERVISED SELF-TRAINING OF AUDIO EVENT
DETECTORS

Semi-supervised self-training is an algorithm that iteratively
re-trains a model and our particular framework is illustrated in
Figure 1. First, using the labeled dataset, the ten class detectors
are trained and tested to compute a baseline performance.
Second, the unlabeled data is run by the detectors to obtain a
class label with its corresponding confidence score. Third, we
applied a threshold based on the confidence score to determine
candidates for self-training the detectors. Fourth, the detectors
are re-trained and again tested on the labeled data to compute
the new performance and compare it with the previous. Lastly,
steps two, three and four are performed iteratively until the
performance converges.

Fig. 1. Flow of the semi-supervised self-training of Audio Event Detection.
Most of the tuning that improved the performance of the re-trained detectors
happened in the selection of candidates.

A. Datasets: Labeled and Unlabeled

Labeled Data (Training and Testing): UrbanSound8K
The UrbanSound8K (US8K) dataset [5] has 10 classes: air
conditioner, car horn, children playing, dog bark, and street
music, gun shot, drilling, engine idling, siren, jackhammer.
The content of the audio may have other overlapping sounds
and the target sound may occur in the background or in the
foreground. The dataset has about 8,732 audio segments of
3.5 sec average duration. These files are distributed into 10
stratified cross-validation folds.

Unlabeled Data (Self-Training): YouTube videos
The unlabeled audio comes from YouTube videos and videos
are the largest source of audio. The website was chosen
because it offers a wide diversity of class samples. The
soundtracks of the videos were crawled and downloaded using

the Pafy API1. The audio roughly corresponds to the 10 classes
from US8k. The acoustic content is unstructured, and com-
monly the target sound is occluded by multiple factors such
as noise, overlap with other sounds, and channel effects. The
web set has 200,000 segments of 3.5 seconds. We converted
all of the audio files into raw 16 bit encoding, mono-channel,
and 16 kHz sampling rate.

Challenges of Unlabeled Data Collection
Audio from videos poses collection challenges. YouTube con-
tains years of videos and in order to process and evaluate audio
containing the target sound, the query should serve as a filter.
Hence, the query formulation aims to filter in videos roughly
matching the ten classes in US8K. Typing a query composed
by a noun such as air conditioner will not necessarily fetch
a video containing such sound event. This happens because
the associated tags and metadata are mainly inspired by the
video’s visual content; contrary to what happens in audio-
only websites such as freesounds.org. Therefore, we modified
the query to be a combination of keywords: “<audio event
label>sound”, for example,“air conditioner sound”. Although
the results empirically improved, another issue was that the
audio event was not guaranteed to occur and if present it most
likely occurred with a short duration within whole recording.
Therefore, we restricted the video length to be larger than five
seconds and shorter than ten minutes to reduce the amount of
irrelevant audio.

B. Data Preparation

Extracting Low-level Features: MFCCs
The Mel Frequency Cepstral Coefficients (MFCCs) have been
widely used in audio event detection [12], [5], [8]. The
parameters are standard, such as 10 ms shifts, window of 25
ms and 20 cepstral coefficients including delta and double-
delta (time dynamics) for a total of 60 coefficients for each
time window or vector.

Extracting Intermediate Features: BoAWs
An effective approach for characterizing audio events is the
Bag-of-Audio-Words (BoAWs) feature representation, which
is usually built over low-level features such as MFCCs. The
method we followed to compute BoAWs features is broadly
illustrated in Figure 2 and detailed in these papers [13], [14].
In the first step, we put all the MFCCs in the training set
together. In the second step, we learn an “audio vocabulary”
by grouping the features into “audio words”. In contrast to
conventional approaches which uses clustering for grouping
words, our method adapts the MFCCs to a Gaussian Mixture
Model (GMM) using Expectation Maximization where each
mixture represents a word. The third step is quantization,
which uses the created vocabulary to turn the MFCC matrix
of a given recording into a BoAW histogram-vector of the
size of the vocabulary. The conventional quantization process
computes the distance of each MFCCs frame to all the audio
words and sums the value of one only on the histogram bin that

1https://pypi.python.org/pypi/pafy



corresponds to the closest word. However, our approach uses
soft-quantization, which sums probabilities for all the words.

Fig. 2. Process of computing our BoW features. The idea behind GMM-based
representation is to capture the distribution of MFCC vectors of a recording
over the GMM components.

Formally, let the MFCC vectors of a recording be repre-
sented as ~xt. ~xt is tth D dimensional MFCC frame, t =
1 to T . Here, the GMM G = {wk, N(~µk,Σk), k = 1 to M},
is learned over the MFCCs of training data. wk, ~µk and
Σk are the mixture weight, mean and co-variance parameters
respectively, of the kth Gaussian in G. We train GMM with
diagonal co-variance matrices. To obtain the bag of audio
word feature representation for any given recording, we first
compute the probabilistic assignment to kth Gaussian for each
MFCC frame of that recording as in Equation 1. This soft
assignment is then summed and normalized over all MFCC
frames for kth Gaussian as in Eq 2.

Pr(k|~xt) =
wkN(~xt; ~µk,Σk)

M∑
j=1

wjN(~xt; ~µk,Σk)

(1)

P (k) =
1

T

T∑
i=1

Pr(k|~xt) (2)

The final soft-count histogram feature representation, repre-
sented as ~α is ~αM = [P (1), ..P (k)..P (M)]T . ~αM features
are an M -dimensional (M=128) feature representation for
any given recording. During testing, the BoAW features are
computed in a similar manner however, using the created
vocabulary from training.

1) Training Detectors: Positive and Negative Classes:
We chose detectors–binary classifiers, because are able to
recognize the presence or absence of a particular audio event in
a recording. The binary setup also aims to simulate the imbal-
ance ratio of small amount of target sound vs a large amount
of non-target sounds, which is common in web retrieval tasks.
The audio samples belonging to the target class are referred to
as positives and those samples not belonging to the target are
referred to as negatives. Each of the ten detectors is trained
with both, a positive and a negative class. Positive contains
class samples and negative contains samples from the rest of
the classes. For instance, the detector for jackhammer has all
the samples corresponding to jackhammer as positives and all
the samples corresponding to the other 9 sounds as negatives.

2) Training Detectors: SVM: One round of experiments
was performed with Support Vector Machines (SVMs) because
SVMs have been widely explored for sound events [6]. The ten
SVM-based detectors used linear decision boundaries to fit the
data and were trained with the intermediate features. To relax

the constraints defining the margin of the decision boundary,
the parameter “C” was tuned and set to 0.01. Then, the
trained detectors were evaluated using the test set. Although
conventional SVMs could employ other techniques to allow
non-linear decision boundaries, the problem happens when
new audio segments are added for re-training. Each iteration
means that the SVM has to be re-trained from scratch using all
the train data. The consequence is a bottleneck, which worsens
as more segments and iterations are added.

3) Training Detectors: NN: Considering the previous issue,
the second round of experiments was performed with Neural
Networks (NNs). The NNs are more suitable for the iterative
nature of self-training. For example, in order to add a new
audio segment for training, the NN does not need to be re-
trained from scratch and a quick updating process suffice. The
NN-based detectors are also binary classifiers. More precisely,
for the NN we utilized a Multi-Layer Perceptron (MLP), with
tuned hyper-parameters such as number of layers, neurons,
activation function, regularization and loss function. The final
architecture consisted of an input of size 128–BoW features
dimensionality, one hidden layer of 100 neurons, and two
output units– class or not class. The activation function was
“tanh”, the regularization method was dropout (p=0.5), the loss
function was cross-entropy and the number of epochs was 10.
Then, the trained detectors were evaluated using the labeled
test set.

III. EXPERIMENTS AND EVALUATION OF METHODS

A. Computing the Baseline Performance and Running Detec-
tors on Unlabeled Data

The initial performance computed by our two machine
learning algorithms defined the baseline to improve after self-
training. The detectors used the labeled data from US8k, which
comes divided in 10 stratified folds. We used 9 folds as
training data and tested on the left-out fold. This is done in
10 different ways, resulting in 100 runs for all the 10 events
classes and 10 folds. We evaluated our detectors using average
precision as we wanted to detect reliable positive or negative
samples. For every class, the average precision (AP) over each
fold is computed, as well as the mean AP across all folds
referred as Mean AP. Afterwards, the detectors where run on
the unlabeled dataset to obtain confidence scores and labels
for each of the 200,000 segments. Note that the unlabeled
data was carefully handled to be consistent with the 10 fold
cross-validation setup. For example, the detectors trained using
the first 9 folds may not yield the same performance as the
detectors trained with any other fold combination.

B. Selecting Candidates and Self-Training Detectors

We employed a high confidence threshold to select audio
segments as candidates for self-training. The candidates were
used for self-training the detectors in combination to the
supervised audio segments. Once the detectors were re-trained,
they were ran on the supervised test set and their performance
was computed. The Mean AP value was compared with the



baseline and the whole process was repeated iteratively until
the Mean AP converged.

A key step in the self-training process is the selection of
candidates. We tried three main approaches: Detector’s output
scores, precision and clarity index.

Score-based Under this approach, the output of the detector
is a probability score that can be interpreted as a confidence
value and has been used for self-training in the paper [10]. A
score threshold of greater or equal than 0.95 was selected to
filter in any segment, where 0 means the lowest confidence
and 1 means the strongest confidence.

Precision High precision means that the detector returned
more relevant results than irrelevant ones. A precision thresh-
old of greater or equal than 0.95 was set. The value range is
the same as the score-based.

Clarity Index Clarity Index (CI), based on the paper [15],
aims to determine those segments that are the most confusing
for the detector. CI is based on two losses called relevance loss
and irrelevance loss. To understand these losses let us assume
that the training data is D = {(x1, y1), (x2, y2)..., (xn, yn)}
and the detector mapping function is denoted by f . Let xu

be an unlabeled data point. The Relevance Loss (RL) and the
Irrelevance Loss (IL) are defined as

RL(xu, f) =
1

|D0|
∑

xi∈D0

I(f(xi)− f(xu)) (3)

IL(xu, f) =
1

|D1|
∑

xi∈D1

I(f(xu)− f(xi)) (4)

The relevance loss is expected to be low if xu is relevant
(positive) and irrelevance loss is expected to be low irrelevant
(negative). The difference of the two losses CI = IL−RL is
expected to be high (close to 1) for positive instances and low
(close to -1) for negative instance. Overall, the CI helps us rank
unlabeled segments to choose better segments for self-training.
Higher CI implies that Xu is more likely to be positive. An
unlabeled point with very high CI would have outscored a
large number of training points and hence is expected to be
positive. Similarly, lower CI implies the instance is most likely
negative.

IV. RESULTS AND DISCUSSION

A. Baseline

The NN outperformed the SVM by an absolute 8.5% in
the baseline performance. The Mean AP score was 57.8%
for SVM and 66.3% for NN and are shown in Table I. One
reason for to justify the better performance of the NN, is that it
employed nonlinear decision boundaries to fit the data unlike
the SVM, which used linear boundaries. As mentioned before,
the SVM can also support nonlinear decision boundaries by
using kernels, but the computation time was an issue for
processing 200,000 segments for the 10 fold combinations,
and the re-training.

B. Self-Training

The main results of this paper are the improvement gain
by self-training shown in Table I and labeled as SVM Best
and NN Best. The overall Mean AP improvement was 1.2%
for both classifiers. Except for SVM’s dog barking, all the
audio events improved their performance. Particularly, air
conditioning and jackhammer benefited the most with about
3%. More importantly, the performance did not degrade, which
is expected to happen when audio that not belonging to the
target class is added by re-training. The SVM Best and NN
Best results correspond to different threshold types– CI and
Pecision respectively. The performance of the three threshold
types was similar (0.5%-1.4%) and we cannot say that one
should be preferred.

For the three threshold types, tuning affected differently the
overall selection of candidates and the detection performance.
The number of candidates varied between class from 0 to 2,000
on each iteration. In general, stricter values (greater than 0.9)
reduced the number of candidates to two digits. Regarding
the detection performance, stricter values (greater than 0.95)
and loose values (approximately 0.5) degraded Mean AP, but
values close to 0.9 yielded the reported gain. The threshold
also defined the number of iterations the algorithm took to con-
verged or stop improving. For our value of 0.9, our algorithm
iterated three times. Afterwards, the Mean AP performance
converged and then slowly decreased. In general, most of our
experiments degraded its performance after several iterations.
Two possible explanation are the mismatch conditions and the
lack of useful files for self-training.

Mismatch conditions are unavoidable if web audio is in-
tended to be exploited through semi-supervised approaches.
There is no control over the recording methods for unlabeled
web audio and thus it will most likely be different than the
control methods from labeled datasets. In our case, the dataset
US8k has different collection methods and acoustic character-
istics, which do not match the user-generated YouTube audio.
In our experiments, the detectors were self-trained using only
the newly labeled “positive” segments from YouTube. After
each iteration, more and more YouTube data was added to
the detectors on the positive category but not on the negative.
However, the improvement was limited and often degraded.
After inspecting some of the rejected files, it seemed that
the detectors were discriminating YouTube vs non-YouTube
audio, rather than positive vs negative. On the contrary, when
“positive and negative” segments were added, the performance
improved.

A manual inspection on some of the candidates helped
us better understand the audio content used to re-train the
detectors. Thumbnails examples are in Figure 3, illustrating
interesting cases. For instance, some videos may have the
presence of the sound even though the image didn’t corre-
sponded. The first thumbnail-video had the siren sound, but the
image in the video was just a radio-like box. Another example
was when sounds were acoustically similar but semantically
different. The third thumbnail-video showed a scene from the



Category SVM SVM NN NN
Baseline Best Baseline Best

air conditioner 39.3 45.1 49.9 53.2
car horn 52.4 53.0 51.6 52.8
children playing 53.8 54.3 65.1 65.2
dog bark 76.2 75.9 81.7 82.0
drilling 56.6 57.2 63.4 63.0
engine idling 53.8 54.1 68.0 69.8
gun shot 67.8 69.1 80.4 81.9
jackhammer 60.2 62.3 63.7 66.2
siren 72.2 72.8 80.2 80.4
street music 46.0 46.4 58.5 59.0
Mean AP 57.8 59.0 66.3 67.5

TABLE I
THE TABLE SHOWS THE CLASS PRECISION AND FOLD AVERAGE
PRECISION (MEAN AP). THE MEAN AP OF THE SVM AND NN

BASELINES WAS IMPROVED THROUGH SELF-TRAINING. THE SVM BEST
CORRESPONDS TO CLARITY INDEX THRESHOLD AND NN BEST

CORRESPONDS TO PRECISION THRESHOLD.

Fig. 3. Manual inspection of selected candidates from Siren, Dog bark, Air
Conditioner and Drilling.

movie “Captain America”, where the audio was similar to “air
conditioner”, but there was no such item. These examples does
not necessarily degrade the quality of the detector as shown
in [16]. In a similar manner, gun shot had, among some of the
candidates, object banging sounds.

V. LIMITATIONS AND FUTURE WORK

Classifier bias Semi-supervised approaches have limitations
related to what extent they can help, as discussed in [17].
Especially, self-training has an inherent detector bias issue
which happens when a detector is trained with an initial set of
data. The detector then, is ran on the unlabeled data and the
confidence score depends on the initial model. Once we add
new segments, we are enforcing the acoustic characteristics
of the previous model and not necessarily making our models
more robust. Addressing the issue was out of scope, but could
be a reason for the fast convergence in our results.

Threshold type The set of thresholds utilized are a reason-
able approach supported in the literature. However, a more
elaborated objective function should be considered to better
select candidates.

VI. CONCLUSIONS

In this work we proposed a framework of semi-supervised
self-training of audio event detectors, where the detectors were

trained with the annotated US8K dataset, and the self-training
employed unlabeled audio from YouTube videos. The NN
detectors yielded a higher baseline performance than SVM.
Both detectors and almost all the classes benefited from self-
training. Despite the audio mismatch conditions and thepos-
sibility of having few or no target sounds to be candidates,
the performance after self-training did not degrade. Further
exploration to select candidates offers a valuable opportunity.
Unlabeled audio from videos can help audio event detection.
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