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Abstract—The main challenge in depth-based object detection 
and tracking process is to provide correct identification of the 
detected objects during occlusion. This is because the information 
necessary to distinguish and consequently identify the objects 
throughout the occlusion events are limited, compared to 
conventional, color-based object tracking. In this paper we 
propose a two-layer tracking method that enables automatic 
occlusion handling and inter-sensor identification for object 
detection and tracking that utilizes more than one depth sensor. 
On the first layer, the tracking is first performed independently 
for each sensor to extract objects’ feature and perform initial 
tracking with separation of the occluded objects. On the second 
layer, the tracking is performed in the perspective projection of 
the objects tracked on the first layer that are combined in a single 
processing plane to provide correct identification of the objects 
that are detected in one sensor to another. Experiment results 
show that the proposed method can correctly identified occluded 
objects and objects that are moving between sensors coverage 
area.  

Keywords—surveillance; object detection and tracking; depth 
data; depth-based separation; range sensor 

I.  INTRODUCTION 

In some countries the installation of surveillance camera 
should be made known to the people inside the monitoring 
area so that they are aware that their behaviors are being 
recorded. However, there are situation where people tend to 
feel uncomfortable being watched by the camera. Some issues 
regarding possible privacy infringements from surveillance 
camera were discussed in [1]. One solution for this issue 
would be to install depth sensor camera that can detect the 
moving objects and measure the distance of the objects from 
the sensor. By only “seeing” the distance of the objects, the 
sensor cannot recognize the actual and detailed texture of the 
detected objects (such as people face or their clothing textures) 
thus would be sufficient to protect the privacy. Furthermore, 
by sensing the distance, moving objects can still be recognized 
regardless of lightning conditions of the monitored area. 

Due to only sensing the distance, one of challenging topics 
in moving object detection and tracking research is to enable 
accurate tracking of the objects during occlusion [2]. While 
conventional (i.e., RGB camera) object detection and tracking 

system has virtually abundant information that can be 
extracted from color signals, in depth-based object tracking we 
practically only have the depth signal. Technically, a depth 
sensor measures the distance of infra-red light signals between 
the sensor and the captured object. In some cases, light 
interferences affect measurement stability of the distance 
taken at certain point in the captured frame. Although some 
sensors have a de-noising feature to reduce such noise by 
setting the signal amplitude threshold, yet setting the threshold 
to reduce noise may cause a reduction in coverage range. 

In order to achieve satisfactory object tracking result with 
such restrictions, we propose a method to correctly and 
uniquely identify objects even during occlusion. Moreover, to 
enable the utilization of depth sensor in larger coverage area, 
we develop an inter-sensor identification method so that when 
more than one depth sensors are utilized, the detected objects 
that are moving from one sensor to another can still be 
correctly identified. 

Our contribution can be explained in brief by the flow of 
the proposed two-layer tracking method as illustrated in Fig. 1. 
On the first layer, the depth images are acquired from the 
sensors, where background subtraction is first performed to 
obtain the objects masks and define objects features so that 
initial tracking in each sensor with occlusion handling can be 
performed using those features. Next, the second layer 
receives perspective projections of positions of objects from 
the first layer and combine these projected positions onto 

 

Fig. 1. Overall flow of the two-layer tracking method  
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single processing plane. The tracking with inter-sensor 
identification is then performed to correctly identified the 
objects that move between the sensors so that no duplicated 
objects exist. Lastly, the final tracking results are shown by re-
projecting the correctly identified objects position onto the 
depth image. 

We will briefly revisit related depth-based object detection 
and tracking works in Section 2. Section 3 provides more 
detailed discussions of our proposed method followed by its 
experimental results and analysis in Section 4. This paper is 
concluded in Section 5. 

II. RELATED WORK 

The benefits of utilizing depth in human motion analysis 
have been shown for many years in many applications such as  
depth-based activity recognition, head and face detection, etc. 
[4]. Identifying detected objects in RGB-D camera-based 
object detection and tracking using both color and depth image 
have been proven to produce accurate estimation of occluded 
moving objects during occlusion. A combination of the Lucas-
Kanade method for compatibility with conventional image 
processing and the inverse compositional method for better 
computational performance is proposed in [5]. In [6], the 
depth scaling kernelised correlation filters (DS-KCF) tracker 
utilizes KCF in an RGB image to update the segmented target 
region in the depth data as a scale guide to update the target’s 
model.  

In some studies, 3D images synthesized from stereo 
cameras, which are not uncommon for object tracking [7], are 
also utilized to support feature extraction to generate image 
sets for training data in object tracking [8], as well as utilizing 
the Bhattacharyya distance to find the similarity between two 
probability density functions of a cluttered depth map from the 
3D image [9]. ViBe, a method that estimates the background 
via a sample-based random selection policy of the background 
values for color image is proposed in [10]. It applies the 
method for depth data acquired from a stereo camera. Particle 
filtering, which is one of the common methods in object 
tracking, is employed in [11] with active contours to estimate 
the global motion of the objects in tracking moving vehicles 
based on 3D range data. 

Some research also utilizes range sensor cameras without 
RGB signals, where the nonexistence of the color image 
makes it impossible to use color as feature for object tracking. 
Depth-only image analysis using such cameras has been 
presented in [12] to perform single object tracking to track 
selected single static objects (such as a face, cup, toys, etc.) 
and correctly identify the object even when the object is 
occluded with moving subjects (such as moving hands or 
books). Object detection and tracking system without 
occlusion handling using depth-only image was developed in 
[13], while detection and tracking of multiple objects with 
occlusion detection but no identification during the occlusion 
were presented in [14] and [15]. Our proposed depth-based 
object detection and tracking method enables individual object 
identification for each object during occlusion. This feature 
has not been provided in any depth-based object detection and 
tracking methods we reviewed. 

III. TWO-LAYER TRACKING 

A. First Layer 

The process on the first layer is performed for each sensor. 
It is started by acquiring the depth image from the sensor and 
obtains the depth values from the image and is independent 
between sensors. The left part of Fig. 2 illustrates the process 
performed on the first layer for the case where two sensors 
that are facing toward each other are utilized. This means that 
the area roughly from the half part to the upper part of the 
depth image from Sensor#1 would correspond to the same 
area of depth image from Sensor#2. From the depth image, we 
acquire its depth value for each pixel that represents the 
distance (in 102 millimeter) of the corresponding points in the 
monitored area. The pixels in the area beyond the coverage of 
the sensor are marked with zero values, thus shown as black 
pixels in the depth value’s gray-level image. 

The background subtraction method is performed based on 
[3] where statistical information of the depth data is utilized to 
remove the background by first creating a background model. 
To do this, a Background sequence was created to capture the 
monitored area without any moving objects. A threshold for 
each pixel in this sequence is defined by calculating the mean 
and variance of depth value throughout the  sequence. 

Let   fjiD ,  be a depth value at position i, j in the f-th 

frame, the depth data is then classified into background (zero) 
and non-background (one) by the following conditions 
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where  = 1 and  = 3 are set based on experiments. Here  d


 
is defined as the set of depth value that satisfies 

     jijijiD f ,2,,    in all F frames, and d  as the set 

of depth value differences for each pixels between two 

consecutive frames given by       1,,,  ff jiDjiDjid . 

The mean  and variance  are calculated from the 

Background sequence as      F
fF jiDji 0

1 ,,  and 

         F
f fF jiDjiji 0

21 ,,,  , respectively. 

From the background-subtracted depth image, object 
masks are defined as groups of pixels where each of them 
represent a moving object (or a candidate of moving object, as 
one mask may also comprises more than one objects when 

occlusion occurs). Let f
mO  be the m-th object mask at the f-th 

frame, we define its features: position, size, depth values, and 

its identification label as  jif
m ,P ,  hwf

m ,S , 

 jhiwjhiw
f
m dd  ,, ,,D  and f

m , respectively. Position i, j 

is determined as the center of the object mask of size w width 
and h height. Thus the depth values are assigned from the top-
left rectangular point of the object mask, to its bottom-right 
point. Note that since the process on the first layer is 
performed independently for each sensor, we reduce the 
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complexity of managing the objects’ features by avoiding the 
correlation of objects among the sensors. 

Utilizing the position feature f
mP , initial object tracking on 

the first layer is performed by employing a similarity matching 
between the positions of two objects in two consecutive 
frames. More specifically, the m-th object in frame f is 
assigned the same identity as the n-th object in frame f-1 if the 
following rule is satisfied  

  1minarg  f
n

f
m

n
matchn PP .                   (2) 

However, when occlusion occurs, similarity matching 
based on position cannot be simply utilized until the occluded 
objects have been separated. Therefore we perform automatic 
occlusion detection to recognize when two or more objects are 
occluded with each other. Next, separation is performed so 
that similarity matching can be applied onto each object as 
independent entities. 

Automatic occlusion detection is performed as illustrated 

in Fig. 3(a). Firstly, the area of an object f
mA  is calculated by 

simply multiplying width and height of object’s size feature 
f
mS . Next, to determine an occlusion, we observe the areas of 

more than one moving object in the previous frame that 
intersect with another object in the current frame. Suppose an 

intersected area produced when 1
1
fA (the area of 1

1
fO ) and 

1
2
fA  (the area of 1

2
fO ) intersect with fA1 (the area of fO1 ) as 

illustrated in Fig. 3(a). To determine that the intersect 
indicates an occlusion, two conditions apply: 1) the intersect 

areas of 1
1
fA and 1

2
fA with fA1 , denoted by 1

1,1

~ fA and 1
2,1

~ fA  

respectively, shall be larger than a given threshold; and 2) at 
least two areas are intersecting between the current object and 
any objects in the previous frame. To avoid the possibilities of 
depth masks that are not actual moving objects being 
perceived as occluded objects, an intersect area is determined 

to be larger than 5% of the area of 1f
nA . According to the 

above conditions, the example in Fig. 3(b) does not considered 
as occlusion. 

After an occlusion has been detected, the occluded objects 

are separated according to the depth values feature f
mD  to 

enable separated tracking of each occluded object. Let 

 K
f

,11,11
~,,~~
ppP   be the center points of intersection areas 

 1
,1

1
1,11

~
,,.

~  f
K

ff AA Α , we first assign initial label to each 

center point. A classifier is then performed to assign the same 
label for all pixels with similar depth value as the depth value 
in each center points. The similarity measurement 

  11,11
~~

,,,  jvjiuidd vujivu       (3) 

is computed so that all pixels with ., Treshvu    would be 

assigned the same label as the center point. Here .Tresh  is set 
heuristically to 128 millimeters.  

Finally, the features of object mask of the occluded object 
is updated according to the labeled pixels. That is, its position 
and size are now adjusted to the new separated positions and 
sizes of group of pixels with the same label. By now, the 
occluded objects are now separated and each of them can be 
tracked individually with similarity matching in (2). 

B. Second Layer 

On the second layer, the tracking is performed for the 
perspective projection of the positions of objects defined on 
the first layer. The perspective transform matrix is determined 
by selecting reference points from the floor area of the depth 
sensor view, which was performed in the Background 
sequence. Thus the second layer represents the foot position of 
the object mask.  

To handle multiple sensors tracking on this layer, the 
projected points from all sensors are combined onto one 
processing plane. The perspective projection in the processing 
plane takes into account relative positions of one sensor to 
another. For example, as shown in the right part of Fig. 4 for 
the case when two sensors are facing towards each other, the 
projection of positions from one sensor would be followed by 

 
Fig. 2. Illustration of detection and tracking on the first layer and second layer involving two sensors. 

1
1,1

~ fA

1
2,1

~ fA

fA11
1
fA
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2
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                                           (a)                                                        (b) 

Fig. 3. (a) An example of occlusion detection between objects in current 
frame (right) and previous frame (left). (b) Example of intersecting area with 
only one object involved thus does not considered as occlusion. 
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flipping the points so that the points in the processing plane 
correctly represent a single monitoring area (e.g. for two 
sensors facing toward each other, the upper part of processing 
plane represent the objects from the first sensor while the 
objects from the other sensor is at the lower part of the plane). 
Here, an overlapping area in the processing plane is defined to 
indicate the area between two sensors that overlap with each 
other, which is determined to be no larger than ¼ of each 
sensor’s area. This area is utilized to determine whether the 
detected objects in one sensor are also detected in the other 
sensors and perform inter-sensor identity matching. This will 
ensure that the tracked object in one sensor that moves to the 
area covered by another sensor is correctly identified as the 
same object.  

In contrast to the first layer, on the second layer we dealt 
only with the projected positions and the identity of the 
objects. That is, neither depth information or object’s shape 
and size are taken into account in the tracking on this layer. 
Additionally a label to indicate the source of the objects is 

added. Thus we define f
mc Ô  as the m-th object at the f-th 

frame on the second layer (i.e. in the processing plane) that is 
projected from the c-th sensor in the first layer, with features 

f
mc P̂  as its position and f

mc ̂  as its assigned label. 

At the first frame, object’s labels on the second layer are 
initially determined by their relative positions from top-left 
point of the frame, regardless the identification given that has 
been assigned on the first layer. In the succeeding frames, the 
identification is determined by position feature matching with 
the same calculation as in (2). Since occluded objects have 
been handled by separation on the first layer, it is ensured that 
there are no more occlusion occurred on the second layer; thus 
position feature matching would correctly identify the objects 
throughout the sequence, except inside the overlapping area. 
In the overlapping area, objects from sensor are assumed to be 
also detected in another sensor. In this area, the position 
features of two or more objects from different source (i.e. 
detected from different sensors) are expected to be entangled 
with each other, creating duplicated projected position of the 
same object from different sensors. Therefore we remove the 
duplicated information of the objects’ positions when objects 
from different sensors are detected inside the overlapping area. 

Let Θ be the overlapping area, similarity matching derived 

from (2) is then performed if ΘP f
mc

ˆ , to satisfy  

  Tresh
f

nb
f

mc
n

dupln ̂ˆˆminarg  PP           (4) 

given bc . Accordingly, object with position index conforms 
to dupln  will then be denoted as duplicated entry and its 

identity will be assigned as f
mc

f
nb  ˆˆ  . Here, only one object 

among the duplicated objects with the same identity is counted 
for further tracking process. In (4), similarity threshold is 
defined as the spatial likelihood between two duplicated 
entries detected from different sensors given by 

    f
nb

f
mcTresh PPH   4

1ˆ  where H is the length of 

longer side of the processing plane and   f

mc P  is the 

horizontal ( i ) or vertical ( j ) component of object’s 
position in the processing plane, depends on how the images 
of the first layer is arranged in the processing plane: 
horizontally (side by side) or vertically (top and above). Note 
that regardless the number of sensors utilized, the calculation 
of matching within overlapping area is conducted for a pair of 
sensors for simplification.  

IV. EXPERIMENTAL RESULTS 

 

To our knowledge, there are no publicly available datasets 
produced by multiple depth sensors that provide information 
of depth value in each pixel of the frame. Therefore we create 
our own test sequences to implement the proposed method. As 
aforementioned, an overlapping area in the processing plane 
applies to the overlapping area between pair of sensors. Thus 
to implement and justify the tracking between multiple sensors 
it would be sufficient to conduct the experiments using two 
sensors, for the sake of simplicity, without compromising the 
purpose of the proposed method. 

We set experimental setup as implied in Fig. 2 where two 
depth sensors are located at each end of a room that roughly 
15 meters apart, located at 2.6 meters from the ground with tilt 
angle of around 45 degrees, and around 70 degrees of field of 
view. To avoid light interference between sensors, the 
maximum coverage distance of each of them is set differently 
to 8 meters and 7 meters, respectively (each sensor has 
maximum coverage of around 13 meters but it performs best 
within 7-8 meters). These settings will produce an overlapping 
area from both sensors at the center of the room. From this 
room setup, a 250 frames Background sequence was created 
for each sensor. 

The depth images acquired from the sensors are in QVGA 
resolutions (320240) with 25fps of frame rate. The two 
sensors are connected to a PC via network cable where the 
depth images and the depth data are transmitted 
simultaneously to produce two sets of depth image and depth 
data from the two sensors without significant time delay 
between them. In the experiments we first store the depth 
images and depth data into storage and perform offline 
processing afterwards. The computation of depth values is 
performed at the beginning of the processing of each frame. 
We took around 8000 frames with different objects movement 
to test our method.  

Table I summarizes the performance of the occlusion 
detection and inter-sensor identifications (two-layer tracking) 
for several test sequences. The percentage values indicate the 
ratio of the number of frames where two-layer tracking 
correctly performed against the ground truth (the number of 
two-layer tracking that are manually annotated). Here, up to 
99% accuracy can be achieved for occlusion tracking and 94% 
accuracy for inter-sensor tracking. The performance of the 
proposed method depends on the movements of objects and 
their positions with each other. From the experiments we 
found that the occlusion detection works better when the 
occluded objects are located within the center part of the 
coverage area; when an occlusion occurs around the 
overlapping area, the saliency of the depth values of the 
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detected objects may reduce the accuracy of the occlusion 
detection. We also observe from the experiments that 
occlusion handling works better if the distance between the 
occluded objects, in terms of computed depth values, is larger 
than 200 millimeters. The effect of occlusion tracking can be 
seen in the plots of the objects’ trajectories from the 
processing plane in Fig. 4. Without occlusion  tracking as in 
[14] and [15], the identity of occluded objects cannot be 
retained after the occlusion. Inter-sensor identification 
depends on the pre-defined settings for determining the 
overlapping area. For +15 meters area from two sensors with 
each 8 meters and 7 meters optimal coverage range, 
intersecting one-third of area from projected floor plane of 
each sensor is sufficient to correctly identified most of inter-
sensor movements of objects.  

There are some failures occur when depth values are over-
filtered especially in the overlapping area where the object 
mask cannot be defined on the first layer; thus the object 
information that was present in previous frame is missing in 
current frame. As shown in Table I, even with high accuracy 
of occlusion tracking in one of the sensor, the 46% accuracy in 
Sequence #3 is due to more occlusions occurred within the 
overlapping area. Especially, in this area Sensor #1 cannot 
maintain good tracking performance. Consecutively, the 
object information is also missing on the second layer. As a 
result, if the depth values of this object is re-appeared on the 
succeeding frame, incorrect identification may occurs. 
Currently, this problem can be solved by extending the 
computation of similarity matching in (2) into a predefined 
duration. In the experiment we select up to 6 frames of sliding 
observation window for the algorithm to find corresponding 
object at the same position before the depth information is 
missing. Nevertheless, when too many objects are close to 
each other during this period, the extended similarity matching 
may also failed.  

V. CONCLUSIONS 

We have introduced a method that enable identification of 
detected objects in the event of occlusions and inter-sensor 
identification for objects that are moving between sensors 
coverage area. These are achieved by utilizing depth 
information in two steps: initial tracking and occlusion 
handling in sensor world coordinate, followed by inter-sensor 

tracking in a combined processing plane by performing 
perspective projection of the detected objects’ positions. 
While the results show satisfactory tracking accuracy, in more 
complicated occlusion scene (e.g. more than three objects 
walk closely with many of overlaps) our works will need 
further improvements.  

TABLE I.  PERFORMANCE OF TWO-LAYER TRACKING 

Seq. Frames Obj. 
Occlusion tracking Inter-sensor 

tracking Sensor #1 Sensor #2 

1 3110 3 61.63% 89.46% 85.03% 

2 3000 3 99.20% 84.73% 94.49% 

3 2230 4 39.73% 94.49% 46.99% 

References 
 

[1] American Civil Liberties Union, What’s Wrong With Public Video 
Surveillance?, https://www.aclu.org/technology-and-liberty/whats-
wrong-public-video-surveillance 

[2] W. Hu, T. Tan, L. Wang, and S. Maybank, “A survey on visual 
surveillance of object motion and behaviors,” IEEE Transaction on 
Systems, Man, and Cybernetics – Part C: Application and Reviews, vol. 
34, no. 3, pp. 334-352, August 2004. 

[3] S.H. Cho, K. Bae, K.M. Kyung, S. Jeong, and T.C. Kim, “Background 
subtraction based object extraction for time-of-flight sensor,” in Proc. 
IEEE 2nd Global Conf. on Consumer Electronics, pp. 48-89, 2013. 

[4] M. Ye, Q. Zhang, L. Wang, J. Zhu, R. Yang, and J. Gall, “A survey on 
human motion analysis from depth data,” Time-of-Flight and Depth 
Imaging, Sensors, Algorithms, and Applications, pp. 149-187, 2013 

[5] I. Sanchez Ruiz, “Object tracking using direct methods in RGB-D 
cameras,” Thesis (Master thesis), ETS de Ingenieros Informaticos, 2015 

[6] M. Camplani, S. Hannuna, M. Mirmehdi, D. Damen, A. Paiement, L. 
Tao, and T. Burghardt, “Real-time RGB-D tracking with depth scaling 
kernelised correlation filters and occlusion handling,” British Machine 
Vision Conference, 2015 

[7] D. Greenhill, J. Renno, J. Orwell, and G.A. Jones, “Occlusion analysis: 
learning and utilising depth maps in object tracking,” Image and Vision 
Computing, vol. 26, no. 3, pp. 430-441, 2008 

[8] Y. Chen, Y. Shen, X. Liu, and B. Zhong, “3D object tracking via image 
sets and depth-based occlusion detection,” J. Signal Processing, vol. 112, 
pp. 146-153, July 2015 

[9] J. Lee, P. Karasev, and A. Tannenbaum, “Range based object tracking 
and segmentation,” IEEE Conf. on Image Processing, pp. 4641-4644, 
2010 

[10] S. Ottonelli, P. Spagnolo, P.L. Mazzeo, and M. Leo, “Improved video 
segmentation with color and depth using a stereo camera,” IEEE Int. 
Conf. on Industrial Technology, pp. 1134-1139, 2013 

[11] J. Lee, S. Lankton, and A. Tannenbaum, “Object tracking and target 
reacquisition based on 3-D range data for moving vehicles,” IEEE Trans. 
Image Processing, vol. 20 no. 10, pp. 2912-2924, 2011 

[12] S.-C. Shen, W.-L. Zheng, and B.-L. Lu, “Online object tracking based 
on depth image with sparse coding,” Neural Information Processing, pp. 
234-231, 2014 

[13] L. Jia, and R.J. Radke, “Using time-of-flight measurements for privacy-
preserving tracking in a smart room,” IEEE Trans. on Industrial 
Informatics, vol. 10, no. 1, pp. 689-696, 2013. 

[14] H. Sabirin, H. Sankoh, and S. Naito, “Utilizing attributed graph 
representation in object detection and tracking for indoor range sensor 
surveillance cameras,” IEICE Transactions on information and Systems, 
vol. 98, no. 12, pp. 2299-2307, 2015. 

[15] T. Bagautdinov, F. Fleuret, and P. Fua, “Probability occupancy maps for 
occluded depth images,” IEEE Conf. on Comp. Vision and Patt. Rec., pp. 
2829-2837, 2015. 

0
80

160
240
320
400
480

0 40 80 120 160 200 240 280 320   
0

80
160
240
320
400
480

0 40 80 120 160 200 240 280 320  

0
80

160
240
320
400
480

0 40 80 120 160 200 240 280 320   
0
80

160
240
320
400
480

0 40 80 120 160 200 240 280 320  
Fig. 5. Plots of trajectories of detected objects (left) without and (right) with 
occlusion tracking. Horizontal and vertical axes represent the width and the 
height of processing plane in pixels, respectively. 
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