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Abstract—Near-field ultrawideband imaging is a promising
remote sensing technique in various applications such as air-
port security, surveillance, medical diagnosis, and through-wall
imaging. Recently, there has been increasing interest in using
sparse multiple-input-multiple-output (MIMO) arrays to reduce
hardware complexity and cost. In this paper, based on a Bayesian
estimation framework, an optimal design method is presented
for two-dimensional MIMO arrays in ultrawideband imaging.
The optimality criterion is defined based on the image recon-
struction quality obtained with the design, and the optimization
is performed over all possible locations of antenna elements
using an algorithm called clustered sequential backward selection
algorithm. The designs obtained with this approach are compared
with that of some commonly used sparse array configurations in
terms of image reconstruction quality for various noise levels.

I. INTRODUCTION

Near-field ultrawideband imaging systems are emerging
array-based systems for various applications such as airport
security, surveillance, through-wall imaging and medical diag-
nosis [1]–[4]. In these systems, down-range and cross-range
resolutions are determined by the frequency bandwidth and
size of the antenna arrays. In the classical two-dimensional
designs, element spacing is chosen as at most half of the center
wavelength to eliminate undesired grating lobes. As a result, in
applications demanding high-resolution, classical (non-sparse)
planar arrays require high hardware complexity and cost.

To reduce this complexity and cost, recently, there has been
increasing interest in using sparse multiple-input-multiple-
output (MIMO) arrays in ultrawideband radar imaging ap-
plications. Many such sparse MIMO topologies have been
suggested and tested for this purpose [5]–[11]. However, none
of these designs have been optimal in terms of minimizing the
image reconstruction error. In fact, in [5]–[7], the arrays have
been designed by imposing some constraints on the desired
beam pattern. In [8]–[11], the arrays have been designed
based on some desired properties of the virtual arrays such
as uniformity and minimal element shadowing. However, a
systematic approach to the optimal design of MIMO arrays
has not been developed from an inverse theoretic perspective
which takes into account the quality of the reconstructed
images obtained with the design.

In this paper, we present an approach for the optimal
design of two-dimensional MIMO arrays based on a Bayesian
framework. The problem of image reconstruction from MIMO
measurements is formulated as a maximum posterior estima-

tion problem. The optimality criterion is then defined based
on the resulting image reconstruction errors obtained with the
design. Design optimization is performed over all possible
locations of antenna elements using the clustered sequential
backward selection (CSBS) algorithm [12]. The algorithm
starts with an initial antenna configuration and reaches the
desired number of antenna elements by iteratively reducing
the antenna elements based on the optimality criterion.

The performance of the developed approach is illustrated for
a microwave imaging application. Design optimization is per-
formed using two different initial array configurations, namely
a uniform and a random configuration. The performance of
the designs obtained with the CSBS algorithm is compared
with the commonly used sparse arrays [8] such as Mills
cross. Numerical results illustrate that CSBS-based designs
outperform the MIMO topologies suggested earlier in terms of
image reconstruction quality and under various different noise
levels. Furthermore, it is observed that the approach yields
designs with more uniform virtual arrays than that of other
designs. A preliminary version of this approach was presented
in [13].

II. OBSERVATION MODEL

For near-field imaging systems, a discrete model that re-
lates the MIMO measurements to the discretized reflectivity
distribution of the scene can be expressed as follows [4]:

y(xT , xR, zT , zR, k)

=
∑
x,y,z

1

4πdT dR
f(x, y, z)p(k)e−jkdT e−jkdR . (1)

Here y(xT , xR, zT , zR, k) denotes the measurement obtained
using the transmitter located at (xT , 0, zT ) and the receiver
located at (xR, 0, zR). The measurements are expressed in the
temporal Fourier domain with f denoting the frequency and
k = 2πf/c denoting the frequency-wavenumber. The three-
dimensional reflectivity distribution of the scene is denoted
by f(x, y, z). Moreover, p(k) represents the Fourier transform
of the transmitted pulse, and dT and dR respectively denote
the distances of the corresponding transmitter and receiver
antennas to the voxel at (x, y, z):

dT =
√

(xT − x)2 + y2 + (zT − z)2, (2)

dR =
√

(xR − x)2 + y2 + (zR − z)2. (3)
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The discrete model in Eqn. (1) can be rewritten in matrix-
vector form as follows:

y = Af + w, (4)

where f is the scene reflectivity vector, y is the measurement
vector, w is the noise vector, and A is the observation matrix.
Using lexicographic ordering, the scene reflectivity values and
measurements are respectively converted to column vectors f
and y. The matrix A is a rectangular matrix that describes
the linear relation between the reflectivity and measurement
vectors. Using Eqn. (1), the (i, j)th element of the observation
matrix can be expressed as follows:

Ai,j =
p(k)e−jkdT e−jkdR

4πdT dR
, (5)

Here i is the measurement index; that is, for each measure-
ment, it indicates the locations of the transmitting and receiv-
ing antennas, and the frequency used. Moreover, j represents
the corresponding voxel in the scene reflectivity function.

As is observed from the above equation, (i, j)th element
of the observation matrix indicates the contribution of the
jth voxel to the ith measurement. Hence, the total number
of rows is equal to the length of the measurement vector, and
the number of columns is equal to the length of the reflectivity
vector. Denoting the number of receiver antennas, transmitter
antennas, frequency steps, and reflectivity voxels as M , T ,
F , and N , respectively, the size of the matrix A is given by
MTF×N . Moreover, the size of the voxels in the reflectivity
function is determined based on the desired down-range and
cross-range resolutions of the system.

III. OPTIMAL DESIGN METHOD

We now present an approach for the optimal design of two-
dimensional MIMO arrays based on a Bayesian framework.
First the problem of image reconstruction from MIMO mea-
surements is formulated as a maximum posterior estimation
(MAP) problem, and then the optimality criterion for the
design is defined based on the resulting image reconstruction
errors.

In the MAP framework, the reflectivity and noise vectors
are assumed to be complex Gaussian distributed as follows:

w ∼ CN(0,Σw), f ∼ CN(f0,Σf ), (6)

where Σw denotes the covariance matrix of the noise vector,
and f0 and Σf respectively denote the mean and covariance
matrix of the reflectivity vector. Then the MAP estimate of
the scene reflectivity vector has a closed-form given by

f̂MAP = f0 + (AHΣ−1
w A+ Σ−1

f )−1AHΣ−1
w (y −Af0), (7)

where superscript (.)H represents the Hermitian of a ma-
trix. In particular, if the noise is assumed as independent
and identically distributed (i.i.d.) with variance σ2

w, and the
covariance matrix of the reflectivity vector has the form
Σf = (1/γ2)(LTL)−1, the MAP estimate becomes equivalent
to the Tikhonov regularized least-squares solution given by

f̂Tik = f0 + (AHA+ λLTL)−1AH(y −Af0), (8)

where λ = (γσw)2 is the equivalent regularization parameter.
One possible choice for the transformation L is the discrete
derivative operator.

The error covariance matrix for this MAP estimate is given
by [14]

Σe = (AHΣ−1
w A+ Σ−1

f )−1. (9)

We define the optimality criterion based on the image recon-
struction errors resulting from this estimation. After choosing
this criterion, the design optimization is performed using
the clustered sequential backward selection (CSBS) algorithm
developed in [12] for this statistical framework. It is possible to
define various different optimality criteria based on Σe [12].
Here, we define the optimality criterion as the mean square
error (MSE), i.e. the trace of the error covariance matrix:

Cost(A) = Tr(Σe) =
N∑
i=1

(Σe)ii, (10)

For a given number of antenna elements, the goal in
the optimal design is to obtain an array configuration that
minimizes this cost function. For this purpose, the optimization
starts with an initial antenna configuration with large number
of antenna elements, and then the antennas are successively
reduced using the CSBS algorithm until the desired number
of elements is reached. The reduction of the antenna elements
corresponds to the elimination of the respective rows from
the observation matrix. The optimality criterion is used to
identify which rows to eliminate. That is, at each iteration,
the cost function of the design resulting from the removal of
each antenna element is calculated, and the one that yields
the minimum cost value is removed from the current design.
Equivalently, corresponding rows from the observation matrix
are eliminated. This process continues until the desired number
of antennas is reached for the design.

In order to reduce the computational complexity, the cost
function can be equivalently replaced with the following [12]:

Γ←− Γ \ k∗ : k∗ = arg min
kεΓ

∑
iεΠk

aiΣ
2
ea
H
i

1− aiΣeaHi
, (11)

where Γ contains the indices of the antenna elements in the
current configuration, and k∗ represents the index of the an-
tenna element that is removed from the current configuration.
Moreover, ai shows the ith row of the observation matrix, Πk

contains the row numbers corresponding to the measurements
related to the kth antenna. To compute this cost function,
matrix Σe is required to be updated at each iteration using
the current observation matrix AΓ and Eqn. (9).

In order to analyze the computational complexity of the
CSBS algorithm, recall that Σe and the summation in Eqn. (11)
are required to be computed at each iteration. Computation of
Σe involves matrix multiplication and inversion operations in
Eqn. (9). Assuming that the number of rows in the updated
matrix AΓ is Q (Q ≤ MTF ), the computational complexity
is O(Q2N +N2Q) for the matrix multiplications and O(N3)
for the matrix inversion. Since Q ≥ N , the computational
complexity of Σe calculation becomes O(Q2N). Moreover,
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if the sum of the receiver and transmitter antenna elements
is denoted by P (P = M + T ), then the computational
complexity of the summation in Eqn. (11) is O(N2P ).
Hence, the computational complexity of one iteration becomes
O(Q2N + N2P ). Since Q ≥ N and Q ≥ P , computational
complexity of one iteration can be expressed as O(Q2N).

IV. SIMULATION SCENARIO AND RESULTS

A. Scenario

To compare the image reconstruction quality of the CSBS-
designed arrays with the commonly used sparse antenna
arrays, a microwave imaging scenario is considered. The
parameters used in this scenario are given in Table I.

TABLE I
SCENARIO PARAMETERS

Parameters Value

Center Frequency (fc) 11 GHz

Bandwidth (B) 16.7 GHz

Number of Frequency Steps (F ) 7

Center Wavelength (λc) 2.73 cm

CSBS algorithm is applied to two different initial antenna
configurations. As shown in Figure 1, the first one is a uniform
planar array, and the second one is random and has uniformly
distributed antennas. Initial array sizes are the same for both
configurations; each is located between −10λc to 10λc in x
and z axes. Moreover, initial antenna configurations contain
242 antennas equally shared for receiver and transmitter an-
tennas. The goal is to reduce the number of antennas to the
desired number of 25 using the CSBS algorithm.

Fig. 1. Initial uniform antenna configuration (left), initial random antenna
configuration (right).

In the uniform antenna configuration, the spacing between
transmitter antennas is set to λc/2. In order to avoid over-
lapping of the virtual array elements, the spacing between
receiver antennas is chosen different than λc/2. In fact, the
ratio between the spacings of receiver and transmitter antennas
is chosen as an irrational number of 3/π, while keeping the
size of the transmit and receive arrays close to each other .

In the simulations, a point scatterer is considered as in [8],
and the distance from the point target to the antenna array is
selected as 40λc. The reflectivity cube of interest is divided
into 19×19×3 voxels in the x, z and y directions, respectively.

The width of the reflectivity cube along x and z directions
is same as that of the antenna array, and the voxel size is
determined based on down-range and cross-range resolutions
of the system. The point scatterer is at the center of this
reflectivity cube. The elements of the observation matrix is
calculated using Eqn. (5), and here p(k) is taken as unity. For
the observation noise w, i.i.d. complex Gaussian noise with
σw = 10−4 is used.

To compare the imaging performance of the CSBS-based
arrays, Mills cross and curvilinear array topologies in [8]
are considered. The observation matrix for these sparse ar-
rays are calculated similarly using Eqn. (5). For each array
configuration, the reflectivity vector is reconstructed using
Tikhonov regularization as given in Eqn. (8), with λ chosen
as the optimal regularization parameter and L chosen as the
discrete derivative operator. Using the central slice of the
reconstructed reflectivity cubes, the point-spread functions of
all array topologies are compared.

B. Results

Figure 2 shows the array designs obtained by applying
the CSBS algorithm to the initial antenna configurations of
uniform and random arrays. Mills cross and curvilinear array
designs from [8], used for comparison, are shown in Figure 3.

Fig. 2. Array design obtained with initially uniform antenna configuration
(left), Array design obtained with initially random antenna configuration
(right).

Fig. 3. Mills Cross array (left), curvilinear array (right)

For each design, the reflectivity cube is reconstructed from
the measurements, and its central slice (that contains the point
scatterer) is shown in Figure 4. Mean squared errors are also
calculated for 100 Monte Carlo trials and their average is
shown in Table II. As shown from the results in Figure 4 and
Table II, CSBS-based designs outperform the earlier designs
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Fig. 4. Two dimensional reconstruction results in dB: for the design obtained
with initially uniform array (upper left), for the design obtained with initially
uniform array (upper right), for Mills cross array (bottom left), for curvilinear
array (bottom right)

TABLE II
MSE VALUES FOR ALL ARRAY TOPOLOGIES FOR σw = 10−4

Array Type Average MSE

Design with initially uniform array 0.38

Design with initially random array 0.48

Mills cross 0.59

Curvilinear 0.69

suggested in the literature. They yield much cleaner point-
spread functions with less sidelobes.

The performance of each design (in terms of MSE) is also
shown in Figure 5 for varying noise standard deviation. It is
observed that designs obtained with the developed approach
always perform better for any SNR value, and at high SNRs
curvilinear array outperforms Mills cross array, as consistent
with the results of [8].

Fig. 5. MSE vs noise standard deviation for all topologies

Fig. 6. Virtual arrays: for the design obtained with initially uniform array
(upper left), for the design obtained with initially uniform array (upper right),
for Mills cross array (bottom left), for curvilinear array (bottom right)

Moreover, in the literature, it has been proposed that the
virtual array of an antenna configuration is related to the
goodness of the design, and that the uniformity of the virtual
array affects the imaging performance positively [15]. Figure 6
shows the virtual arrays of the all four designs. The virtual
arrays of the CSBS-based designs also appear to be more
uniform compared to the other two topologies. This is also
consistent with the MSE results in Table II.

V. CONCLUSION

In this paper, an optimal design approach is presented
for two-dimensional MIMO arrays used in near-field ultraw-
ideband imaging. For image reconstruction, MAP estimation
(equivalently, regularized least-squares) approach is consid-
ered, and the mean squared error (MSE) in the reconstruction
is chosen as the optimality criterion for the design. Design op-
timization is performed over all possible locations of antenna
elements using the CSBS algorithm. The performance of the
developed approach is illustrated for a microwave imaging
application. The results illustrate that the designs obtained
with this approach outperform commonly used sparse array
configurations in terms of image reconstruction quality for a
wide range of SNR.
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