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Abstract—In this paper, we develop a robust generalization of
the Gaussian quasi score test (GQST) for composite binary hy-
pothesis testing. The proposed test, called measure-transformed
GQST (MT-GQST), is based on a transformation applied to the
probability distribution of the data. The considered transform is
structured by a non-negative function, called MT-function, that
weights the data points. By appropriate selection of the MT-
function we show that, unlike the GQST, the proposed MT-GQST
incorporates higher-order moments and can gain robustness to
outliers. The MT-GQST is applied for testing the parameter of a
non-linear model. Simulation example illustrates its advantages
as compared to the standard GQST and other robust detectors.

I. INTRODUCTION

The score test [1], also known as Rao’s score test, or the
Lagrangian multiplier test, is a well established technique for
composite binary hypothesis testing [1]. Its test-statistic is
based on the score-function, defined as the gradient of the
log-likelihood function w.r.t. the vector parameter. Unlike the
generalized likelihood ratio test (GLRT) and Wald’s test [1],
it does not necessitate the maximum likelihood estimate under
the alternative hypothesis, and therefore, may be significantly
easier to compute. However, similarly to Wald’s test and the
GLRT, it requires knowledge of the likelihood function. In
many practical scenarios the likelihood function is unknown,
and thus, alternatives to the score test that require only partial
statistical information become attractive.

One alternative that utilizes only first and second-order
statistical moments is called the Gaussian quasi score test
(GQST) [2]-[5], which assumes normally distributed observa-
tions. The GQST, that belongs to the class of M-tests [6], [7], is
obtained by replacing the score-function with a Gaussian quasi
score-function (GQSF). The GQSF is defined as the gradient
(w.r.t. the vector parameter) of a Gaussian log-likelihood func-
tion that is characterized by the parametric mean vector and
covariance matrix of the underlying distribution. The GQST
has simple implementation and tractable performance analysis
that arise from the convenient Gaussian model. Furthermore,
the GQST is consistent under some mild regularity conditions
[3]. However, the GQST is not resilient against large deviations
from normality that can occur, e.g., in the case of heavy-tailed
noise that generates outliers.

In this paper, we develop a robust generalization of the
GQST, called measure-transformed GQST (MT-GQST), that
is based on the parametric probability measure-transform [8].
The considered measure-transformation is structured by a non-
negative function, called MT-function, that weights the data
points. The MT-GQST is obtained by replacing the GQSF with
a measure-transformed GQSF multiplied by the MT-function.
The measure-transformed GQSF is defined as the gradient of

a Gaussian log-likelihood function that is characterized by the
measure-transformed mean vector and covariance matrix. By
appropriate selection of the MT-function we show that, unlike
the GQST, the proposed MT-GQST incorporates higher-order
statistical moments and can gain robustness to outliers, while
maintaining the implementation advantages of the GQST.

In the paper we show that the MT-GQST is consistent under
some mild assumptions. We also show that the asymptotic
distribution of the test-statistic is central chi-squared under the
null hypothesis, and non-central chi-squared under a sequence
of local alternatives, with non-centrality parameter that is
increasing with the inverse asymptotic error-covariance of the
MT-GQMLE [8]. We analyze the robustness of the test to
outliers via the second-order influence function [9] of the test
statistic. Selection of the MT-function, within some parametric
family, is carried out by minimizing the spectral norm of
the empirical asymptotic error-covariance of the MT-GQMLE.
We show that this minimization amounts to maximization of
an empirical worst-case asymptotic local power at a fixed
asymptotic size.

The MT-GQST is applied for testing the vector parameter of
a non-linear data model in the presence of spherically invariant
noise [10]. The MT-function is selected within the class of
spherical Gaussian functions that are centered about the origin
and parameterized by a scale parameter. We show that the
MT-GQST performs similarly to the GQST for normally
distributed noise. When the noise obeys a heavy-tailed K-
distribution [10], we show that the MT-GQST outperforms the
non-robust GQST and other robust detectors, and significantly
reduces the performance gap towards the score test that,
unlike the MT-GQST, necessitates complete information of the
parametric distribution.

Lastly, we emphasize that unlike the works in [11] and [12]
that deal with simple binary hypothesis testing, this work deals
with composite binary hypothesis testing.

The paper is organized as follows. In Sections II, the con-
sidered probability measure-transform is reviewed. In Section
III, the proposed MT-GQST is derived. A numerical example
illustrating the advantages of the MT-GQST is given in Section
IV. Section V provides concluding remarks. Proofs for the
theorem and propositions stated in the manuscript will be
provided in the full journal version.

II. PROBABILITY MEASURE TRANSFORM: REVIEW

This section provides a brief review of the parametric prob-
ability measure transform [8]. Based on this transformation,
we redefine the parametric measure-transformed mean vector
and covariance matrix and show their relation to higher-order
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statistical moments. These quantities will be used in Section
III to construct the proposed test.

A. Preliminaries

Let (X ,SX , PX;θ) denote a measure space, where X ⊆ Cp
is the observation space of a complex random vector X, SX is
a σ-algebra over X and PX;θ is a probability measure on SX
parameterized by a vector parameter θ that belongs to an open
parameter space Θ ⊆ Rm. For any integrable scalar function
h : X → C the expectation of h (X) under PX;θ is given by:

E [h (X) ;PX;θ] ,
∫
X

h (x) dPX;θ (x) . (1)

The empirical probability measure P̂X given a sequence of
samples Xn, n = 1, . . . , N from PX;θ is defined as:

P̂X (A) =
1

N

∑N

n=1
δXn

(A) , (2)

where A ∈ SX , and δXn
(·) is the Dirac probability measure

at Xn [13].

B. Probability measure transformation

Definition 1 (Definition of the transform). Given a non-
negative function u : Cp → R+ such that

0 < E [u (X) ;PX;θ] <∞, (3)

a transform on PX;θ is defined as:

Q
(u)
X;θ (A) , Tu [PX;θ] (A) =

∫
A

ϕu (x;θ) dPX;θ (x) , (4)

where A ∈ SX and

ϕu (x;θ) , u (x)/E [u (X) ;PX;θ]. (5)

The function u (·) is called the MT-function.

By Definition 1, Q(u)
X;θ (4) is a probability measure on SX

that is absolutely continuous w.r.t. PX;θ, with Radon-Nikodym
derivative [13]:

dQ
(u)
X;θ (x)/dPX;θ (x) = ϕu (x;θ) . (6)

The MT-function u (·) is the generating function of the prob-
ability measure Q

(u)
X;θ. By modifying u (·) a wide range of

probability measures on SX can be obtained.

C. The measure-transformed mean and covariance

By the Radon-Nikodym derivative (6) the mean vector and
the covariance matrix of X under Q(u)

X;θ take the forms:

µ
(u)
X (θ) , E [Xϕu (X;θ) ;PX;θ] (7)

and

Σ(u)
X (θ) , E

[
XXHϕu (X;θ) ;PX;θ

]
− µ(u)

X (θ)µ
(u)H
X (θ),

(8)
respectively. The quantities (7) and (8) will be called the
MT-mean vector and the MT-covariance matrix, respectively.
Notice that µ(u)

X (θ) and Σ(u)
X (θ) are weighted mean and

covariance of X under PX;θ, with the weighting function

ϕu (·; ·) defined in (5). Also notice that when u (·) is non-
zero and constant valued Q

(u)
X;θ = PX;θ and then (7) and (8)

coincide with the standard mean vector µX(θ) and covariance
matrix ΣX(θ), respectively. Alternatively, when u (·) is a
non-constant analytic function, that has a convergent power
series expansion, the MT-mean and MT-covariance incorporate
higher-order statistical moments of PX;θ.

III. DERIVATION OF THE TEST

In this section, the proposed MT-GQST is derived. Under
some regularity assumptions, the MT-GQST is shown to be
consistent. Furthermore, we derive the asymptotic distribution
of its test statistic under the null hypothesis and under a se-
quence of contiguous local alternatives. Robustness of the MT-
GQST to outliers is analyzed via its second-order influence
function [9]. Finally, selection of the MT-function is discussed.

A. Problem formulation

Given a sequence of samples X1, . . . ,XN from PX;θ, we
consider the following composite hypothesis testing problem:

H0 : θ = θ0 (9)
H1 : θ 6= θ0,

where θ0 ∈ Θ. We consider the case where the underlying
parametric family {PX;θ : θ ∈ Θ} is unknown. Partial sta-
tistical information is available through the MT-mean µ(u)

X (θ)
and the MT-covariance Σ(u)

X (θ) that are assumed to be known
parametrized functions (up to some redundant constants).

B. The MT-GQST

Define the measure-transformed GQSF:

ψu(x;θ) , ∇θ log φ(x;µ
(u)
X (θ),Σ(u)

X (θ)), (10)

where φ(·; ·, ·) is a proper complex Gaussian probability
density function and it is assumed that µ(u)

X (θ) and Σ(u)
X (θ)

are differentiable. One can verify that

E[ψu(X;θ0);Q
(u)
X;θ] = 0 for θ = θ0. (11)

Therefore, since by (3), (5) and (6) any integrable scalar
function h : X → C satisfies E[h(X);Q

(u)
X;θ] = 0 if and only

if E[u(X)h(X);PX;θ] = 0 we conclude that

ηu(θ0,θ) , E[u(X)ψu (X;θ0) ;PX;θ] = 0 for θ = θ0.
(12)

Thus, when ηu(θ0,θ) 6= 0 for any θ 6= θ0 an empirical
estimate of ηu(θ0,θ) can be used for obtaining a consistent
test between H0 and H1. Hence, given a sequence of samples
X1, . . . ,XN from PX;θ the MT-GQST for the hypothesis
testing problem (9) is defined as:

Tu , N · η̂Tu (θ0) Ĝ−1u (θ0)η̂u (θ0)
H1

R
H0

t, (13)

where

η̂u(θ0) ,
1

N

N∑
n=1

u(Xn)ψu(Xn;θ0) (14)

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2116



is an empirical estimate of ηu(θ0,θ),

Ĝu(θ0) ,
1

N

N∑
n=1

u2 (Xn)ψu (Xn;θ0)ψTu (Xn;θ0) (15)

is the empirical autocorrelation matrix of u(X)ψu(X;θ0),
which is assumed to be non-singular, and t ∈ R+ denotes a
threshold. Notice that (13) defines a class of tests over the set
of MT-functions that obey Definition 1. In particular, when the
MT-function u (·) is any non-zero constant function (for which
Q

(u)
X;θ = PX;θ) the standard GQST, that incorporates only first

and second-order statistical moments, is obtained from (13).

C. Asymptotic performance analysis

Here, we analyze the asymptotic performance of the pro-
posed test (13). For simplicity, we assume that a sequence of
i.i.d. samples Xn, n = 1, . . . , N from PX;θ is available. We
begin by stating some regularity conditions that will be used
in the sequel:
(A-1) ηu(θ0,θ) 6= 0 for θ 6= θ0.
(A-2) Hu(θ0,θ) , E[u2(X)ψu(X;θ0)ψTu (X;θ0);PX;θ] is

bounded and non-singular over Θ×Θ.
(A-3) µ(u)

X (θ) and Σ(u)
X (θ) are twice continuously differen-

tiable with bounded first and second-order derivatives.
(A-4) E[u4(X);PX;θ] and E[‖X‖8u4 (X) ;PX;θ] are bounded.
(A-5) The density of PX;θ is differentiable in Θ a.e. over X .
(A-6) The Fisher information matrix is bounded over Θ.
The following proposition states sufficient conditions for con-
sistency of the MT-GQST.

Proposition 1 (Consistency). Assume that conditions A-1-A-4
are satisfied. Then, for any threshold t ∈ R+

Pr [Tu > t] −−−−→
N→∞

1 under H1. (16)

Next, we derive the asymptotic distribution of the test-
statistic under the null hypothesis and under a sequence of
local alternatives.

Proposition 2 (Asymptotic distribution under the null hypoth-
esis). Assume that conditions A-3 and A-4 are satisfied. Then,

Tu
D−−−−→

N→∞
χ2
m under H0, (17)

where χ2
m denotes a central chi-squared distribution with

m-degrees of freedom, and “ D−→” denotes convergence in
distribution [13].

Theorem 1 (Asymptotic distribution under local alternatives).
Assume that conditions A-2−A-6 are satisfied. Furthermore,
consider a sequence of local alternatives that converges to θ0
at a rate of 1/

√
N . Specifically, consider

H1 : θ = θ0 + h/
√
N, (18)

where h ∈ Rm is a non-zero locality parameter. Then,

Tu
D−−−−→

N→∞
χ2
m (λu(h)) under H1, (19)

where χ2
m (λu(h)) is a non-central chi-squared distribution

with m-degrees of freedom and non-centrality parameter

λu(h) , hTR−1u (θ0)h. (20)

The matrix Ru(θ) is defined as:

Ru(θ) , F−1u (θ) Gu (θ) F−1u (θ) , (21)

where

Gu (θ) , E[u2 (X)ψu (X;θ)ψTu (X;θ) ;PX;θ], (22)

Fu (θ) , −E [u (X) Γu (X;θ) ;PX;θ] , (23)

Γu (x;θ) , ∇2
θ log φ(x;µ

(u)
X (θ),Σ(u)

X (θ)), (24)

and Fu (θ) is assumed to be a non-singular matrix function.

We note that the matrix Ru(θ) (21) is exactly the error-
covariance of the MT-GQMLE [11]. The following Corollary
is a direct consequence of (19), (20), the Rayleigh-Ritz Theo-
rem [14] and the property that the tail probability of the non-
central chi-squared distribution is monotonically increasing in
the non-centrality parameter [15].

Corollary 1 (Asymptotic local power). Assume that the con-
ditions stated in Theorem 1 hold. Under the local alternatives
(18), the asymptotic power at a fixed asymptotic size α satisfies

β(α)
u (h) = Qχ2

m(λu(h))

(
Q−1χ2

m
(α)
)
, (25)

where Qχ2
m

(·) and Qχ2
m(·) (·) denote the tail probabilities of

the central and non-central chi-squared distributions, respec-
tively. Furthermore, for any c > 0 the worst-case asymptotic
power

β̄(α)
u (c) , min

h:‖h‖≥c
β(α)
u (h) = Qχ2

m(γu(c))

(
Q−1χ2

m
(α)
)
, (26)

where γu(c) , c2 ‖Ru(θ0)‖−1S and ‖·‖S denotes the spectral
norm.

D. Robustness study

Here, we analyze the robustness of the test-statistic (13)
to outliers via Hampel’s second-order influence function eval-
uated at the null distribution PX;θ0

[9]. Using (1) the test-
statistic in (13) can be written as:

Tu = NSu[P̂X], (27)

where
Su[P̂X] , dTu [P̂X]Ju[P̂X]du[P̂X]

is a statistical functional of the empirical probability dis-
tribution (2), with du[·] , E[u (X)ψu (X;θ0) ; ·] and
Ju[·] , E[u2 (X)ψu (X;θ0)ψTu (X;θ0) ; ·]. Define the ε-
contaminated probability measure:

Pε , (1− ε)PX;θ0 + εδy,
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where 0 ≤ ε ≤ 1, y ∈ Cp, and δy is the Dirac probability
measure at y. The nth-order influence function of the test-
statistic (27) at PX;θ0 is defined as:

IC(n) (y;PX;θ0
) ,

∂nSu [Pε]

∂εn

∣∣∣∣
ε=0

. (28)

This function quantifies the bias effect on the test-statistic
introduced by an infinitesimal contamination at some point
y. Under the considered settings, it can shown that
IC(1) (y;PX;θ0

) = 0. Therefore, we study the second-order
influence function:

IC(2) (y;PX;θ0
) = 2‖u (y)ψu (y;θ0) ‖2

G−1
u (θ0)

, (29)

where ‖a‖C ,
√

aHCa denotes a weighted Euclidian norm.
The test-statistic is said to be robust if IC(2) (y;PX;θ0) is
bounded over Cp. The following proposition states a sufficient
condition for boundedness of (29).

Proposition 3. The second-order influence function (29) is
bounded if there exists a positive constant C such that u (y) ≤
C and u (y) ‖y‖2 ≤ C for any y ∈ Cp.

E. Selection of the MT-function

According to Propositions 1 and 2, the asymptotic global
power and size are invariant to the choice of the MT-function
u(·). However, by Corollary 1 one sees that it controls the
asymptotic local power through the error-covariance Ru(θ0)
(21). Since the tail probability of the non-central chi-squared
distribution is monotonically increasing in the non-centrality
parameter [15], minimization of the spectral norm ‖Ru(θ0)‖S
amounts to maximization of the worst case asymptotic local
power β̄(α)

u (c) (26) for any fixed c and asymptotic size α.
Hence, we propose to choose u(·) that minimizes ‖R̂u(θ0)‖S ,
where R̂u(θ) is an empirical estimate of error-covariance (21):

R̂u(θ) , F̂−1u (θ)Ĝu(θ)F̂−1u (θ), (30)

where F̂u (θ) , −N−1
∑N
n=1 u (Xn) Γu (Xn;θ) is an esti-

mate of (23) and Ĝu (θ) is defined in (15). It can be shown
that if conditions A-3−A-6 are satisfied then R̂u(θ0)

P−−−−→
N→∞

Ru(θ0) under the local alternatives (18), where “ P−→” denotes
convergence in probability [13].

Here, the class of MT-functions is restricted to some
parametric family {u (X;ω) ,ω ∈ Ω ⊆ Cr} that satisfies con-
ditions (3) and A-2−A-6. Hence, the optimal MT-function
parameter ωopt is the minimizer of the spectral norm
‖R̂u(θ0;ω)‖S that is constructed from (30) by the same data
samples comprising the MT-GQST (13).

IV. NUMERICAL EXAMPLE

We consider the problem of testing the parameter θ of the
following non-linear data model:

Xn = Sna (θ) + Wn, n = 1, . . . , N, (31)

where {Xn ∈ Cp} is an observation process, {Sn ∈ C}
is an i.i.d. latent random process with unknown zero-mean

symmetric distribution, and a : Θ→ Cp is a known non-linear
unit-norm twice differentiable vector function. The process
{Wn} is an i.i.d. spherically invariant [10] noise process that
is statistically independent of {Sn} and satisfies the stochastic
representation Wn = AnZn, where {An ∈ R++} is an
i.i.d. process with unknown distribution and {Zn ∈ Cp} is
a proper-complex i.i.d. Gaussian process with zero-mean and
scaled unit covariance σ2

ZI with unknown scale parameter. The
processes {An} and {Zn} are assumed to be independent.

We choose the following spherical Gaussian MT-function
with a scale parameter ω ∈ R++:

u (x;ω) = exp(−‖x‖2/ω2). (32)

Notice that u (x;ω) satisfies the robustness condition stated
in Proposition 3. By (31) and (32) it can be shown that the
MT-mean (7) and the MT-covariance (8) are given by:

µ
(u)
X (θ) = 0 (33)

and
Σ(u)

X (θ) = cu (ω) a(θ)aH(θ) + ru (ω) I, (34)

respectively, where cu (ω) and ru (ω) are some strictly positive
functions of ω. Thus, by (10), (24), (33) and (34) the vector
and matrix functions ψu (x;θ) and Γu (x;θ) comprising the
test-statistic (13) and the empirical estimate of the error-
covariance (30) take the following simple forms:

ψu (x;θ) = du (ω)∇θ

∣∣xHa (θ)
∣∣2 (35)

and
Γu (x;θ) = du (ω)∇2

θ

∣∣xHa (θ)
∣∣2 , (36)

respectively, where du (ω) , cu(ω)/(ru(ω)(cu(ω) + ru(ω))).
Notice that the resulting test-statistic (13) and the empirical
error-covariance estimate (30) are independent of du (ω).

In the simulation example that follows, we compare the
detection performance of the MT-GQST (13) to the standard
non-robust GQST, the ZMNL-GQST, a robust score-type M-
test [6], [7] based on Cauchy’s loss function [17], and to the
score test which assumes that the likelihood function is known.

The GQST is obtained from the MT-GQST (13) by setting
u(·) = 1. The ZMNL-GQST is a robust extension of the GQST
that operates by applying GQST after outliers suppression,
carried out by clipping the amplitude of the observations using
a zero-memory non-linear (ZMNL) function. We use the same
ZMNL preprocessing approach that has been applied in [16] to
suppress outliers in some detection and estimation problems.

The score-type M-test we compared to is obtained from
(13) by setting u(·) = 1 and replacing ψu(x;θ) with
ψC(x;θ) , ∇θρC(r(x;θ)), where ρC(r) , log(1 +
r) is Cauchy’s loss function, r(x;θ) = ‖P⊥a (θ)x‖2/σ̂2,
and P⊥a (θ) is the projection matrix onto the null-
space of a(θ). The scale parameter estimate σ̂ is de-
fined as σ̂ , (p−1

∑p
k=1 σ̂

2
Xk

)1/2, where σ̂2
Xk

=
c2[(MAD({Re(Xk,n)}Nn=1))2 + (MAD({Im(Xk,n)}Nn=1))2] is
a robust median absolute deviation (MAD) estimate of vari-
ance [7]. The constant c , 1/erf−1(3/4) ensures consistency
of the variance estimate for normally distributed data [7].
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We considered a BPSK signal with variance σ2
S . The non-

linear vector function a (θ) we examined represents a steering
vector of p = 8 elements uniform linear array with quarter
wavelength spacing d = λ/4 = 0.25 [m] corresponding to a
near-field narrowband signal with range r and bearing ϑ. Here,
the vector parameter θ , [r, ϑ]T . By Fresnel’s approximation
[18] when 0.62(d3(p− 1)3/λ)1/2 < r < 2d2(p− 1)2/λ

[a (θ)]k = exp(j(ωek + φek
2 +O(d2/r2))),

k = 0, . . . , p − 1, where ωe , −2πd sin (ϑ)/λ and φe ,
πd2 cos2(ϑ)/(λr) are called “electrical angles” (in practice,
the O(d2/r2) term is neglected). Two types of noise distri-
butions were examined: 1) Gaussian and 2) heavy-tailed K-
distributed noise [10] with shape parameter κ = 0.75. The
sample size was set to N = 103. The signal-to-noise-ratio
(SNR), used to index the detection performance, is defined
as SNR , 10 log10 σ

2
S/σ

2
Z. The vector parameter at the null

hypothesis H0 was set to θ0 = [r0, ϑ0]T , where r0 = 1.5
[m] and ϑ0 = 0◦. The test size of all compared tests was
fixed to α = 10−2. We considered a specific local alternative
θ1 = [r1, ϑ1]T , corresponding to h =

√
N (θ1 − θ0) in

(18), where r1 = r0 + 0.01 [m] and ϑ1 = ϑ0 + 0.5◦. The
optimal width parameter ωopt of Gaussian MT-function (32)
was obtained by minimizing the spectral norm ‖R̂u(θ0;ω)‖S
of the empirical error-covariance (30) over Ω = [1, 30]. All
empirical power curves were obtained via 104 Monte-Carlo
trials.

Fig. 1 depicts the empirical and asymptotic (25) power
curves of the MT-GQST as compared to the empirical power
curves of the GQST, ZMNL-GQST, Cauchy’s score-type M-
test, and the score test. Notice that when the noise is Gaussian,
the MT-GQST, GQST, ZMNL-GQST, and Cauchy’s score-
type M-test attain similar performance. For the K-distributed
noise, the MT-GQST outperforms the GQST, ZMNL-GQST,
and Cauchy’s score-type M-test, and significantly reduces the
gap towards the score test, which unlike the MT-GQST, ne-
cessitates complete knowledge of the parametric distribution.

V. CONCLUSION

In this paper a new robust score-type test was developed
based on a transformation of the probability distribution of the
data. The proposed test was applied for testing the parameter
of a non-linear observation model in Gaussian and non-
Gaussian heavy-tailed noise. Simulation study demonstrates
significant performance improvement as compared to the non-
robust GQST and other robust detectors.
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