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Abstract—The concept of dictionary expansion has been ap-
plied in inverse problems as a means to overcome a problem
known as off-grid deviation. Within this framework and under
the assumption that the off-grid deviations obey an uniform
distribution, we propose a minimax error criterion to build
expanded dictionaries. To this end, we formulate the problem
as a polynomial regression and cast it as a second-order cone
program. A robust method for the recovery of continuous time
shifts and amplitudes from reconstructed expanded coefficients
is also presented. Empirical results with a greedy algorithm and
a convex optimization algorithm, both conceived to work with
expanded dictionaries, show that the proposed expanded basis
provides accurate reconstruction of continuous-time located events
in the presence of noise.

Keywords—Inverse problems, dictionary expansion, manifold,
optimization, sparse reconstruction.

I. INTRODUCTION

Consider a linear time-invariant (LTI) system whose impulse
response is the signal h(t) in Fig. 1a. The signal h(t−∆) is the
system response for an impulse with a delay of ∆. The problem
of deconvolving an arbitrary signal that has been outputted
by the system consists in finding a set of N impulses at the
input, each having amplitude vn and delay n∆, such that the
output c(t) can be represented as a finite combination of impulse
responses:

c(t) =
N∑
n=1

vnh(t− n∆) + e(t) (1)

where e(t) represents additive Gaussian measurement noise
with zero mean and variance σ2. This formulation is found
in many applications of inverse problems such as neuron spike
detection [1] and ultrasound nondestructive testing (NDT) [2],
[3], where the signal to be reconstructed is modelled as a limited
sum of shifted impulses with arbitrary amplitudes.

The use of a finite number of possible values for the delay
n∆ implies a discretization (sampling) of the manifold formed
in the space of acquired data by the continuous variation of the
delay parameter ∆, as explained in [4]. This sampling (along
with the signal time sampling) generates the discrete dictionary
H ∈ RM×N , where each column hn ∈ RM contains the
delayed response h(t − n∆). Considering that, Eq. (1) can be
represented as

c = Hv + e (2)

where c ∈ RM is the vector of acquired data, v ∈ RN is the
vector of amplitudes of each delayed impulse response, and
e ∈ RM is the noise vector.

The problem of finding a sparse v that explains the data c
through the model H is often formulated as

v̂ = arg min
v
‖v‖0 s.t. ‖c−Hv‖22 ≤ ε (3)

where ‖·‖0 is the `0 pseudonorm and ε defines the upper bound
for the reconstruction residual.

While the problem (3) is suitable for greedy algorithms such
as [5], a convex relaxation can be obtained substituting the
`0 pseudonorm by a `1 norm, which yields similar results in
most cases while making the problem solvable by many convex
optimization algorithms [6]. A well-known relaxed formulation
is the LASSO [7] or Basis Pursuit (BP) [8]:

v̂ = arg min
v

1

2σ2
‖c−Hv‖22 + λ‖v‖1 (4)

where λ is a parameter that controls the trade-off between the
sparsity of the solution and the fidelity of the solution to the
acquired data.

The problem known as off-grid deviation arises when some
component of the data vector c corresponds to a response
h(t− τ) with a value for τ not contemplated by the model
H, i.e., not a multiple of ∆. To cope with that phenomenon,
the acquisition model (1) can be adapted to:

c(t) =
N∑
n=1

vnh(t− (n+ τn)∆) + e(t) (5)

where τn can vary continuously within the interval [−0.5, 0.5].
Rigorously, a continuous variation would require infinitesimal
sampling on the manifold, which is not practically feasible.
To overcome this problem, dictionary expansion has been
proposed in [4]. The model matrix H is replaced by a set of K
matrices {D(k)}1≤k≤K , with the same dimensions as H, which
combined span an approximation of the continuous manifold
formed by the variation of τ . (For simplicity, we will represent
sets {x(k)}1≤k≤K as {x(k)}.) Eq. (2) is then adapted to the
expanded acquisition model

c ≈
K∑
k=1

D(k)x(k) + e (6)

where {x(k)} are the K expanded vectors of coefficients used
with {D(k)}, while the reconstruction problem (3) is general-
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Fig. 1. (a) Waveforms h(t), h(t −∆) and off-grid manifold sample h(t − 0.5∆). (b) Curves τ0, τ1 and τ2 for τ ∈ [−0.5, 0.5]. The dashed lines show the
values of the coefficients x(1)1 , x(2)1 and x(3)1 resulting from an unconstrained reconstruction with a single waveform h(t − (1 + τ)∆). (c) Ratios τ1/τ0 and
τ2/τ0 to be used in the formulation of the linear constraint set. The dashed lines, whose maxima and minima are the actual values used in the constraint set C,
are the ratios between the dashed lines of Fig. 1b.

ized to

{x̂(k)} = arg min
{x(k)}

‖x(1)‖0

s.t. ‖c−
K∑
k=1

D(k)x(k)‖22 ≤ ε, {x(k)} ∈ C (7)

where C is a convex constraint set relating each K-tuple
{x(k)n }. The formulation of C depends on the type of expansion
used. Mapping back from coefficients {x(k)n } to impulses of
amplitude vn and time shift τn is possible and also depends on
the type of expansion [4], [9].

A. Previous expansion approaches

In [4], the BP formulation (4) is adapted for expanded
dictionaries and called Continuous Basis Pursuit (CBP):

{x̂(k)} = arg min
{x(k)}

1

2σ2
‖c−

K∑
k=1

D(k)x(k)‖22 + λ‖x(1)‖1

s.t. {x(k)} ∈ C (8)

Two expansion schemes (Taylor and Polar) are proposed. The
Taylor expansion is motivated by the fact that time shifts
h(t− τ) on a sufficiently smooth function h(t) can be approxi-
mated by a linear combination of h(t) and its derivatives, while
the Polar expansion is motivated by the fact that the manifold
formed by the variation of τ on an LTI system must have both
constant `2 norm and curvature. Both geometrically conceived
approximations allow the recovered coefficients to be directly
used on the reconstruction of continuous amplitudes and time
shifts.

In [9], the Orthogonal Matching Pursuit (OMP) algorithm is
adapted to solve problem (7) and called Continuous Orthogo-
nal Matching Pursuit (COMP). An expansion scheme is also
proposed, where the continuous manifold is finely sampled,
generating a dense dictionary which then undergoes a singular
value decomposition (SVD). The resulting K principal left
singular vectors are then used as the expanded atom. Although
the SVD expansion is not motivated by a geometric model,
the recovered coefficients from the reconstructions using the
expanded dictionary are indirectly used on the recovery of
continuous amplitudes and time shifts.

B. Motivation

We assume that the off-grid deviation τ follows a uniform
distribution. In the case of ultrasound imaging, for instance,
that means that the probability of a scatterer to be located
exactly on a location corresponding to a discrete manifold
sample h(t− n∆) is the same as on any neighbouring off-grid
location corresponding to h(t−(n+τ)∆) with τ ∈ [−0.5, 0.5].
An equivalent interpretation holds for the case of neuron spike
detection: we expect the probability of a spike to occur exactly
on a modeled instant of time to be the same as in any other time.
This assumption motivates an expanded dictionary that aims
not to privilege any specific point on the continuous manifold.
Such criterion opposes, for example, the Taylor expansion,
which yields exact representations for responses modeled by
the original dictionary H at the expense of large error in
the representation of off-grid deviated responses. Instead, our
criterion ignores how the representation error evolves as τn
varies in (5) and focuses on minimizing the maximum error.

II. MINIMAX EXPANSION

A. Problem formulation

Let hn(τ) ∈ RM be the vector containing the response
h(t− (n+ τ)∆), τ ∈ [−0.5, 0.5] with appropriate sampling
rate. In this case, hn(0) corresponds to the n-th atom hn of
the original dictionary.

Our formulation is based on a polynomial regression, with τ
as the independent variable. We want to approximate deviations
within the n-th time bin hn(τ) as a polynomial composition of
{d(k)

n }:

hn(τ) ≈
K∑
k=1

τk−1d(k)
n (9)

where d
(k)
n is the n-th column of D(k). For instance, for K = 3,

we have a second degree polynomial:

hn(τ) ≈ d(1)
n + τd(2)

n + τ2d(3)
n .

In order to cast the regression problem, a fine sampling
of the off-grid deviation τ is performed uniformly within the
interval [−0.5, 0.5], yielding a set of T different deviations
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{τi}1≤i≤T . For any arbitrary expanded set {d(k)
n }, each devi-

ated waveform hn(τi) is approximated by (9) with the residual
rn,i:

rn,i = hn(τi)−
K∑
k=1

τk−1i d(k)
n . (10)

Our goal now is the definition of a set {d(k)
n } that mini-

mizes the residual norms ‖rn,i‖ for every τi drawn from our
oversampling of the manifold. One approach would be solving
a simple Least Squares (LS) problem:

{d̂(k)
n } = arg min

{d(k)
n }

√√√√ T∑
i=1

‖rn,i‖22

s.t. rn,i as in (10) ∀i ∈ {1, . . . , T}. (11)

However, recalling Section I-B, we aim to minimize the
maximum residual norm among every ‖rn,i‖, regardless of
the values obtained for the other, nonmaximal i-th residuals.
Such minimize-maximum (minimax) problem is formalized in
Eq.(12):

{d̂(k)
n } = arg min

{d(k)
n }

max
i
‖rn,i‖

s.t. rn,i as in (10) ∀i ∈ {1, 2, . . . , T} (12)

We cast the problem (12) as a Second-Order Cone Program
(SOCP) [10] with the introduction of a slack variable rmax,
whose value is constrained to be equal to or greater than every
‖rn,i‖. The resulting optimization problem is defined in Eq.
(13):

{d̂(k)
n } = arg min

{d(k)
n }

rmax

s.t.
{
‖rn,i‖ ≤ rmax
rn,i as in (10)

}
∀i ∈ {1, 2, . . . , T} (13)

We solve the SOCP (13) with CVX package for MATLAB [11].

Fig. 2 shows the plots of ‖r1,i‖ (expansion of the first atom)
obtained from the solution of the LS (11) and the Minimax
(13) optimization problems for the waveform h(t) of Fig. 1a,
with T = 21 manifold samples. The LS solution has maximum
residual norm ‖r1,21‖ = 0.093, while for the Minimax solution
the maximum value is ‖r1,16‖ = 0.068 (27% smaller).

The expansion procedure described in this section has to be
performed for every n-th atom hn. For LTI systems with proper
sampling rate, the set {d(k)

1 } resulting from the expansion of
the first atom h1 can be time-shifted in order to obtain all other
sets {d(k)

n }.

B. Constraint set

The model (9) induces the ideal constraint set

x(k)n = τk−1x(1)n ∀k ∈ {1, . . . ,K}, ∀n ∈ {1, . . . , N}. (14)

For instance, with K = 3 that means that any reconstructed
coefficients set {x(k)n } should follow the relation

(x(1)n , x(2)n , x(3)n ) = vn(τ0, τ1, τ2)
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Fig. 2. Residual norms ‖r1,i‖ from the expansion of the first atom with
LS (11) and Minimax (13) for the waveform h(t) of Fig. 1a, with T = 21
manifold samples.

where vn is the scaling factor from (5). The values for the
triplet (τ0, τ1, τ2) for τ ∈ [−0.5, 0.5] are shown in Fig. 1b.
The black dashed lines in Fig. 1b show the values of the recon-
structed coefficients x(1)1 , x(2)1 and x(3)1 from the unconstrained
reconstruction of the single impulse h1,τ of Fig. 1a using only
the first expanded set {dk1} obtained from (12). Note that, for
this controlled case, the recovered coefficients nearly follow the
ideal constraint set (14).

The ideal constraint set (14) is non-convex and nonlinear.
A simple linear, convex relaxation is obtained if we constrain
every x

(1)
n to be positive and limit minimum and maximum

ratios between x(1)n and x(k)n for 2 ≤ k ≤ K:{
x
(1)
n ≥ 0

min{0, (−0.5)k−1} ≤ x(k)
n

x
(1)
n

≤ 0.5k−1∀k ∈ {2, . . . ,K}

}
∀n ∈ {1, . . . , N}. (15)

For K = 3, this yields x(1)n ≥ 0, −0.5 ≤ x(2)
n

x
(1)
n

≤ 0.5 and

0 ≤ x(3)
n

x
(1)
n

≤ 0.25. The constraint set (15) uses minima and
maxima of the ratios represented in Fig. 1c, where the dashed
curves represent the practical ratios obtained using the dashed
curves of Fig. 1b. Our constraint set C uses those practical
maxima and minima, which allows the expanded dictionary to
represent the shifted waveforms with smaller error than with
(15).

C. Recovery of continuous time shifts and amplitudes

After solving (7) or (8) with a proper reconstruction algo-
rithm, we translate from each n-th recovered expanded coeffi-
cients {x(k)n } to time shift τn. We search for the value of τn
that maximizes the dot product of Eq. (16).

τ̂n = arg max
τ

(
K∑
k=1

x(k)n d(k)
n

)H
hn(τ) (16)

where (·)H represents the Hermitian operator. Since the dot
product is a simple and fast operation, the solution τ̂n for (16)
is found from brute force testing over a collection of responses
obtained from a fine sampling of τ ∈ [−0.5, 0.5].

The recovered coefficients are also used in Eq. (17) to de-
termine vn from the ratio between the norm of the synthesized
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Fig. 3. (a) Distance s1,τ with {d(k)
1 } as obtained with Taylor, Polar, SVD and Minimax expansion methods. (b) Signal recovered with CBP before (top) and after

(bottom) the thresholding step described in Section III-B. The dashed lines represent the threshold of 0.3. (c) Signal recovered at the 5th (top) and 6th (bottom)
iterations of COMP. The event added to the solution at the 6th iteration has amplitude 0.02, which is below the threshold of 0.3 (represented in the dashed lines),
causing the algorithm to stop and chose the solution of the 5th iteration as final solution.

recovered response and the template response hn.

v̂n =
‖
∑K
k=1 x

(k)
n d

(k)
n ‖

‖hn‖
(17)

A simpler approach motivated by the model (9) and the
ideal constraint set (14) is possible making v̂n = x

(1)
n and

τ̂n = x
(2)
n /x

(1)
n , but we found that (16) and (17) consistently

provide smaller errors in our simulations. A possible expla-
nation is the fact that the ideal constraint set is relaxed, as
described in Section II-B, allowing solutions that do not strictly
follow (14).

III. PRELIMINARY RESULTS

The following tests were performed with the waveform
h(t) ∝ e−t

2

sin(−t) shown in Fig. 1a with ∆ = 0.9s, a time
sampling ratio of 10 samples per second, a dictionary size of
N = 20 and T = 21 manifold samples per time bin. We choose
K = 3 for all expansion schemes to allow for comparison with
the Polar basis, for which K = 3 is the only possible order. For
Taylor expansion, that implies using the original waveform and
its first and second derivatives. For all alogirthms, the translation
from reconstructed coefficients to continuous amplitudes and
time shifts were performed according to each basis: see [4],
Table 1 for Taylor and Polar, [9], Table 1 for SVD and Eqs. (16)
and (17) for Minimax. All the quadratic optimization problems
within CBP and COMP were solved using the CVX package
for Matlab [11].

A. Distance to continuous manifold

We define sn,τ as the minimum distance between the con-
tinuous manifold and the subspace spanned by {d(k)

n }. It is the
norm of the difference between a shifted waveform hn(τ) and
the reconstruction using only the corresponding n-th set {d(k)

n }.
Fig. 3a shows sn,τ for n = 1 as a function of τ for the set
{d(k)

1 } as obtained with Taylor, Polar, SVD and Minimax bases.
Note that the Taylor expansion yields an exact representation of
the on-grid waveform (when τn = 0) and privileges cases where
τn is very small; the Polar expansion represents exactly the
cases where τ = 0 or τ = ±0.5, privileging the neighbourings
of those cases; and the SVD expansion yields a better average
error along all the interval τ = [−0.5, 0.5] but still results in a

large discrepancy between minimum and maximum distances.
The Minimax expanded set yields a curve similar to that of
SVD but with minimum maximum distance, which provides a
more accurate representations near the extremes τ = ±0.5.

B. Misses and false positives

We simulated the acquisitions of 100 signals, each con-
sisting of 5 shifted copies of h(t) with continuous time shifts
drawn from a uniform distribution from 0s to 17s and unitary
amplitudes. White Gaussian noise was added with signal-to-
noise ratios (SNR) from 30dB to 10dB with a step of 5dB. The
reconstructions from all simulated signals were performed with
CBP and COMP using Taylor, Polar, SVD and Minimax bases.

CBP formulation (8) uses a `1 norm penalization which,
differently from the `0 pseudonorm of COMP, does not force
solutions to be sparse in a strict sense, i.e., does not limit the
number of recovered events, allowing some events of very small
amplitude to participate in the solution. For this reason, we
follow [9] and impose a thresholding step after the recovery
with CBP, discarding events with amplitude less than 0.3.
Fig. 3b shows an example of a recovered signal before and
after the thresholding.

Following the same principles of OMP [5], COMP greedily
adds expanded sets to the dictionary, yielding a solution with
j events at each j-th iteration, until the stop criterion is met.
From the prior knowledge on the fact that all original events
have unitary amplitude, the stop criterion we use with COMP
is based on the amplitude attributed to the newly added event
at each iteration: when this amplitude is below a threshold of
0.3, the algorithm stops iterating and the result of the previous
iteration is considered as the final solution. Fig. 3c shows
an example where the event added at the 6th iteration has
amplitude below the threshold, causing the algorithm to stop
and chose the solution of the 5th iteration.

Following [4], a recovered event is matched to an original
event if the shift between them is not greater than a limit of
0.5∆ and no other recovered event is at a shorter shift from the
original event. In this case, a hit is computed. Unmatched orig-
inal events are computed as misses, while unmatched recovered
events are computed as false positives.

Fig. 4a shows a plot of misses computed from the 100
reconstructions (500 simulated events) using Taylor, Polar, SVD
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Fig. 4. Results from reconstructions of 100 signals, each consisting of 5 shifted copies of the template response h(t) ∝ e−t
2

sin(−t) shown in Fig. 1a, using
CBP and COMP with Taylor, Polar, SVD and Minimax bases. (a) Total number of misses, out of 500 original events. (b) Total number of false positives. (c)
Average error between time shifts of original and recovered events for computed hits. A time bin of ∆ = 0.45s was used.

and Minimax bases with COMP and CBP. The Minimax basis
provided the smallest number of misses for both algorithms and
the best global result was obtained with CBP.

Fig. 4b shows a plot of false positives computed from the
same set of reconstructions. For COMP, the Polar and Minimax
bases have shown similar results, alternating as providers of the
best result for this criterion. However, a sensible increase in the
number of false positives is obtained with Minimax when we
change from COMP to CBP.

C. Continuous time shift error

From the same reconstruction results of Section III-B we
computed the time shifts between the original and the recon-
structed events continuous locations for every computed hit. The
averaged values for the reconstructions with Taylor, Polar, SVD
and Minimax bases using both CBP and COMP are shown in
Fig. 4c. The Minimax basis provided the smallest errors with
COMP and was the second best with CBP.

IV. DISCUSSION

We presented a Minimax formulation for the creation of
expanded dictionaries in inverse problems. The criterion is
motivated by the assumption that the off-grid deviations follow
a uniform distribution, meaning that we search for the “fairest”
distribution of the representation error along the manifold
formed by the variation of the delay parameter τ . We also
presented a SOCP formulation to reach that criterion, making
the problem solvable by off-the-shelf convex optimization algo-
rithms, as well as a robust method for the recovery of contin-
uous time shifts and amplitudes from reconstructed expanded
coefficients.

Our first empirical results show that the Minimax expansion
scheme is competitive with earlier proposed Polar, Taylor and
SVD schemes, especially within the greedy algorithm COMP,
which is a generalization of the OMP algorithm for expanded
dictionaries. This encourages further investigations on practical
problems where the problem of off-grid deviation is present.
For instance, the Taylor and the Polar bases have been used,
respectively, in neuron spike identification [1] and compressive
sensing of frequency-sparse signals [12].

Although the expansion process of Section II was derived
for the LTI case, it is also suitable for time-variant (or, more
generally, shift-variant) systems as long the direct model h(t, τ)
is known. A typical application where shift-variant models
arise is ultrasound NDT, where shift-variance is introduced by
dispersion and attenuation. Recent efforts on the construction
of dictionaries that contemplate those phenomena have been
recently reported, for instance [2] and [3].
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