
Secure Communication Protocol for a
Low-Bandwidth Audio Channel

Waldemar Berchtold, Patrick Lieb, Martin Steinebach
Fraunhofer Institute for Secure Information Technology

Rheinstraße 75, 64295 Darmstadt, Germany
Email: {berchtold, lieb, steinebach}@sit.fraunhofer.de

Abstract—Data transmission over an inaudible audio channel
describes a low-bandwidth alternative to exchange data between
devices without any additional infrastructure. However, the
established communication channel can be eavesdropped and
manipulated by an attacker. To prevent this, we introduce a
tailored protocol with smallest possible overhead to secure the
communication. The proposed protocol produces an overhead
of 256 bits for the handshake message for setting up the first
conversation with each partner. Further, the protocol produces
dmsg len/64e ∗ 3 + 67 bits overhead for each message. The
overhead of 67 bits at the beginning of each message corresponds
to one second transmission time with the used FSK modulation in
the frequency range of 16kHz-20kHz. The additional overhead of
3-bit per 64-bit sequence poses a relation of 95% message to 5%
overhead. For the implementation of the protocol, algorithms
implemented in the Crypto++ library such as SHA-256, CCM
and PBKDF2 have been used.

I. INTRODUCTION

The communication over an inaudible high-frequency audio
channel is a convenient way to exchange data since only
microphones and speakers are required to establish an au-
dio communication channel. In general, location-based audio
communication applications do not enforce any security mech-
anisms. Due to the absence of a secure audio communication
protocol, applications requiring security usually only send a
data identifier over the audio channel. This identifier is used to
establish a secure out-of-band channel to exchange all further
data. However, since the data is commonly fairly small, it is
reasonable to directly exchange the data over the audio channel
instead. In order to assure the security of the communication
over the low-bandwidth audio channel, a tailored protocol is
required [1]. The majority of the mobile devices can usually
only process frequencies up to 20kHz. However, the sensitivity
of the human ear is very low in the frequency range of 16kHz-
20kHz [2]. That is why the communication protocol operates
on this frequency range.There have already been introduced
some high-frequency audio communication applications and
protocols such as Way2ride [3], Aerolink [4], shopKick [5],
SmartGuide [6], Signal360 [7], Infosound [8], SilverPush [9],
SlickLogin [10] and Chirp [11]. However, some of these
techniques do not state if or how they use cryptographic
mechanisms in order to secure their communication or they do
not use security mechanisms at all. Only the inventors of Chirp
describe that their technique allows a secure communication
[11] but they do not explain how security is enforced. Since
only [6], which does not use any cryptographic techniques,

describes an open standard and all other protocols are pro-
prietary, it is hard to verify wether their communication is
actually secure.

Audio channels can also be used for secure pairing of
devices. The authors of [12]–[15] use audible sounds when
setting up an audio communication channel. However, they
assume that the audio channel can only be eavesdropped
but not be manipulated. Based on their assumptions, the
audio channel would always be authenticated. In fact, this
is not generally the case. Any possible attacker could use a
directional microphone to eavesdrop the audio communication
and a directional audio source to manipulate the channel. That
is why this work introduces a data communication protocol
that enables to securely exchange data over an audio channel.
The proposed protocol uses open standard and open source
cryptographic algorithms.

II. ANALYSIS

The requirements of the resulting protocol are exactly
defined: In order to establish a secure communication, the
two communicating parties can exchange passwords before
the start of the communication. In addition, both parties have
the capability to show a six-digit alphanumeric value. At least
one party has both display capabilities for a six-digit number
and input capabilities. However, the computing power of both
parties is also limited. The protocol is supposed to be able to
run on resource-constrained devices including but not limited
to embedded systems.

Currently, properties of the underlying modulation enable
to transmit only 64 bits per second reliably over the audio
channel. This is due to the used basic version of the frequency-
shift-keying modulation (FSK) this work is based on. The
used frequency range is between 16kHz and 20kHz. Thus, the
bandwidth of the audio communication channel is extremely
limited.

Based on this, the protocol requirements are derived. Ev-
idently, the secure communication protocol has to provide
confidentiality, integrity and authenticity. Moreover, it must
not rely on any additional infrastructure, which means that
the two parties cannot communicate with a trusted third party
or other public key infrastructures over a different channel.
As the current implementation of the signal modulation can
only transmit up to 64 bits per second, the overhead produced
by the protocol should be as small as possible. The number

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2270



of handshake messages has to be as little as possible as
well since it takes quite long until a device can switch
from receiving to transmitting. Additionally, the protocol must
support a communication between two parties with equal
roles. Therefore, both parties must be able to initiate the
communication, assuming that the initiating party has input
capabilities and can display a six-digit alphanumeric value.
Lastly, all used algorithms to ensure the security standard
should be open-source which means they should be publicly
available and royalty-free.

As explained in section I, known audio communication
protocols cannot be used in this work since they either do not
enforce any cryptographic algorithms or they are proprietary
and not published. Common data communication protocols
can also not be used. Infrastructure-based communication
protocols such as WPANs, WLANs and LoRaWANs need
either additional devices or their communication is based on
coordinator nodes that are superior to normal nodes [16]–[18].
Other popular communication protocols are non-infrastructure-
based protocols such as NFC, RFID or Bluetooth. The standard
of NFC does not include any cryptographic protocols to protect
against eavesdropping, data modification and Man-In-The-
Middle (MITM) attacks [19]. Common RFID communication
is reader-based which means that the reader has to activate
the tag in order to communicate with it [20]. Bluetooth allows
the secure communication between two devices with equal
roles. In combination with the Elliptic Curve Diffie-Hellman
(ECDH) key exchange protocol, it improves the security by
protecting against passive eavesdropping and MITM attacks
during pairing [21]. Albeit, it makes use of additional authen-
tication stages since the public keys are exchanged over an
insecure channel during the execution of the ECDH proto-
col. Unauthenticated ECDH does not guarantee any security
against MITM attacks. Thus, Bluetooth requires the exchange
of at least five messages during the handshake [22]. This
is still too much overhead for the secure audio channel
communication protocol.

Even though the aforementioned protocols are not appli-
cable to the application scenario, some of their techniques
are still very helpful for the development of the secure audio
communication protocol. The analysis of the state-of-the-
art protocols has revealed that cryptographic algorithms are
necessary to establish a secure communication. In this con-
text, authenticated encryption algorithms have been analyzed.
They ensure confidentiality, authenticity and integrity of the
exchanged messages. Two common algorithms are Counter
with CBC-MAC (CCM) and Galois/Counter Mode (GCM).
Even though GCM is more efficient than CCM, the CCM in
combination with AES (AES-CCM) has still been selected
as authenticated encryption algorithm for our protocol as the
security of GCM is significantly decreased if it is used with
small tags [23]. AES-CCM does not have this security flaw
and can be securely used with authentication tags as short as
32 bits (AES-CCM-32) if the restrictions given by [24] are
satisfied [25], [26].

In order to setup a secure communication channel with-

out any additional infrastructure beside a microphone and
loudspeaker, pre-shared passwords can be used. However,
they must not be directly used as encryption keys. Rather,
a password-based key derivation function is required. The
Password-Based Key Derivation Function 2 (PBKDF2) has
been chosen as a key derivation function since it is well
established and NIST-approved [27]. It is proven to be secure
if the number of iterations of PBKDF2 is set to the highest
tolerable value [28]. Lastly, the analysis has shown that it is
necessary to verify the integrity of the handshake messages.
That is why SHA-2 is selected as the cryptographic hash
function to compute a hash over the handshake message, since
it is very fast to compute and has been proven to be secure
[29].

III. PROPOSED PROTOCOL

The proposed protocol allows the secure communication
between two parties, the party that initiates the communication
to transmit a message is denoted transmitter; the other party
is labeled as receiver. It is divided into three stages: password
agreement, handshake and data transmission. If the password
is not predefined because of the lack of input capabilities, the
receiver generates a password by means of the password gen-
erator. The password is required since key exchange protocols
such as ECDH need to be authenticated in order to be secure
against MITM attacks. These authentication stages produce
too much overhead during the handshake. That is why the
password generator is implemented in order to create the root
of trust. In general, security is assured only if the password
generator is used. The generated password has to be typed into
the receiver. Even if the password is predefined and displayed
on one of the devices, it is strongly encouraged to use the
password generator to generate this password in advance.
Otherwise, security cannot be guaranteed. By default, the
password generator randomly selects eight ASCII characters
ranging from 0x20 to 0x7E. These values consist of all
printable characters of the ASCII table including all upper and
lower case, special characters, digits and the space character.
If stronger security is required, the parties can agree on a
longer password by increasing the desired password length. As
soon as both parties have stored the password, the handshake
stage can take place. In the following, the handshake and data
transmission will be explained on the transmitter’s side. The
receiver’s side can then be easily derived.

A. Transmitter

At first, the transmitter has to reset its local 32-bit counter.
The counter indicates how many messages have already been
sent. Since the handshake establishes a new key together with
a new random explicit nonce, the counter has to be reset to its
initial value 0x00000001. The transmitter then generates a
random 256-bit salt. This salt defines the handshake message
that has to be sent to the receiver in the later process.
Additionally, the salt and the password that has been set in
the previous step serve as input for the key derivation function
PBKDF2 in which the Keyed-Hash Message Authentication

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2271



Reset Counter

Generate
Handshake

Split into Packets

Add
Information Bits

Modulate
Packets

Transmit all
Packets

Generate Handshake

Password

Salt

Generate
Random Salt

PBKDF2-HMAC-SHA-256

Key Explicit
Nonce

Handshake
Message

Figure 5.2: Handshake Generation in Transmitter

Receiver

At the beginning, the receiver makes a simple DoS check, as can be seen in Figure 5.3. If there have already been
transmitted x handshake messages in the last s seconds, the receiver times out for t seconds and rejects all incoming
messages. Possible values for x , s and t to prevent DoS attacks will be explained in Chapter 6.5.

5.2 Handshake 43

Fig. 1: Transmission of Handshake

Code in combination with SHA-256 (HMAC-SHA-256) is
used as pseudo-random function. The function outputs a 128-
bit key and a 32-bit explicit nonce. Both values have to
be stored at the transmitter for later use. After the 256-bit
handshake message has been generated, it must be split into
four 64-bit packets. This is due to the limitations of the signal
modulation implementation used in this work, since only
small packets can be transmitted. Before the modulation of all
packets can take place, three information bits are prepended
to each packet. The first information bit is the Even Message
(EM) information bit. It describes if the index of the current
packet is even or not. In general, the very first packet of each
message has the index zero. Thus, the EM bit of the very first
packet of every message is always set. The next information
bit Last Message (LM) defines if this packet is the last packet
of the message. Lastly, the information bit HS announces a
Handshake Message. Hence, the total size of each packet is
67 bits. Lastly, all packets are modulated and transmitted by
playing audio signal on the speaker. Figure 1 shows the whole
handshake stage of the transmitter.

In order to verify the integrity of the handshake message
to prevent against MITM attacks, a checksum computation
of the handshake message is required. Thus, both transmitter
and receiver take the 256-bit handshake message and compute
a 256-bit hash value by means of the SHA-256 algorithm.
They then truncate the hash down to 30 bits and transform the
truncated hash into an alphanumeric value. The alphanumeric
value space consists of all digits from zero to nine and all
capital letters of the English alphabet excluding I, O, Q and
U: alpha ∈ {0,...,9,A,...,Z} \ {I,O,Q,U}, where 0
is the lowest value and Z describes the highest value: 0 := 0
and Z := 32. The set {I,O,Q,U} is excluded because I looks
similar to 1, while O can be confused with 0 or Q, and V does
not differ much from U. For that reason, the alphanumeric
space has 32 characters and a six-digit value can describe any
number from zero to 230 − 1. This technique has also been
explained and evaluated in the paper of Kainda et al. [30].

Encrypt Message

Split into
Packets

Add
Information Bits

Modulate Packets

Transmit all
Packets

Increase Counter

Encrypt Message

AES-CCM-32

Explicit Nonce

Counter

Nonce

Message

Key

Counter

Encrypted
Message

Authentication
Tag

Figure 5.5: Transmission with Authenticated Encryption Based on AES-CCM

After the authenticated encryption, AAD, ciphertext and authentication tag are concatenated to one message. Subse-
quently, the whole message has to be split again into 64-bit packets and the information bits that will be described in
Chapter 5.5 are prepended to each packet. Then, the message will be modulated and all 67-bit packets will be transmit-
ted by playing the signal on the speakers of the transmitting device. In the last step of the transmission, the transmitter
increases its counter variable. Figure 5.5 illustrates the flow of the transmit message module introduced in Figure 5.1.

Receiver

At first, the receiver performs the same simple DoS check explained in Chapter 5.2. If this check passes, the receiver ob-
tains all 67-bit packets and assembles the message by truncating the information bits and concatenating all packets. Now,
the replay check takes place; during which the receiver checks if the counter value of the message is higher or equal to
its own local counter value. Only if this check passes as well, it will verify if the message describes a handshake message
by reading the information bits. Otherwise, the whole message will be discarded and the receive message module will be
aborted.

If the information bits announce a handshake message, the receiver processes the handshake and resets the counter
as explained in Chapter 5.2. If no handshake is announced, the decryption takes place by means of the AES-CCM-32
algorithm which requires the secret key, the nonce and the ciphertext as input. The secret key is defined by the key that
has been generated during the handshake together with the explicit nonce described in Chapter 5.2. This explicit nonce
gets concatenated with the counter value of the message in order to form the required nonce. The whole encrypted
message including the counter, the encrypted message itself and the authentication tag serve as the ciphertext input to
the AES-CCM-32 algorithm.

46 5 Secure Audio Communication Protocol with Small Overhead

Fig. 2: Encrypted and Authenticated Transmission

After the computation has succeeded, the alphanumeric value
is shown on the displays of both devices. The users of both
devices now have to confirm that the alphanumeric values are
the same. If one device does not have any input capabilities,
the confirmation is only unilateral on the other device. At least
one device has to have input capabilities in order to confirm
the checksum value.

After the handshake message has been exchanged and the
128-bit key and 32-bit explicit nonce have been computed by
means of the key derivation function, the actual transmission
of authenticated and encrypted messages can take place. All
messages are encrypted by means of the AES-CCM-32 algo-
rithm which requires four inputs: secret key, nonce, plaintext
and Additional Authenticated Data (AAD). The key generated
by the key derivation function serves as the secret key, while
the nonce is the concatenation of the 32-bit explicit nonce
and the 32-bit counter. The counter is also the input for the
AAD. Evidently, the message defines the plaintext. After the
authenticated encryption has taken place, AAD, ciphertext and
authentication tag are concatenated to one message. Subse-
quently, the whole message has to be split again into 64-bit
packets and the information bits are prepended to each packet.
Then, the message will be modulated and all 67-bit packets
will be transmitted by playing the signal on the speakers of
the transmitting device. In the last step of the transmission, the
transmitter increases its counter variable. Figure 2 illustrates
the flow of the data communication at the transmitter’s side.

All non-handshake messages are authenticated and en-
crypted. In general, a message consists of three parts. The
first is the 32-bit counter. It is authenticated and describes
the current index of the message. Additionally, it is used to
prevent replay attacks and to check if a new handshake has to
take place. This is followed by the authenticated ciphertext.
Its length is defined by n ∗ 64 bits with n > 0. Possible
maximum message lengths will be explained in section IV.
The message is completed by the 32-bit authentication tag
which is appended to the ciphertext. All messages need to

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2272



have a length which is a multiple of our packet size of 64
bit and are padded otherwise. Due to the fact that counter
and authentication tag add up to 64 bits and every packet
needs three information bits, the total overhead is given by
64+3∗(64+n∗64)/64 = 67+3∗n bits. The transmission of
modulated packets works bidirectional. The reception of every
packet is confirmed by the receiver with a confirmReceived
message in order to tell the transmitter when it can send
the next packet. There are two types of confirmReceived
messages. confirmReceivedEVEN is sent after the receiver has
received a message in which the EM bit is set, whereas
confirmReceivedODD is sent if the EM bit is not set.

B. Receiver

The protocol flow of the receiver can be analogously derived
from the transmitter’s side. The only difference is a simple
Denial-of-Service (DoS) check before a received message
will be processed. If there have already been transmitted x
handshake messages in the last s seconds, the receiver times
out for t seconds and rejects all incoming messages. Possible
values for x, s and t are discussed in section IV. Otherwise,
all eight 67-bit packets will be accepted and assembled to
one message. After that, a replay check is called in order to
increase security. Only if this check passes as well, the receiver
will read the information bits. Otherwise, the whole message
will be discarded and the ’receive message’ module will be
aborted. If the HS information bit is set, the receiver processes
the handshake by calling the PBKDF2-HMAC-SHA-256 on
the handshake message and the password. Additionally, it
resets its counter. If the HS bit is not set, the receiver has to
decrypt the encrypted message by means of the AES-CCM-32
algorithm. As soon as the message is encrypted, the receiver
increments its counter value. If the AES-CCM-32 algorithm
fails, the message and its counter value get discarded.

IV. SECURITY EVALUATION AND DISCUSSION

This work assumes that any adversary is able to perform
an MITM attack on the communication channel by means of
high-tech devices such as a directional microphone. A secure
communication protocol has to ensure four security properties:
confidentiality, integrity, authenticity and availability [31].
Confidentiality and authenticity are ensured by the authenti-
cated encryption algorithm AES-CCM-32. The authenticity of
the messages also implies their integrity. Availability is hard to
ensure by the protocol. It should be ensured by the design of
the high-frequency audio channel. As a result, the availability
of the channel is out of the scope of this work. However,
the protocol offers some means to ensure the availability of
the devices by preventing against DoS attacks. A handshake
timeout t after x handshake messages received within the last
s seconds has been introduced to prevent from unnecessary
PBKDF2-HMAC-SHA-256 computations since the shared key
is derived by the password-based key derivation function
PBKDF2-HMAC-SHA-256. The selection of appropriate t,
x and s values describes a trade-off between usability and
security. Possible values for the transmission speed of 64 bits

per second are x = 4, s = 20, t = 40 or x = 10, s = 60,
t = 120. Both suggestions for the three parameters block DoS
attacks for two thirds of the time.

Since availability is out of scope of this work, only the use
of PBKDF2, CCM and SHA-2 is evaluated in this context.
The analysis by Visconti et al. [28] has shown that PBKDF2
is suitable to derive secure keys if the passwords have a high
entropy and the number of iterations of PBKDF2 is set to the
highest tolerable value. In general, the entropy of user-selected
passwords is not high enough if short passwords are allowed or
there is no complex password policy that enforces more com-
plex passwords [32]. The proposed protocol circumvents this
problem by using a password generator that generates random
passwords. The password entropy of the minimum eight-digit
password generated by the password generator based on 94
ASCII characters can be stated with approximately 948 ≈ 252.
However, it is also difficult to set the number of iterations
to the highest tolerable value since the protocol should also
be able to run on resource-constrained devices. Having more
than 18,000 iterations is not recommended since older mobile
devices such as a Samsung Galaxy S3 would take more than
1s to perform the PBKDF2 computation. Moreover, there will
be collisions in the explicit nonce after about 216 PBKDF2-
HMAC-SHA-256 calls. Assuming that the precomputation
attack described in [33] is feasible, the PBKDF2-HMAC-
SHA-256 function should not be called more than 216 times.

Furthermore, the analysis by Jonsson and Rogaway [25],
[26] has revealed that AES-CCM-32 is secure if the maximum
number of unauthenticated messages MaxErr that are allowed
before the key will be retired is limited to the smallest
possible value. In this context, a trade-off between security
and unnecessary handshakes has to be found since there might
be transmission errors in the communication channel. The
lower the MaxErr value, the more secure the protocol but also
the more the false negatives that would lead to unnecessary
additional handshakes. The author of [24] states that the block
cipher algorithm of AES-CCM-32 should not be called more
than 261 times under the same key. In order to increase
the security assurance, this limit is decreased to 250 times.
Therefore, there must not be more than 249 blocks sent over
the channel encrypted with the same key. In AES-CCM-32,
the maximum plaintext length and the length of the complete
nonce used as input depend on each other. Since the complete
nonce is 64 bits long, the maximum plaintext length must not
be longer than 259 bits which is 64 petabytes.

In addition, an analysis of the checksum verification has
been conducted. Since the checksum verification is based on
a 30-bit hash computed over the handshake message, collisions
are expected after about 215 handshakes. In order to prevent
this, the two parties have to agree on a new password after
at most 212 handshakes. The checksum verification follows
the compare-and-confirm approach described by Kainda et al.
[30]. They have shown that this approach provides the best
usability; however, it is subject to security failures. There
are other approaches such as copy-and-enter or barcodes that
are more secure. Albeit, they decrease the usability too much

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2273



or do not fulfill the requirements of the application scenario
introduced in this work.

In order to limit the attack possibilities, the message limit
is set to 216 messages. Based on this message limit, the max-
imum message length has been derived as 240 bits. However,
this limit might be too loose for the current transmission speed
of 64 bits

s . That is why a message length of at most 215 bits
is recommended. In total, 228 messages can be sent over the
audio communication channel before the users have to agree
on a new password.

The open-source cryptographic library Crypto++ version
5.6.5 [34] was used for the implementation of the protocol
to secure the validity and correctness of the cryptographic
algorithms.

V. CONCLUSION

This work introduced a protocol for secure communica-
tion over an inaudible audio channel with smallest possible
overhead for both handshake and data transmission. With the
proposed protocol the low-bandwidth audio channel can be
used to securely exchange data. The handshake consists only
of a single 256-bit message which is used to generate the
authenticated encryption key by means of the password-based
key derivation function PBKDF2-HMAC-SHA-256. In order
to verify the handshake message and thus prevent MITM
attacks the checksum is calculated with SHA-256. The pre-
shared password together with the nonce and counter steer
the AES-CCM-32 encryption to ensure the confidentiality and
authenticity of the data. Together with the counter and three
information bits that are required for transmission, the message
overhead sums up to only 67 bits plus three bits per 64 bit
block.

REFERENCES

[1] P. Lieb, “Secure communication over an audio channel,” Master’s thesis,
Technische Universität Darmstadt, Germany, 11 2016.

[2] J. Lee, S. Dhar, R. Abel, R. Banakis, E. Grolley, J. Lee, S. Zecker,
and J. Siegel, “Behavioral hearing thresholds between 0.125 and 20 khz
using depth-compensated ear simulator calibration,” Ear and hearing,
vol. 33, no. 3, p. 315, 2012.

[3] Verifone, “Verifone way2ride,” http://www.verifone.com/industries/taxi/
way2ride/, [Online; accessed 28-February-2017].

[4] M. Knoll, “Mobile payment startup clinkle aims to
change how we pay for things,” http://trendblog.net/
mobile-payment-startup-clinkle-aims-to-change-how-we-pay-for-things/,
[Online; accessed 28-February-2017].

[5] S. Sachs, “Ultrasound whispers beat out gps,” http://teleautomaton.com/
post/1478772622/ultrasound-whispers-beat-out-gps, [Online; accessed
28-February-2017].

[6] P. Bihler, P. Imhoff, and A. B. Cremers, “Smartguide - a smartphone
museum guide with ultrasound control.” in ANT/MobiWIS, ser. Procedia
Computer Science, vol. 5. Elsevier, 2011, pp. 586–592.

[7] “Signal360,” http://www.signal360.com/, [Online; accessed 28-
February-2017].

[8] Yamaha Corporation, “New way of transmitting information by audio
frequency: Yamaha and fuji television agree to business alliance toward
realizing new smartphone services that utilize infosound,” https://archive.
yamaha.com/en/news release/2012/20120613a.html, [Online; accessed
28-February-2017].

[9] Hack Cave: The Root of Security, “Silverpush code : Tv ads can sent
& execute ultrasonic secret commands to smartphone!” http://www.
hackcave.net/2015/11/silverpush-code-tv-ads-can-sent-execute.html,
[Online; accessed 28-February-2017].

[10] BBC News - Technology, “Google buys sound authentication firm
slicklogin,” http://www.bbc.com/news/technology-26222424, [Online;
accessed 28-February-2017].

[11] Chirp, “Chirp: The internet of sound has arrived,” http://www.chirp.io/,
[Online; accessed 28-February-2017].

[12] C. Soriente, G. Tsudik, and E. Uzun, “Hapadep: Human-assisted pure
audio device pairing,” in Proceedings of the 11th International Con-
ference on Information Security, ser. ISC ’08. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 385–400.

[13] W. R. Claycomb and D. Shin, “Secure device pairing using audio,”
in 43rd Annual 2009 International Carnahan Conference on Security
Technology, Oct 2009, pp. 77–84.

[14] M. T. Goodrich, M. Sirivianos, J. Solis, C. Soriente, G. Tsudik, and
E. Uzun, “Using audio in secure device pairing,” International Journal
of Security and Networks, vol. 4, no. 1-2, pp. 57–68, 2009.

[15] Y. S. Kim, S. H. Kim, and S. H. Jin, “Srs-based automatic secure
device pairing on audio channels,” in 2010 International Conference
for Internet Technology and Secured Transactions, Nov 2010, pp. 1–6.

[16] J. Adams, “An introduction to ieee std 802.15.4,” in 2006 IEEE
Aerospace Conference. IEEE, 2006.

[17] C. Yang and G. Gu, “Security in wireless local area networks,” in Wire-
less Network Security: Theories and Applications. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 39–58.

[18] LoRa Alliance, “Lorawan specification,” LoRa Alliance, 2015.
[19] G. V. Damme and K. Wouters, “Practical experiences with nfc security

on mobile phones,” in Proceedings of the RFIDSec’09 on RFID Security,
2009.

[20] C. C. Tan and J. Wu, “Security in rfid networks and communications,”
in Wireless Network Security: Theories and Applications. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 247–267.

[21] J. Padgette, K. Scarfone, and L. Chen, Guide to Bluetooth Security:
Recommendations of the National Institute of Standards and Technology
(Special Publication 800-121 Revision 1). USA: CreateSpace Indepen-
dent Publishing Platform, 2012.

[22] Bluetooth Special Interest Group, “Simple pairing whitepaper,” http://
mclean-linsky.net/joel/cv/Simple%20Pairing WP V10r00.pdf, 2006.

[23] N. Ferguson, “Authentication weaknesses in gcm,” http:
//csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/
CWC-GCM/Ferguson2.pdf, 2005, [Online; accessed 28-February-
2017].

[24] M. Dworkin, SP 800-38C. Recommendation for Block Cipher Modes
of Operation: The CCM Mode for Authentication and Confidentiality.
Gaithersburg, MD, United States: National Institute of Standards &
Technology, 2004.

[25] J. Jonsson, On the Security of CTR + CBC-MAC. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 76–93.

[26] P. Rogaway, “Evaluation of some blockcipher modes of operation,”
Cryptography Research and Evaluation Committees (CRYPTREC) for
the Government of Japan, 2011.

[27] M. Turan, E. Barker, W. Burr, and L. Chen, SP 800-132. Recommenda-
tion for Password-Based Key Derivation: Part 1: Storage Applications.
Gaithersburg, MD, United States: National Institute of Standards &
Technology, 2010.

[28] A. Visconti, S. Bossi, H. Ragab, and A. Calò, On the Weaknesses of
PBKDF2. Springer International Publishing, 2015, pp. 119–126.

[29] R. Sobti and G. Geetha, “Cryptographic hash functions: a review,” IJCSI
International Journal of Computer Science Issues, vol. 9, no. 2, pp. 461–
479, 2012.

[30] R. Kainda, I. Flechais, and A. W. Roscoe, “Usability and security of out-
of-band channels in secure device pairing protocols,” in Proceedings of
the 5th Symposium on Usable Privacy and Security, ser. SOUPS ’09.
New York, NY, USA: ACM, 2009, pp. 11:1–11:12.

[31] R. J. Sutton, Secure Communications. John Wiley & Sons, Ltd, 2002.
[32] M. Weir, S. Aggarwal, M. Collins, and H. Stern, “Testing metrics

for password creation policies by attacking large sets of revealed
passwords,” in Proceedings of the 17th ACM Conference on Computer
and Communications Security, ser. CCS ’10. New York, NY, USA:
ACM, 2010, pp. 162–175.

[33] D. Whiting, R. Housley, and N. Ferguson, “Counter with cbc-mac
(ccm),” Internet Requests for Comments, RFC Editor, RFC 3610,
September 2003, http://www.rfc-editor.org/rfc/rfc3610.txt.

[34] W. Dai, “Crypto++ library, 5.6.5 release,” https://www.cryptopp.com/
release565.html, [Online; accessed 28-February-2017].

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2274


