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Abstract—The evaluation and prediction of volcanoes activ-
ities and associated risks is still a timely and open issue. The
amount of volcano-seismic data acquired by recent monitoring
stations is huge (e.g., several years of continuous recordings),
thereby making machine learning absolutely necessary for their
automatic analysis. The transient nature of the volcano-seismic
signatures of interest further enforces the need of automatic
detection and classification of such events. In this paper,
we present a novel architecture for automatic classification
of volcano-seismic events based on a comprehensive signal
representation with a large feature set. To the best of our
knowledge this is one of the first attempts to automatize the
classification task of these signals. The proposed approach
relies on supervised machine learning techniques to build a
prediction model.

I. INTRODUCTION

With the progressive ease to gather data, the scientific
community has been increasingly interested into methods
and tools for automatic classification. In particular, the so-
called Big Data phenomenon has highly impacted mon-
itoring with an ever increasing number of observatories
devoted to collect, process and mine recorded signals for
extracting relevant information from the environment. This
is the case in Geophysics where the number of seismic
observatories is increasing due to the greater attention given
to the monitoring of seismic events, since they are precursors
of volcanic eruptions, tsunamis or earthquakes. The human
and economical impact that such events have is dreadful,
making monitoring and risks evaluation a societal concern.
In the case of volcanoes monitoring, dedicated observatories
have started to record, store and transmit continuous signals
for only a few years. Tools to automatically process existing
databases and analyze real-time recordings are still rare and
not fully operational.

The aim of this paper is to present an efficient and new
architecture for the automatic classification of seismic events
produced by a volcanic activity. The main contributions of
this work are: (i) the evaluation of a large feature set used
to describe the signals of interest: considered features have
been gathered from an extensive state of the art in various

signal processing domains, such as music, environmen-
tal noises, bioacoustic, transient or speech representation,
classification. (ii) Furthermore, features are extracted from
several representations of the signal, such as signal energy,
time, frequency, frequency of frequency. (iii) the design
of an automatic supervised classification procedure apt to
process large datasets of seismic signals.

This paper is organized as follows. Section II recalls
related works. Section III presents the proposed architecture.
Experimental settings, results and results analysis are
exposed in Section IV. Finally conclusions and perspectives
are reported in Section V.

II. RELATED WORKS

To the best of our knowledge, there are no established
procedures for the classification of volcano-seismic data.
However, several attempts of automatic classification have
been proposed in the literature addressing acoustic signals
in other scientific domains (e.g., speech processing). The
typical architecture relies on performing first a feature
extraction step, which provides a description of the acquired
signals and then a learning phase that is the core of the
automatic classification procedure [1].

This work mainly focuses on the first step. Specifically,
we consider for the classification of volcano-seismic data,
an extensive set of features proposed in several fields
such as seismic [2], acoustics (environmental, bio-acoustics,
animal [3], [4], [5], [6] or anthropic [7] ambient and/or
landscape noises), speech and speech analysis [8], [9], [10]
and music signals [11]. More in details, we take into account
features such as those proposed in the recent work [2]
where seismic waves are represented by few classically
features such as duration time, statistical descriptors (skew-
ness, kurtosis, statistics ratios) and fundamental frequen-
cies. In classification of transient sonar sounds, the work
in [7] considers more than 20 features. Those features are
mainly composed of descriptors of the signal shape (rate
of attack and decay, time of the main peak), statistical
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moments (mean skewness and kurtosis) and of signal power
(peak power, average and power standard deviation). In
bioacoustic, similar features have been also used in [3]
and in [4] respectively to distinguish boats from whales
and for bird species identification. Descriptors based on
entropy are used in [5] for frog sounds classification. Finally,
similar features are also used in music classification. We can
mention [6] in which music genres are discriminated using
entropy, centroid, centroid ratio, bandwidth or silence ratio
or [11] who recognize orchestral instruments with centroid,
skewness, kurtosis or centroid velocity. We collect and adapt
a large part of these features to our dataset.

As already mentioned, the automatic classification of
seismo-volcanic waves is still an almost unexplored field.
This is in part due to the fact that seismo-volcanic signals
are in some aspects similar to speech signals, but at the same
time incompatible with speech dedicated features since their
frequency and distribution range is very different. Seismo-
volcanic signals are also difficult to classify due to their
extreme variability (for example, in the time duration or
bandwidth of the events, and for the similarities between
signals belonging to different semantic classes). However,
the nature of these data makes reasonable to consider jointly
several features defined for other acoustic or transient sig-
nals, since only features defined on a specific domain (e.g.,
speech or animal sounds) are not expected to be adapted
to describe seismo-volcanic signals. In the following we
present the features that were considered in this analysis
as well as the proposed architecture for automatic classifi-
cation.

III. PROPOSED ARCHITECTURE FOR AUTOMATIC
CLASSIFICATION

A. Supervised Machine Learning

We briefly recall the background on supervised machine
learning [12] in order to introduce the proposed technique.
Machine Learning is a field of Artificial Intelligence that
aims to build a model that separates data into various groups,
referred as classes. Those methods are relatively new but
currently widely spread [13], [14] and used in a wide range
of applications including medical imaging [15] or image
processing [16], [13] or hyperspectral imaging. Supervised
Machine Learning refers to a set of methods that build a
prediction model from a labeled dataset: set of observations
whose thematic class is known (usually after a manual
labeling). From those set of observation, a prediction model
is built, which can then be applied to predict the class
of series of unlabeled samples. In the literature, different
algorithms can be used to build a supervised prediction
model such as Random Forest (RF) [17], Support Vector
Machine (SVM) [18] or Neural Network (NN) [19].

B. Proposed Classification Architecture

Here, we present the different steps of the proposed
architecture.

1) Preprocessing: As we deal with potentially large
datasets (e.g., the one we consider in this work collects
acquisitions over 6 years) and a large number of classes, we
propose at first to perform a preprocessing of the continuous
recordings to obtain a formatted dataset of observations. We
need to ensure that the signals that we consider belonging to
each class have roughly an uniform duration (i.e., number
of samples), see Table II for details. This dataset will be
used for training and testing our models.

The patterns of the classification problem are obtained
by manually segmenting the dataset into smaller chunks (of
potentially different duration). Each extracted segment is
then assigned to a specific class which corresponds to the
nature of the underlying physical event (reference class). We
propose also a preprocessing to carry out a normalization
(of the observations) in time and in frequency, in order
to be able to perform an analysis that is invariant to the
energy of the signals. We perform this operation, because
seismo-volcanic signals are widely variable over the 6 years
of recording. Signals belonging to the same class might be
characterized by both a high and low energy.

2) Features Extraction: Features extraction leads to a
representation of each observation in a corresponding feature
space in which an automatic decision rule can be estab-
lished. More specifically, descriptors are computed from
the observations in order to obtain a representation of the
acquired signals that is more compact (reducing the dataset
dimension is compulsory and in general meaningful) with
respect to considering all the samples in each observation as
features. This can be justified by several arguments. First,
the representation used in input of the learning algorithm
should make data as separable as possible. Using a feature
space that are discriminative leads to a separates data into
their classes support this assumption. Secondly, learning
algorithms are affected by the curse of dimensionality [20]
which states that the number N of needed examples to train
a prediction model increases with d, the dimension of the
data. Representing the data in a feature space of reduced
dimension with respect to the original dimension allows
training models to use a reduced number of observations.

Finally, learning algorithms such as SVM or RF do not
capture ordered representation: information such as global
trend and general shape of a signal are lost. Therefore, using
waveform or spectra in input of a learning algorithm is not
advised.

Using features that explicitly seize this information gener-
ally produced better results. For this application, we propose
to extract features from several representations of the ob-
servations. Especially, from an observation x(t), we extract
features from three different domains which are as follows:

o the time domain, in which features are extracted from
the signal itself z(¢) or from its energy E(z(t)) and
they are able to describe the waveform and its shape.

o the frequency domain X (f) to describe the spectral
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content of the observation. The Welch spectral density
estimator is used to compute X(f), since it allows
to decrease the signal dimension and also reduces the
noise and smooths the signal.

X(f) = Welch(ac(t)) (1)

« the frequency of frequency domain from X'(g). Repre-
senting an observation from the Fourier transform of
X(f) can underline the periodicity that can be found
in the spectra, and so the harmonicity of the original
observation. This space of visualization is mostly used
for speech processing and is referred as the cepstral
space.

X(q) =TF{X(f)} )

Extracting the same features from various representations
of a same observation allows to underline some specificities
of the signal. Using this strategy can greatly improve results
and is coherent with the manual procedure that experts use
conventionally. As we said before, the features extracted
from the various representations are combined in order to
describe an observation in different domains. We considered
several features that were defined in the state of the art
in different fields (see Table I for a list). Those features
belong to different types. Some of them are Shannon and
Rényi entropies, shape descriptors such as rate of attack
or decay, bandwidth measurements, maximum amplitude
or ratios between mean an minimum values for example.
Various statistical moments including standard deviation,
skewness and kurtosis are also used, respectively describing
spreading, asymmetry and flatness of an observation. By
using all these features, we notice that each observation can
be eventually represented by the feature vector of dimension
D =79 (detailed in Table I).

3) Learning: Once features have been extracted, labeled
feature vectors are given as input to a learning algorithm
that will produce a prediction model to be used on the
unlabeled dataset. In this work, we used Support Vector
Machine (SVM) for its robustness [8]'. From the labeled
dataset of NV signals, a model is then learned on o - N
examples with 0 < a < 1 and test it with the remaining
(1 — «) - N examples. Classically, this process is repeated
50 times with different random trials of examples to ensure
the results stability (this validation process is known as cross
validation).

IV. EXPERIMENTAL RESULTS
A. Experimental material

The dataset used in this work was collected on Ubinas,
a stratovolcano in southern Péru (16 22’ S, 70 54 W),
which has an altitude of 5676m and it is close to the city
of San Juan de Tarucani. Ubinas is considered to be the
Péru most active and dangerous volcano and is therefore

I'Similar results not presented here are obtained if other machine learning
algorithms are used (like Random Forest or Neural Networks.

TABLE 1
FEATURE SET FOR A GENERIC NUMERICAL SIGNAL s[i]*_, COMPOSED
OF n DISCRETE SAMPLES (OBSERVATIONS MIGHT NOT HAVE THE SAME
DURATION) AND WHICH CAN BE DEFINED IN DIFFERENT SPACE AS THE
TIME z(t), ENERGY E(x(¢)), FREQUENCY X (f) OR CEPSTRAL X(q).

Feature Definition Reference
Length n = card(s) [71
Mean ps = 237, sli] (7]
Standard deviation o5 = \/ ﬁ > (s[d] — ps)?
1 i|— s \3
Skewness =3 (%)4 121
: 1 5[i] —ps
Kurtosis =2 (%) [21
Average . [7]
Central Energy [7]
RMS bandwidth [7]
Mean skewness [7]
Mean kurtosis (7]
Shannon entropy —>_p(s;)log, (p(s5)) [61, [5]
J
Rényi ’entropy’ ﬁ log, (Zp(sJ')O‘) [51
J
Rate of attack max; ( w 71
Rate of decay min; (w) [71

Ratios, min, max, mean, etc.

[71, [2]

Specific values

closely monitored especially by the Instituto Geofisico del
Péru. In this study, we used data recorded over 6 years
(between 2000 and 2006) by a 1 Hz vertical sensor at
station UB1 with a sampling rate of 100Hz and transmitted
in real time. Our study is based on 6 different signal
classes defined by the geophysicists (they are reported in
Table II). For each class, a maximum of 800 examples per
class is considered for the learning phase. If more than
800 examples are available, the first 800 ones have been
selected in a chronological order. It is also worth noticing
that the time window in which those signals are recorded
can vary significantly, aspect that should be addressed by a
preprocessing of the data. Since the duration of the recorded
phenomena of interest can be extremely variable, we have
chosen to consider a maximum observation window of 40
seconds In the experiments we considered 3125 labeled
signals.

B. Experimental settings

This section reports the different experimental settings.
Considering different window lengths for the Welch
estimator or using a logarithmic scale do not have a
significant influence on the results. Once computed, the
dynamic of the feature vectors has been normalized (in
the interval [0, 1]) before being considered as input to a
Support Vector Machine, with a Gaussian Radial Basis
Function kernel of cost C' = 10 and Gaussian parameter
v = 0.01. Those values were obtained to optimize results
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TABLE II
UBINAS DATASET. FOR EACH CLASS, CLASS NAME (REFERENCE), A
DESCRIPTION, NUMBER OF OCCURRENCES NN;, WINDOW LENGTH Ay ;
NEEDED TO GATHER THE IN; SIGNALS AND MEAN LENGTH ARE GIVEN.

Ref. Description N; Ay ; (in days) Mean length
LP Long period 800 201 40s

TR Tremor 800 8 27min48s
EXP Explosion 154 1396 51s

VT Volcano-tectonic 800 1958 24s
HIB Hybrid 466 1647 34s
TOR Tornillo 105 632 40s

TABLE IIT

INFLUENCE OF FEATURE SET ON ACCURACY RESULTS (o = 70%)

‘ All features Time features  Freq. features
Dimension 79 40 39
90.4+0.7% 86.7+1.0% 73.0+1.3%

Features

Accuracy results

on a subset of data as a preliminary study, and are kept
constant in all experiments. Results are obtained through a
50-fold cross validation. A preliminary study showed that
results are steady if using more trials. Finally, the learning
rate « varied during the experiments so as to estimate
the variability in each class and the necessary number of
examples for the learning stage.

C. Results

In this section, we present results associated to the
automatic classification of Ubinas volcano-seismic data
over six classes. First, results validating the methodology
and features used are presented in Table III. Especially,
comparison from features computed from the time
representation x(t) (including its energy) and the frequency
representation X (f) (including on its Fourier Transform
X (q)) used to represent the signal are given. A confusion
matrix is also given in Table IV. Secondly, results displaying
influence of the learning rate o are shown in Figure 1.

100 Accuracy evolution with learning rate o

e LP

®e TR

& & EXP

oo VT
HIB

®'® TOR

Accuracy (%)

0 20 40 60 80
Learnina rate a (%)

100

Fig. 1.
classes

Accuracy evolution depending on the learning rate « for the 6

TABLE IV
CONFUSION MATRIX BETWEEN TRUE CLASS AND PREDICTED CLASS
WITH ALL FEATURES FOR THE 6 CLASSES, LEARNING RATE o = 70%.
MEAN ACCURACY FOR EACH CLASSES IS GIVEN.
MEAN ACCURACY OVER ALL CLASSES = 90.4%

True class
LP TR EXP VT HIB TOR

LP 215 16 0 2 7 1

TR 20 222 0 1 0
Predicted EXP 0 0 40 6 0
Class VT 2 0 5 221 8 3

HIB 2 1 1 10 123 0

TOR 0 1 0 1 0 27
Mean acc. 89.7% 92.6% 85.9% 92.1% 87.7% 84.9%

D. Results Analysis & Discussion

Table III shows that the proposed architecture reaches an
accuracy of 90%, thereby validating the methodology and
the features used in the analysis. It is worth noticing the
influence of features extracted from several representation
of the observations: accuracy does not exceed 73% and
87% if using features computed respectively from the X (f)
and z(t). The discriminating information is best underlined
when using several representations, each one underlying
some properties of a signals. The combined use of temporal,
spectral and cepstral representations allows more discrimina-
tive feature vectors. Table IV presents the confusion matrix
when all features are used to represent the data and o =
70%. The corresponding confusion matrix displays class by
class the number or proportion of true predictions, but also
the repartition of wrong predictions. It is useful to analyze
errors made by a model. In this case, it is worth noticing
that errors made by our model come from two different
sources. First, tremors and long periods can be mistaken for
each other, which is explained by the similarity between the
production mechanisms of those signals. Both are associated
to the resonance of cavities, filled with magma, gas or water.
The similarity of the production mechanisms induces a
similarities in the observed signals, hence this first mistakes.
The second source of mistake is seen in hybrids being
mistaken for long periods or volcano tectonics. Once again
this is explains by the physics behind the signals. Hybrids
are a class of signals processing both characteristics of long
period and volcano tectonics, thereby explaining the possible
confusion. Finally, the less frequent error is made between
volcano tectonics and explosions, which can occur in the
same frequency bandwidth with similar shapes.

The evolution of performances depending on the learning
rate o also worths to be considered. In general, classifi-
cation accuracy increases for increasing « before reaching
a plateau. This stability however is reached for different
learning rates depending on the considered class. Respec-
tively, tornillo, explosions and hybrids need larger learning
rate than long period, tremors and volcano tectonics. Corre-
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sponding learning rates are actually ordered depending on
N;, the number of examples by class. Eventually, this plot
shows that with a stability in results is reached with about
a hundred examples per class.

V. CONCLUSION & PERSPECTIVES

As a conclusion, we would like to underline the need
of automatic processing tools for the monitoring of active
volcanoes. We propose in this paper to use a supervised
machine learning architecture to build a prediction model.
The architecture has been tested on 3125 signals of Ubinas
volcano, split into six different classes. The accuracy reaches
90%, thereby validating (i) the methodology, (ii) the feature
extraction from several observation representations and (iii)
the extended feature set. It is our belief that this feature
set can be used for other and more general applications.
As future developments of this work, we are currently
working on (i) testing the generalization capacities for the
feature set, and (ii) developing prediction models based on
a semi-supervised approach. The idea is here to reduce the
dependency on a large set of labeled examples, which is
currently the main limitation of the proposed model.
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