
Joint Subsample Time Delay and Echo Template
Estimations for Ultrasound Signals

Ernesto Willams Molina Antelo Junior ∗, Daniel Rodrigues Pipa∗
CPGEI, Universidade Tecnológica Federal do Paraná

Abstract—In ultrasound applications, the signal obtained from
a real data acquisition system is corrupted by noise and the
echoes may have subsample time delays, which in some cases,
compromises scatterer localization. Most time delay estimation
(TDE) techniques require a precise signal template, otherwise
localization deteriorate. In this paper, we propose an alternate
scheme that jointly estimates an echo template and time delays
for several echoes from noisy measurements. Reinterpreting
existing methods from a probabilistic perspective, we extend
their functionalities through a joint application of a maximum
likelihood estimator (MLE) and a maximum a posteriori (MAP)
estimator. Finally, we present simulated results to demonstrate
the superiority of the proposed method over traditional ones.

I. INTRODUCTION

Ultrasound is a popular Non-Destructive Testing (NDT)
technique. In applications such as defectoscopy, applying the
pulse-echo method, the sound applied to a inspected object is
reflected by any discontinuity, as it is shown on Figure 1. Since
the location of a discontinuity is arbitrary, the comparison of a
centered echo used as a template, and the signal obtained from
the acquisition system may also have subsample time delays.

The data acquisition on any mode (A-scans, B-scans, C-
scans...) can be affected by thermal effects, electrostatic pro-
cesses and also by noise present on cables and electronic
components of the acquisition system [1]. Figure 2 illustrates
the effects of noise and subsample time delays on a acquired
echo.

Figure 1. Defect detection with Ultrasound Testing

A Time Delay Estimation (TDE) technique can be utilized to
determine the relative time shift between the reference signal
and a relatively similar received signal. Aspects like precision,
and computational cost of the TDE method are important.
Several TDE techniques have been developed, such as the
normalized and non-normalized cross correlation [2], sum

Figure 2. The acquired signal is subject to white gaussian noise and a
subsample time delay

absolute difference (SAD) [3] and sum squared error (SSE)
[4]. A performance comparison of these and other methods
can be found in [5]. The method applied in this work was
proposed in [4]. It interpolates the reference signal in order
to find a continuous time estimate and utilizes it as a pattern-
matching function. This function is compared to the discrete
sampled signal through SSE. A relative time delay is found
when the SSE is minimum. This approach is relatively simple
and straightforward and it has a good accuracy at a low
computational cost.

The noise present on real acquisition systems can be caused
by various reasons. It corrupts the data and lowers the in-
formation we get on the original signal. Data reconstruction
and restoration techniques are often used to recondition the
treated signal in order to extract more information from
the acquired data [6]. They can be used in a vast field of
applications such as telecom, biomedicine among others, and
in all of them, there is a common goal, which is to get more
information on the original data. For noiseless sampled data,
traditional interpolation methods can be enough to give us
the all the information on the original signal. On the other
hand, if the data is corrupted by noise these methods may
fail, since they consist in trying to fit a determined function
through the exact value of the sample. In this case, regularized
interpolation methods can give us better results. This paper
utilizes cubic B-splines as the interpolation method because
of its smoothing properties, and also because of the smooth
nature of the considered data. As in [7], we combine the B-
spline interpolation with a regularization method, due to the
presence of gaussian noise. This procedure is explained in
matrix notation in [8] being referred to as Smoothing Splines.

In this paper, both TDE and data reconstruction techniques
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are theoretically reinterpreted as probabilistic tools and then
jointly applied in generic noisy sampled data, in order to
find a better estimate on the data and on the subsample time
delay that affects the echoes. For the simulation, a generic
continuous signal is sampled and subject to noise and a
subsample time delay. It will be shown that the combined
application of both techniques gives us a more accurate TDE
then the one presented in [4] specially for low SNR signals,
and also gives us a smoother signal estimate.

II. PROPOSED METHOD

Consider a ultrasound data acquisition system working with
a pulse-echo technique. A high resolution signal is generated
with K echoes, representing the continuous time original data.
The first echo is the one that contains the highest energy, and
the following echoes are weaker due to signal attenuation,
caused by material granular spreading, absorption, scattering
and etc [9]. This signal is sampled, subject to additive white
Gaussian noise and also, the echoes have subsample time
delays between them. The generic discrete time model for one
echo of this signal is given as:

fi[n] = aiy(nT − τi) (1)

where fi[n] is the acquired signal, ai represents the amplitude
from the echoes, y is the reference, T is the sampling period
and τi is the subsample time delay

The generic discrete time model for the signal containing
numerous echoes is as follows:

f [n] =
K∑
k=1

fk[n] + w[n] (2)

where f [n] is the complete signal containing the K echoes and
nK samples and w[n] is the additive white Gaussian noise.

Given that the we have a known time delay, we now need
a tool with subsample accuracy in order to get a estimate.
The TDE method analyzed and applied in this work was
the SSE proposed by [4]. It has subsample precision and
compared to the other methods, has the advantage of low
computational cost and still, its performance as precise as the
cross correlation method. This approach also considers the
energy of the two compared signals. The TDE is taken by
comparing the highest energy echo to the other ones, giving us
a relative time delay between them with a reasonable precision.
It can be noted that this accuracy decreases if the data is
corrupted by noise. Another interesting remark of this tool, is
that it can be interpreted as a Maximum Likelihood Estimator.

Due to the fact that in real acquisition systems the data is
corrupted by noise, a regularized data reconstruction method is
applied to get a higher SNR signal estimate, lowering the effect
of noise on the TDE. The reconstruction technique applied on
this work is known as Smoothing Splines with B-spline basis.
It consists on a relaxed interpolation method, applying certain
smoothing constraints to the data. It improves the estimation
of the intensity gradient for noisy signals and as the TDE
technique, it can also be interpreted in a probabilistic point of

view, giving us a Maximum a Posteriori Estimator. This will
be explored further in this section.

This procedure is repeated in a alternate manner. The
subsample time delay is used as input on the smoothing splines
basis. The signal is reconstructed with lower noise and this
enhances the TDE performance as well as the data estimate.

A. Time Delay Estimation
The technique presented in [4] consists in comparing two

sampled signals f [n] and fk[n] with lengths N and M re-
spectively and N > M . The first signal f1[n] is interpolated
through cubic splines in order to generate the continuous
time estimated signal f̂ [n]. Then, a pattern-matching function
between f̂(t) and fk[n] is calculated through the SSE between
them.

e(τ) =
M∑
n=1

(f̂(nT + τ)− fk[n])2 (3)

Deriving equation (3) with respect to τ , setting the result
to zero and solving also for τ , gives us the value of τ that
minimizes e(τ), which is chosen to be the TDE.

de(τ)

dτ
=

d

dτ

( M∑
n=1

(f̂(nT + τ)− fk[n])2
)

= 0 (4)

If we take in consideration the probabilistic part of e(τ)
in (4), which is directly related to the noise present on the
acquired signals, this method can also be seen as a Maximum
Likelihood Estimation (MLE).

The first echo is not subject to the known time delay since
it is our intention to use it as a reference, this implies that
τ1 = 0.

f1[n] = a1y(nT ) (5)

The spline based TDE method from [4] is then applied to
find the time delay between the first and second echo and
then, to find the delay between the first and third echo. In both
comparisons, the first echo is divided by the ratio between the
maximum value of the first echo and the maximum value of
the compared echo, such that its amplitudes are comparable

fk[n] =
f1[n]

r1k
(6)

where r1k is the ratio between the maximum value of the first
echo and the maximum value of the kth echo.

For example, to find the time delay between the template
echo and other echo, we compare f [n] with fk[n], through
equation (3). Since in this analysis the only probabilistic
variable is the noise that is mixed with the compared signals,
and that equation (3) can be directly related to this noise, some
conclusions can me made. For instance, if the noise is defined
be i.i.d. and to have a gaussian distribution

P (e(τ)) =
N∏
n=1

1√
2πσ2

exp

{
− [e(τ)]2

2σ2

}
(7)
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And equation (7) can be expressed as follows:

P (e(τ)) =

(
1√
2πσ2

)N N∏
n=1

exp

{
− (f̂(nT + τ)− fk[n])2

2σ2

}
(8)

The definition of Maximum likelihood estimation is given
by:

τ̂ML = argmax
τ

{
P (e(τ))

}
(9)

Since the Maximum Likelihood method requires the max-
imization of the likelihood function, and this operation is
done through its derivative, for simplicity we utilize the Log
Likelihood function.

L(e(τ)) = N

[
1√
2πσ2

]
−

N∑
n=1

{
(f̂(nT + τ)− fk[n])2

2σ2

}
(10)

For the minimization, we derive (10) with respect to τ and
set it to zero.

dL(τ)

dτ
=

d

dτ

{ N∑
n=1

(f̂(nT + τ)− fk[n])2
}

= 0 (11)

It can be equivalently stated that the τ that maximizes (9),
minimizes the term inside the exponential.

τ̂ML = argmin
τ

{
f̂(nT + τ)− fk[n]

}
(12)

Comparing equations (4) with (3) we can see that, in the
case where the random variable is Gaussian i.i.d., the SSE
process gives us the same estimation for the τ parameter as the
MLE process. In [8], other aspects of the MLE are explored.

B. Regularized Reconstruction and Smoothing Splines

The technique utilized to perform the regularized recon-
struction is an application of the Smoothing Splines inter-
polation method with an adaptation presented by [8]. This
technique consists in creating a dictionary with B-spline basis
atoms and finding a set of coefficients that will linearly
combine these atoms to find a smoother data estimate.

In [10], [11] and [12] the application smoothing splines is
analyzed. It can be noted that this technique improves the
estimation of the intensity gradient when the signal is noisy.
A way to approach the problem of constrained curve fitting is
to find the f(x) that minimizes the following cost function:

∑
i∈Z

{
fi − f̂(xi)

}2
+ λ

∞∫
−∞

{
f (d)(x)

}
(13)

where d ≤ k − 1 and λ is the smoothing parameter. The first
one quantifies the square error between the f̂(xi) function and
the data vector fi. The second adds the smoothing constraints
to the solution.

(a) Smoothing Matrix.

(b) Kernels.

Figure 3. Construction of the Smoothing Matrix. In (a) we can see that the
Smoothing Matrix is almost banded, and this indicates that the kernels have
local support, as expected since it is a B-spline basis.

The interpolation function can be bumpy and unstable for a
small λ or overly smooth for a big λ value. A λ ∈ (0,∞) is
to be chosen for a reasonably good data reconstruction. This
approach is analog to the reconstruction problem [13].

The reconstruction problem is considered to be equivalent
to solving a linear equation system for a unknown parameter
vector x for a given data vector f and a operation matrix B,
thus

f = Bx (14)

in our case, B is a B-spline basis dictionary and x is the
B-spline coefficient vector. Figure 3 illustrates the structure
of the dictionary. The colors indicate the amplitude of the
basis. It can be seen that the Smoothing Matrix has a banded
nature. This happens because smoothing splines interpolation
is a local fitting method [8].

Since equation (14) does not consider any prior knowledge
about a possible solution, a reasonable way to solve (14),
would be to find a least-squares fit set of solutions, relative to
the data vector [14].

f̂LSF = argmin
x

||f −Bx||22 (15)

where ||z||22 is the `2 norm, and the arg refers to the argument
which produces the minimum norm solution. The x vector
which solves (15) can be found through the following equation

(BTB)x̂LSF = BTf (16)
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The solution of (15) through (16) gives us the least square fit
with the smallest l2 norm, and this is the generalized solution.
In this type of reconstruction, non observable objects in the
data are neglected. This solution is also sensitive to small data
variations, and thus, responsive to noise. These problems can
be solved through regularization concepts proposed by [15].

Basically, constraints are applied to the solution in order
to mitigate the oscillatory nature of the noise present in the
acquired data. This constraints can be controlled through the
regularization parameter λ, and as previouly mentioned this
parameter controls the balance between a stable solution and
the generalized solution.

Regularization is vastly researched and it has plenty of
literature on this subject such as [12], [14], [6] and [8]. In this
work, the Tikhonov regularization was utilized. This method
is based on the problem’s prior information incorporation into
the solution. This can be performed through the inclusion of
a new term on equation (15). This gives us

f̂Tik(x) = argmin
x
||f −Bx||22 + λ||Lx||22 (17)

where the first term is the general least square solution,
which guarantees the reconstruction fidelity to the data; The
second term refers to the prior knowledge that we have on
the real signal. L is the parameter which captures the prior
information on the data behavior and incorporates it onto the
solution through an additional l2 penalty term, controled by
the regularization parameter λ. In our case, L is the second
derivative of the cubic B-spline basis set. The solution that
minimizes (17) is also the solution of the following equation
for f̂Tik:

(BTB+ λLTL)f̂Tik = LTg (18)

When compared, (18) and (16) illustrate the difference
between the generalized solution and the regularized one. It is
clearly shown that for a bigger λ value, the equation (18)
solution deviates from the generalized solution, and for a
smaller λ value, they get closer. There are plenty of ways to
find a solution to (18), including (BTB+ λLTL) inversion
and iterative methods. In this work the utilized method was
the preconditioned conjugate gradient [16] due to its good
convergence power and precision.

In this work, the reconstruction problem can also be proba-
bilistically interpreted. The first term of Equation (17) can be
written as the probability density function P (f |x).

P (f |x) ∝ exp

{
−||f −Bx||22

2σ2
ε

}
(19)

The second term of equation (17) can be written as P (x):

P (x) ∝ exp
{
−λ||Lx||22

}
(20)

this equation brings the prior information that we have on the
posterior distribution.

The process of finding a coefficient vector x̂ that maximizes
the product of (19) and (20), can also be interpreted as the

posterior distribution P (x|f) maximization, which means we
are finding a maximum a posteriori estimate.

x̂MAP = argmax
x

P (x|f) = argmax
x

{
P (f |x)P (x)

}
(21)

Similarly to the MLE process, we can minimize the minus
log of (19) and (20) product, taking the derivative of the result
with respect to x and setting to zero.

x̂MAP = argmin
x

{
− log[P (x|f)]

}
(22)

d

dx

{
− log[P (x|f)]

}
=

d

dx

{
||f −Bx||22 + λ||Lx||22

}
= 0

(23)
It is clear that (23) produces the same result as (17).

This means that, in our case, since the random variables
are i.i.d, with gaussian distribution, the regularized signal
reconstruction can be seen as a MAP estimation [17].

After the time delay estimation, the signal is reconstructed
through smoothing splines, which in this case, is a B-spline
penalized interpolation with a coefficient for every interpolated
data point. The TDE is inserted into the B-spline basis
set, corresponding to the respective echo, forcing the point
spreading to be delayed by this estimate.

III. SIMULATION RESULTS AND DISCUSSION

The simulations made for this paper consists in applying the
time delay estimation algorithm on the noisy data. After it we
apply a Tikhonov regularized signal reconstruction routine in
order to get a smoother data estimate and then the TDE taken
again. The reconstruction is now made with a slight subsample
shift in the B-spline basis. Note that the waveforms on the
simulations have the same shape, with no distortion. This is
considered for simplicity, since any discrepancy between the
waveforms would introduce more errors to the results.

Gaussian-modulated sinusoidal pulses were generated to
simulate the signal echoes. This pulses had the following char-
acteristics: center frequency of 5 MHz; Fractional bandwidth
of 0.8; period of 1 µs. The first echo has unity amplitude and
the latter ones are multiplied by 0.6 and 0.3 respectively. The
noisy sampled signal, or the acquired data had a SNR of 20.

The known time delay applied to the signal so that the
analysis could be made, was actually considered as a sub-
sample measure. Since we are trying to simulate a real signal
acquisition situation, the acquired data is a sampled signal
subject to noise. For simplicity then, the known time delay
considered is of 0.5 samples applied in the second and third
echoes. This process is illustrated on the following algorithm:

The output of the proposed algorithm can be seen in Table
I. It is clear that, combining both TDE and reconstruction
methods alternately we get a smoother template estimate as
well as a better time delay estimate with lower bias and
variance. Note that the first considered TDE is obtained
directly from the noisy signal. Note that the first considered
TDE is obtained directly from the noisy signal. Since the TDE
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Algorithm 1
Create a generic high resolution signal y(t)
Input:f [n] =

∑K
k=1 fk[n] + w[n]

Find TDE : argmin τ

{
f̂(nT + t)− f1[n]

}
Find estimate : argmin x

{
||f −Bx||22 + λ||Lx||22

}
for k = 1 : N do

Find TDE on the signal estimate
Find signal estimate with subsample dislocation

end for
Output: TDE, MSE, Smoother signal estimate

technique is noise sensitive, we can get better estimations for
smoother signal estimates.

Table I
RESULTS FOR TDE AND MSE BETWEEN ECHOES 1 AND 2 WITH

DIFFERENT SNR. THE ACTUAL TIME DELAY IS 99.5

SNR FirstTDE FinalTDE FirstMSE FinalMSE
20 99.5632 99.5224 0.0007183 0.0004215
25 99.5215 99.5017 0.0004479 0.0003287
30 99.4781 99.4920 0.0004253 0.0003257
35 99.5120 99.5009 0.0002598 0.0002447
40 99.5000 99.5000 0.0002550 0.0002245

Figure 4 illustrates the difference between the acquired
data and the treated signal. As expected, the reconstructed
signal is smoother due to the regularization. The time delay
improvements can hardly be seen here since the plot in
MATLAB matches the samples positions.

Figure 4. MSE between the generic continuous signal and the reconstructed
signal. In red we have the acquired data, and in blue we have the reconstructed
signal from the last iteration.

The signal estimate has a high fidelity to the noiseless
generic continuous signal, preserving the echoes forms and
its amplitudes and also having a very good trade-off between
the acquired data points and smoothness.

The effects of regularization are clearly seen in the data
smoothing as well as in the MSE comparison. The TDE
effect on the reconstruction can also be seen on the MSE
improvements, since for each iteration, we have a better time
delay estimate for the next delayed reconstruction.

The developed method and results presented in this paper
show that the proposed algorithm can lead to slight better
results when compared to one of the reference methods all
alone. It can be clearly seen that the utilization of both of them
in a alternate way can lead to better time delay estimates as
well as data estimates.

The results presented here can be reproduced with small
changes since we are dealing with white Gaussian noise as
a random variable. Note that, even though other techniques
are available to estimate time delays and also to reconstruct
signals, in this paper we have conveniently chosen methods
that could also be analyzed from the probabilistic perspective,
which strengthen the theoretical background of the method
presented in this work.

A number of issues can be explored in future research. One
important aspect that should be addressed is the utilization of
the proposed method in real data for different applications. The
analysis presented here could also be extended for distorted
wavefront cases, since time-domain TDE methods are strongly
related to the shape of the signal. For further research, other
TDE and reconstruction methods can be tested.
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