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Abstract—Omnidirectional images are spherical signals cap-
tured by cameras with 360-degree field of view. In order to be
compressed using existing encoders, these signals are mapped
to planar domain. A commonly used planar representation is
the equirectangular one, which corresponds to a non uniform
sampling pattern on the spherical surface. This particularity is
not explored in traditional image compression schemes, which
treat the input signal as a classical perspective image. In this
work, we build a graph-based coder adapted to the spherical
surface. We build a graph directly on the sphere. Then, to have
computationally feasible graph transforms, we propose a rate-
distortion optimized graph partitioning algorithm to achieve an
effective trade-off between the distortion of the reconstructed
signals, the smoothness of the signal on each subgraph, and the
cost of coding the graph partitioning description. Experimental
results demonstrate that our method outperforms JPEG coding
of planar equirectangular images.

I. INTRODUCTION

Nowadays, omnidirectional images are widely used for

popular applications such as virtual reality and immersive
communications. Omnidirectional images are spherical sig-
nals captured by cameras with 360-degree field of view. In
order to use existing image and video processing algorithms,
these signals are usually mapped to planar domain and stored
as rectangular lattices. A commonly used planar represen-
tation for omnidirectional content is the so-called equirect-
angular representation [1] (Figure 1). This representation
presents strong warping distortions around the polar areas
and corresponds to an equi-angular sample distribution on
the spherical surface, which is non-uniform (Figure 2). An
equirectangular image can be fed as input to existing state
of the art encoders, but the equirectangular signal statistics
differ from those of classical perspective images. Thus, using
existing compression algorithms is sub-optimal [2].
In this paper, we propose a graph-based representation for
omnidirectional images, which takes into account the spheri-
cal geometry and provides a flexible way to efficiently store
and compress the visual data. Specifically, we propose to
represent an omnidirectional image by a graph, where the
graph vertices correspond to the image pixels defined on the
spherical surface. The edge weights capture the sampling grid
on which the signal is defined. Such a flexible representation
permits to go beyond traditional transform coding by moving
from classical fixed transforms such as the Discrete Cosine
Transform (DCT) to graph-based transforms that are adapted
to the actual signal support, such as the Graph Fourier
Transform (GFT) [3] [4].

(a) Pool (b) Farm

(c) Metro (d) Hotel

Fig. 1: Omnidirectional images (in equirectangular format)
used in our experiments: two outdoor images (a and b) and
two indoor images (c and d) [6]

Due to the high spatial resolution typical of omnidirectional
images [1] , the graph that we propose to build would have
a huge number of vertices (>500K). Consequently, the GFT
computation in an actual coding pipeline would be unfeasible.
Indeed, one would think about using sampling techniques
on the sphere. However such coding schemes involve inter-
polation which makes the distortion control very complex.
Instead, we propose an efficient graph partitioning strategy,
which takes into account the geometrical information in order
to optimize the smoothness of the signals on the subgraphs
while keeping a small overhead to code the description of the
partition. Finally, we propose a complete GFT-based lossy
compression scheme using this partitioning and compare its
performance to the classical DCT-based JPEG coding [5].
Experimental results show that the partitioning provides an
effective tradeoff between the smoothness of signals on the
subgraphs and the cost of coding the partition. Moreover,
the proposed coding scheme outperforms JPEG coding of
planar equirectangular images, in terms of Rate-Distortion
(RD) analysis using multiple quality metrics.

II. 360-DEGREE IMAGE AS SIGNAL ON A GRAPH

A 360-degree image I can be represented by a signal z €
RY defined on an undirected, 4-connected, weighted global
graph G = {V,E, W} (See Figure 2), which consists of a
finite set of vertices )V defined on the image surface, with
|[V| = N, a set of edges &, and a weighted adjacency matrix
W. For ¢ = 1,..., N, the signal value x; corresponds to the
pixel color value at vertex ¢ € V. If there is an edge ¢ = (i, 7)



Fig. 2: Equi-angular (i.e., non uniform) sampling on the
sphere corresponding to the planar equirectangular repre-
sentation. A graph is drawn on the spherical surface with
vertices corresponding to pixels and edges connecting each
pixel with its four closest neighbors (three closest neighbors
at the poles).

connecting vertices ¢ and j, the entry W; ; represents the
weight of the edge, otherwise, W; ; = 0. We define the weight
of an edge connecting adjacent vertices ¢ and j via a Gaussian
kernel weighting function:
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for some parameters 6,0, , where dge,(%,7) represents the
geodesic distance between vertices ¢ and j capturing the
sampling grid on which the vertices are defined (Figure 2).
One known operator defined on the graph is the unnormalized
graph Laplacian defined as L = D — W where D is a
diagonal matrix whose i-th diagonal element D;; is equal
to the sum of the weights of all the edges incident to vertex
i. L is a real symmetric matrix, thus, it has a complete set
of orthonormal eigenvectors u; = {u;} associated to real
nonnegative eigenvalues A, = {\;}, with [ =0,1,.... N — 1,
satisfying:

Lul = /\lul. (2)

We assume that the graph Laplacian eigenvalues are ordered,
ie, 0 = A < A1... < Any—1. The graph spectrum is
defined as (L) = {Ag, A1,...An—_1}. Once we have a graph
and a signal defined on its vertices, the eigenvectors of the
Laplacian are used to define the graph Fourier transform
(GFT) [4] of the signal z. Particularly, the GFT % of any
function « : V — R defined on the vertices of G is the
expansion of z in terms of the eigenvectors of the graph
Laplacian:

N
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The inverse graph Fourier transform is then given by:
N—1
w(i) = ) 2(A)ui)- @)
1=0
The graph Laplacian eigenvalues and eigenvectors carry
a notion of frequency. The eigenvector ug associated with
the eigenvalue )¢ is constant and equal to 1/ VN at each

vertex. The eigenvectors associated with small eigenvalues
vary slowly across the graph, i.e., if two vertices are connected
by an edge with a large weight, the values of the eigenvector
at those locations are likely to be similar. The eigenvectors
associated with larger eigenvalues oscillate more rapidly and
are more likely to have dissimilar values on vertices connected
by an edge with high weight.

A signal x is considered to be smooth on G if strongly
connected vertices have similar signal values [7]. This is
usually quantified in terms of the laplacian quadratic form:

S(x) = 2" La. ®)

In general, graph-based image compression methods use a
graph representation as defined above, and perform a GFT to
capture the main characteristics of the signal. The coefficients
are then encoded instead of original values. The smoother
the signal on a graph (smaller S(z)), the more its energy is
concentrated in the low frequency GFT coefficients and the
more it is easily compressible.

III. PROBLEM FORMULATION

In our case, the common computational limitation of the
global graph representation is the maximum acceptable num-
ber of vertices in the graph for GFT computation, which limits
the resolution of the visual signal that can be supported.

In order to cope with the feasibility of the graph-based
transform of the signal in high resolution omnidirectional
images, the global graph G = {V,£, W} should be sepa-
rated into several connected components, e.g. M subgraphs
{G1,..,Gi,...,Gr} by pruning some unreliable edges. The
i-th subgraph is G; = {V;, &;, W, } where V; are the vertices
in the subgraph, with |V;| = N; < N, &; are their edges,
and W is the weights matrix. x; is the signal defined on the
i-th subgraph. The signals on each of the subgraphs are then
independently processed, and transformed separately using
their respective local Laplacian L;.

If the topology and weights of the global graph are fixed,
in order to obtain a good compression performance, the
graph partition should be chosen such that it leads to smooth
representations of the signals inside different subgraphs. On
the other hand, it should also be easy to encode, since it
has to be transmitted to the decoder for signal reconstruction.
Our problem is therefore how to split the fixed global graph
into connected components, so that we achieve optimal RD
performance and such that all the connected components
contain less than NV,,,, nodes..

We first pose the problem as a rate-distortion optimization
problem defined as:

_min D(G) +YRc(G) + BRE(G)
G={G:} (6)
subject to  N; < Npaz, Vi

G = {G:} is the global graph based on the geometry
defined a priory using Equation (1) , where some edges are

removed. D(G) is the distortion between the original image

and the reconstructed one, Rc(G) is the rate cost of the

transform coefficients, and Rp(G) is the rate cost of the



boundaries for the graph partitioning description. Each of
these terms possibly depend on the chosen partition of the
graph and of the coding scheme envisioned. We detail each
one of them in the next section.

IV. R-D OPTIMIZED GRAPH PARTITIONING
A. Distortion Estimation

Since the GFT is orthonormal and independant in each
subgraph, the distortion term in the above problem D(G) is
equal to the sum of distortions on all subgraphs:

M M M
=3 "D(G) =Y i — &%= 1 — &4,
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where x; and Z; are the original signal and decoded signal in
the i'" subgraph respectively. #; and 2,4 are the original and
quantized signal GFT coefficients in the i*" subgraph.
If we consider a uniform scalar quantizer with small quantiza-
tion step ¢ for all N coefficients, D(G) can be approximated
by:

D(G) - ¢* ™

BT

and is thus independent from G. Therefore, the optimization
problem (6) is reduced to minimizing the rate terms.

B. Rate approximation of transform coefficients

We can evaluate the rate of the GFT coefficients R (G;)
in a subgraph ¢ using the approximation in [8]:

Re(Gi) =S => N, (8)
l

The parameters A\; and z;; are the eigenvalues of the local
Laplacian, and the corresponding GFT coefficients of the
signal x; respectively. Hence, It is an eigenvalue-weighted
sum of squared transform coefficients which depends on the
underlying local graph L.

Such proxy assumes that the bitrate of the transform coef-
ficients increases when the smoothness of a signal on the
graph decreases. While the bitrate needed to code the DC
component is not captured by this approximation, we assume
that it is only dependent on the number of subgraphs, which
can be tuned using the N,,,, constraint in our optimization
problem. The higher the N,,,,, the lower the bitrate needed
to code the DC coefficients.

C. Rate approximation of the subgraphs boundaries

In fact, in our problem we impose that the pixels of
the same subgraph form a connected component. Thus, a
common way to code the subgraph membership is to code
the boundaries. In order to approximate the coding rate of a
boundary B;; between two adjacent subgraphs G; and G;, we
use the 4-directional differential freeman chaincodes (DCC)
[9] and estimate the coding rate of the boundary as its entropy
computed as follows:

4

Cp(if) = —#1 Y pr1ogs pr, )
where #; is the number of chaincodes of the boundary and
P,k = 1:4 are the probabilities of each of the 4 directions.

D. Minimization of the total coding rate

Using (7) (8) and (9), the optimization problem in (6)
becomes:

min Zx Lz, + a= ZZCB ij),

G={g:} = =1 N
s.t. N(gi) < Nonaw, Vi

(10)

where A; is the neighborhood of the subgraph G;. The second
term is divided by 2 since we only have to code the boundary
between any two neighboring regions once.
Finding this optimal partition is in general a combinatorial
task, so we solve it using traditional agglomerative approx-
imation. To initialize our optimization process, we use the
Normalized Cut [10] which is well known for favoring the
highest smoothness inside partitions. For that, we build a new
graph Gne with the same connectivity as G but with weights
taking into account both the geodesic distance on the sphere
and the euclidean distance in the Y space as:

) . an

.o d €eo 1,7 2 dy (3
w(i,j) = exp (—929(3(2:) ) exp ( 2(92])
Note that this graph Gnc is only used in the Normalized Cut
algorithm, and do not serve as a support for GFT thus will
not be transmitted. To limit the computation time, the seg-
mentation is performed with recursive 2-way cut algorithm:
at each iteration, only the first 2 eigenvectors are computed
exploiting the sparse nature of the laplacians. At the output
of the initialization, we have an over-segmentation with non-
overlapping subgraphs R = {Gi,...,G;,...,Gk }. To model
their spatial locality, we construct a subgraph neighborhood
matrix E where E(i,j) = 1 indicates that the subgraphs
G; and G; are adjacent in the image. In fact, merging any
two adjacent subgraphs G; and G; implies re-considering the
connections between adjacent pixels on the boundary between
them (from the global graph), hence removing the boundary
itself. At each iteration of the merging process, we find the
two adjacent subgraphs G and G, which if merged, bring
the most significant decrease of the criterion in (10) while not
exceeding N,,q, nodes in the merged region. In other words,

{G:,6G; }—gngue( ARc(Gi, G;) + MARB(Gi, G;),

Y]

s.t. E(Zv.]) = 17 N(gl Ug_]) < Nmaw
where
ARC(Q,-, QJ) = xiTLia:i + l‘ijl‘j

BETes

ARB(Gi,G;) = Cp(ij).

ARc(Gi,G;) and AR (G;, G;) essentially capture the differ-
ence in the rate needed to code the coefficients and the rate to
code the boundaries between the two regions before and after
merging, respectively. If ARc (G, G7) + AMARq(G5,G7) >
0, we merge G; and G into one subgraph, and repeat the
process until the total rate cannot be further reduced.

In the previous formulation and subgraph merging process, we

Lj+Dji [xi xj]



assume that all subgraphs are having the same contribution
to the global rate of the whole scheme. However, in our
omnidirectional image application, we are interested in giving
ideally more rate to the most useful part of the signal,
allowing more rate to the subgraphs occupying the biggest
surface in the sphere, favoring the merging on smaller surfaces
in the spherical domain. Hence, we modify the initial RD gain
of Equation (12) adding a normalizing factor equal to the area
occupied by the merged region on the sphere:

ARc(Gi,Gj) + AMARB(G:, Gj)
where A;; is the area on the sphere that the merged region
occupies. Such normalization gives more priority to merging

in the poles than in the equator. The final algorithm of the
partitioning is detailed in Algorithm 1.

(61,6} = L (13)

max
Gi,G;€ER

Algorithm 1: Rate-distortion optimized Graph partition-
ing for omnidirectional image coding

Data: NcutLabels, Maximum number of Nodes in a
Subgraph: Gncut, Nmaz
Result: Labels after merging G final
Initialization: G = {G;} = Gnecuts
Construct the region neighborhood matrix E;
Compute ARc (gz, gj) + )\ARB(QH gj) for all 7, j
where E(i,7) =1 and N(G; UG;) < Npay
Repeat
Find {G}, G},
G=06\{G;,G;1u{g; UG}
Update E based on the newly merged region
Until max (AR¢(Gi,G;) + AMARB(G:,G;)) < 0;
gfinal = g;

Eq. (13)

V. EXPERIMENTAL VALIDATION

We now move to describe how we use the above graph

partitioning algorithm in an omnidirectional image compres-
sion scheme. As pointed out in the previous sections, once
we solve our optimization problem, we have two kind of
information to transmit to the decoder side: the GFT coef-
ficients of the signals in all subgraphs and the description
of the partitioning. The transform coefficients are quantized
using a uniform quantizer with a fixed step size ¢ for all the
bands, then coded with a simple entropy coder.
In order to code the partition map, we use the arithmetic
edge coder (AEC) proposed in [11]. The contours are first
represented by differential chaincode (DCC) [9] and divided
into segments. Then, to efficiently encode a sequence of
symbols in a segment, AEC uses a linear regression model
to estimate probabilities, which will be subsequently used in
the arithmetic coder.

A. Validation of our rate proxy

Although we do not explore the true rate needed to code
boundaries using AEC in our graph partitioning, we can show
the accuracy of our proxy. During the optimization process,
we compare the rate needed to code a boundary using AEC
to our rate proxy using the entropy. Results are shown in

EAC vs Boundary rate proxy
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Fig. 3: Accuracy of the our rate proxy. z-axis: rate needed
to code a boundary using EAC. y-axis: rate computed using
our proxy
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Fig. 4: Graph partitions represented in the equi-angular
domain (a) and in the spherical domain (b)

Figure 3 in which the z-axis corresponds to the rate needed
using AEC, and the y-axis corresponds to the our proposed
rate proxy of R p. Although our rate proxy of the subgraphs’
boundaries has a very small computation time with respect
to AEC, the positive linear trend observed in the plot shows
that it is a good approximation.

B. Coding results

We test our method on four grayscale omnidirectional
images, namely Metro, Pool, Farm and Hotel shown in Figure
1. Each omnidirectional image is of size (512 x 1024).

We test two versions of our scheme that we call WithoutGe-
ometry and WithGeometry. In the first version, the geodesic
distance is not taken into account which comes down to
set Ogeo = 00 in the construction of graphs G and Gnc.
Moreover, the merging is done as explained in Equation
(12). On the other hand, the second version corresponds
to our detailed scheme of the previous section taking into
account the geometrical information in all stages: normalized
cut, merging with equation (13) and transform coding. To
evaluate the compression performance, we compute the PSNR
in two different domains: the equirectangular domain between
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Fig. 5: Rate-distortion comparison. 15 row: performance in the equirectangular domain. 2% row : performance in the Spherical domain

original and decoded omnidirectional images, and in the
spherical domain after performing a uniform sampling of the
spherical surface [12].

Figure 4 shows an example of subgraphs obtained using
WithGeometry scheme after fixing A to 600 for the Pool
image, in the equirectangular and the spherical domains. It
is clear that subgraphs are adhering to the objects borders
in both domains and larger subgraphs are formed around the
poles.

Results in Figure 5 show that WithGeometry leads to a better
rate-distortion performance in both domains, compared to
WithoutGeometry. There is two major explanations of this
behavior. First, the global graph in the first case is more
adapted to the omnidirectional signal: more specifically, the
signal values in horizontally adjacent pixels around the poles
are assumed to be more correlated than those which are
horizontally adjacent in the equator. This is the case of most
of omnidirectional images where poles usually consist of
the floor or the sky. In practice, some images like Metro
do not totally follow this assumption which explains the
comparable performance observed for the two schemes. A
second explanation is that in the WithGeometry case, the total
rate is allocated more carefully taking into account the area
occupied on the sphere. Furthermore, the obtained results
show that our proposed schemes outperform classical DCT
transform coding scheme in JPEG especially in the low bitrate
range, although they can be further improved by optimizing
the coding step namely in the quantization and arithmetic
coding parts.

VI. CONCLUSION

In this paper, we have proposed a new graph-based frame-
work for omnidirectional image compression. We introduced
a new R-D optimized graph partitioning to cope with the
feasibility of graph Fourier Transform on global graphs
defined on high resolution images. The partition obtained
provides an effective tradeoff between the smoothness of
signals inside subgraphs and the cost of coding the partition
description. Also, we showed that our methods outperform
traditional DCT coding schemes at low bitrates. As future

work, we investigate the use of different forms of laplacians
and focus on the adpatation of the quantization and other
coding tools, which may lead to further improvements to the
coding performance. Comparison with traditional coding of
planar representations other than the equirectangular one [1],
as well as analysis of RD performance on higher resolution
test material, will also be performed.
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